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A B S T R A C T  

 
The concept of brain-controlled UAVs, pioneered by researchers at the University of Minnesota, 

initiated a series of investigations. These early efforts laid the foundation for more advanced prototypes 

of brain-controlled UAVs. However, BCI signals are inherently complex due to their nonstationary and 

high-dimensionality nature. Therefore, it is crucial to carefully consider both feature extraction and the 

classification process. This study introduces a novel approach, combining a pretrained CNN with a 

classical neural network classifier and STFT spectrum, into a Multi-Tiered CNN model (MTCNN). The 

MTCNN model is applied to decode two-class Motor Imagery (MI) signals, enabling the control of 

UAV up/down movement. The experimental phase of this study involved four key experiments. The 

first assessed the MTCNN model's performance using a substantial dataset, resulting in an impressive 

classification accuracy of 99.1%. The second and third experiments evaluated the model on two 

different datasets for the same subjects, successfully addressing challenges associated with inter-subject 

and intra-subject variability. The MTCNN model achieved a remarkable classification accuracy of 

99.7% on both datasets. In a fourth experiment, the model was validated on an additional dataset, 

achieving classification accuracies of 100% and 99.6%. Remarkably, the MTCNN model surpassed the 

accuracy of existing literature on two BCI competition datasets. In conclusion, the MTCNN model 

demonstrates its potential to decode MI signals associated with left- and right-hand movements, offering 

promising applications in the field of brain-controlled UAVs, particularly in controlling up/down 

movements. Furthermore, the MTCNN model holds the potential to contribute significantly to the BCI-

MI community by facilitating the integration of this model into MI-based UAV control systems. 
 

 

1. INTRODUCTION 

In the last decade, Unmanned Aerial Vehicles (UAVs) have garnered increasing attention from the research community[1]. 

They represent a pivotal technological advancement that has seen a surge in interest. Moreover, the growing importance of 

drones in various applications has been remarkable due to their unparalleled role in executing aerial operations, especially 

in situations where piloted flights are unfeasible [2]. Notably, studies such as [29] have endeavored to develop brain-

controlled Assistive Devices (AD) to empower individuals in exploring their environment using a computer and their 

thoughts. Leveraging the potential of a noninvasive Steady-State Visual Evoked Potential (SSVEP)-based Brain-Computer 

Interface (BCI) system, users can navigate a flying robot, commonly known as a UAV or drone, within 3D physical space. 

Within the domain of BCI-based UAV control, EEG signal modalities such as P300 evoked potentials, SSVEP, and Motor 

Imagery (MI) have emerged as prominent contenders [3]. However, it's essential to note that MI is distinct as it relies solely 

on spontaneous potential and doesn't necessitate external stimulation [4]. As a result, researchers have harnessed MI signals 

to aid individuals with disabilities in managing various equipment, such as robots and even self-driving cars [5]. Imagine 

being able to control a part of your body without physically moving it – this is the essence of MI [6]. EEG signals are 

generated by both real and imagined human movements. In motor imagery, EEG signals exhibit event-related 
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synchronization (ERS) and event-related desynchronization (ERD) features [7]. Each hemisphere of the human brain 

consists of four lobes, each with a unique function. Fissures divide these ear-like lobes (sulcus). In the context of the BCI 

system, the primary somatosensory cortex (parietal lobe) and the primary motor cortex (temporal lobe) are of paramount 

significance [8]. Mu and beta rhythms within the sensorimotor region of one hemisphere show a decrease or increase as 

individuals imagine or execute unilateral limb movements. These variations are known as event-related desynchronization 

(ERD) and event-related synchronization (ERS) [9]. 

MI-based Brain-Computer Interface (BCI) pattern recognition systems fundamentally involve three essential processes: 

preprocessing of the EEG signal, feature extraction, and classification [10]. Among these, feature extraction is the pivotal 

process in the MI EEG pattern recognition model. Extracted features serve the purpose of streamlining data processing by 

identifying the most relevant feature components within the signal. The feature extraction process can be executed in 

various signal processing domains, including the spatial domain, time domain, frequency domain, and time-frequency 

domain [10]. Notably, time-frequency representation (TFR) of MI features is widely employed for classification in BCI 

applications. TFR describes the signal's energy density and intensity at different time and frequency points by constructing 

a joint function of time and frequency [11]. Given that MI signals are 1-D in nature, methods like Continuous Wavelet 

Transform (CWT) and STFT are frequently utilized to convert the signal into a 2-D image. These methods are efficient and 

adept at capturing signal characteristics in both the time and frequency domains [12]. However, when the time interval is 

relatively short, EEGs may resemble a non-stationary signal. In such cases, the STFT method proves effective for extracting 

and computing the spectrum of the brain signal in the time-frequency domain [13]. Furthermore, STFT provides 

comprehensive information about the time-frequency domain while incurring a low computational cost [14]. 

In the same context, deep feature extraction using deep neural networks (DNNs) has recently demonstrated remarkable 

categorization capabilities across various applications, including computer vision, video processing, and speech 

recognition. The profound success of deep neural networks has inspired numerous academics to explore their potential in 

categorizing EEG signals [15]. In the field of Brain-Computer Interfaces (BCI), many researchers have begun to integrate 

deep learning into their applications, spanning from seizure detection and memory retrieval to MI categorization [16]. 

Convolutional Neural Networks (CNNs) have shown their ability to extract spatial and temporal features from MI data. 

They can effectively extract valuable features from both shallow and deep models, suggesting that significant features can 

be retrieved at various levels [5]. Nevertheless, one of the major challenges in categorizing MI EEG features using deep 

learning techniques is the limited availability of data, mainly due to patient fatigue during experiments [17]. Additionally, 

substantial individual variations among different subjects make it challenging to directly apply labeled data from other 

subjects to train a classifier for identifying specific individuals [18]. Furthermore, EEG data collection is costly, and 

obtaining a sufficient quantity of labeled samples is often a formidable task [19]. To address the issue of combining data 

from domains with different distributions, transfer learning has emerged as a valuable approach. Transfer learning 

encompasses techniques designed to transfer representations and knowledge from one domain to another [20]. In essence, 

it allows researchers to seamlessly incorporate new datasets into an already trained machine learning model. This capability 

is especially advantageous in BCI systems, where the available data is often insufficient for robust model training [21]. 

Notably, in BCI studies, the CNN-based subject-transfer technique has proven to outperform other methods. Subject-

transfer strategies operate on the premise that the typical patterns of the target subject may be comparable to those of other 

subjects when performing the same activity [22]. 

 

The choice of a classifier significantly impacts the discrimination between two MI EEG mental commands, making 

classifier selection a critical aspect of the study. Traditional machine learning methods often rely on hand-crafted features 

for classification. In contrast, Deep Convolutional Neural Networks (DCNN) have the ability to perform classification by 

directly extracting features from raw data [23]. Previous studies, such as [24, 25], have used pretrained CNN models in 

conjunction with classical machine learning algorithms for classifying computer vision problems. Similarly, a study like 

[26] applied a similar technique for detecting epileptic seizures. 

 

In this research, a hybrid approach was employed, combining a pretrained CNN with a classical neural network classifier 

and STFT spectrum analysis to decode two-class MI signals for controlling the up/down movement of a Unmanned Aerial 
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Vehicle (UAV). The methodology consisted of three tiers. In Tier 1, STFT was used to generate 2D images (spectrograms) 

from a 4-second trial, capturing both Event-Related Synchronization (ERS) and Event-Related Desynchronization (ERD) 

motor activity. This process produced six images related to the alpha and beta bands, extracted from a single EEG channel. 

In Tier 2, a VGG-19 model was applied to extract features from the motor imagery signals. The classification step was 

performed in Tier 3 by fusing the motor imagery signal features with the neural network (NN) classifier. 

 

The paper is structured as follows: Section 3 details the methodology, Section 4 elaborates on the results and discussions, 

and Section 5 presents the findings and conclusions of the research. 

 

2. RELATED WORK 

In the literature, various Brain-Computer Interface (BCI) modalities have been explored for controlling UAVs such as 

Steady-State Visual Evoked Potential (SSVEP), P300, eye movement, and MI. For SSVEP-based UAV control, [29] 

focused on developing a brain-controlled Assistive Device (AD) using a non-invasive SSVEP-based BCI system. This 

system allowed users to control a UAV in 3D physical space. The proposed BCI system achieved an average Information 

Transfer Rate (ITR) of 10 bits per minute and a Positive Predictive Value (PPV) of 92.5%. The tests demonstrated the 

system's ability to control a drone in 3D space. Another study, [34], developed a practical SSVEP-based BCI for continuous 

control of a quadcopter from the first-person perspective. They used a classification algorithm based on task-related 

component analysis (TRCA) and linear discriminant analysis (LDA) to decode the commands. [36] explored a BCI system 

based on SSVEP for controlling quadcopters using electroencephalography (EEG) signals. They employed Convolutional 

Neural Network (CNN) and Long Short-Term Memory (LSTM) models for classifying EEG data obtained from multi-

flicker screens at different frequencies, each corresponding to a specific drone movement. The results showed high 

accuracy, particularly with the LSTM model for a 2-second segment, which was the unit of processing. Furthermore, [29] 

developed a brain-controlled Assistive Device (AD) using SSVEP-based BCI, enabling users to control a flying robot 

(UAV) in 3D physical space, assisting individuals in exploring their surroundings using their thoughts. These studies 

highlight the diverse applications and methods of using BCIs for controlling UAVs, with a particular focus on SSVEP-

based systems for intuitive and precise control. 

 

In the realm of the P300 and eye movement modalities, the study by [30] introduced an innovative method for drone control 

utilizing a P300-based brain-computer interface tailored for military applications as assistive technology. This research 

evaluated the user's calibration proficiency with the software and the program's efficacy in receiving and executing 

commands transmitted via EEG signals to control the drone. Another groundbreaking study, as documented in [35], 

proposed a wearable hybrid interface. This interface ingeniously integrated eye movements and mental concentration, 

directly influencing the control of a quadcopter in three-dimensional space. This noninvasive and cost-effective interface 

overcame limitations of earlier approaches by enabling users to accomplish complex tasks in a confined environment, 

where only visual feedback was available. Furthermore, in the study by [28], ocular pulses dominated the data. Employing 

Principal Component Analysis (PCA), the researchers extracted ocular components. They utilized classification methods, 

including Multiclass Support Vector Machine (SVM), Quadratic Discriminant Analysis (QDA), and Artificial Neural 

Networks (ANN), to assess these features independently as well as in combination. The findings underscored the superiority 

of spectral peaks and bandwidth in terms of classification accuracy among the three features. These studies exemplify 

diverse methodologies and technologies within BCI systems for drone control, showcasing advancements in P300-based 

BCIs and interfaces integrating eye movements and mental concentration to enhance UAV control in various environments. 

In the domain of MI-based BCI modalities, the study by [27] aimed to design and implement a MI based brain-computer 

interface (BCI) system enabling both disabled and able-bodied individuals to control a drone in a 3D physical environment 

using only their thoughts. They developed an enhanced version of the filter bank common spatial pattern (FBCSP) 

algorithm, which outperformed the winning FBCSP algorithm when tested on dataset 2a (4 class MI) from the BCI 

competition IV, achieving an accuracy of 68.5%. As documented in [1], a MI-based Brain Computer Interface (BCI) system 

was proposed to facilitate the user-friendly and stable control of a low-speed UAV for indoor target searching. The study 

leveraged an improved cross-correlation method (CC) for MI feature extraction and employed logistic regression (LR) for 
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MI feature classification and decision. The BCI system achieved an average classification accuracy rate of 94.36%. In [32], 

a brain-swarm interface system prototype was presented, capable of various applications using a visual imagery paradigm. 

The study reported a grand average classification accuracy exceeding the chance level accuracy. [33] implemented 

continuous control of a UAV in an indoor 2D space through MI tasks. This BCI system employed discriminative time- and 

frequency-dependent spatial filters for EEG feature extraction in MI tasks. The adaptive LDA method was used for feature 

classification. The calibration and actual indoor 2D space control experiments showcased the effectiveness and feasibility 

of employing this BCI system for continuous control of UAV in indoor 2D space. In a study reported by [37], even a mere 

0.1% increase in classification accuracy is considered significant in the realm of BCI research due to the complexity of the 

signals involved. While several studies have sought to enhance classification accuracy, the results from the reviewed studies 

indicate that there is still room for improvement in this area. 

3. METHODOLOGY 

The methodological framework of the MTCNN model for decoding the MI signal is illustrated in Figure 1. This framework 

delineates the entire process of MI pattern detection, with further details provided in the subsequent subsections: 

 

 

Fig. 1. Methodological Framework for MTCNN model 

 

3.1 MI EEG Datasets 

Developers often prefer a minimal number of channels when designing BCI-based systems, as it allows for easy and cost-

effective integration into real-time applications [50]. Consequently, in this study, two MI EEG datasets recorded using just 

three channels were selected. These two datasets are sourced from the BCI competition datasets recorded at Graz 

University. Additional information about these datasets is provided in the following subsections. 

The datasets are divided into two parts: the training part and the evaluation part. Both parts were used to assess the MTCNN 

model's performance, taking into account inter- and intra-subject differences. Due to the limitation of a large dataset, the 

data from all nine subjects were combined (union) to create an extensive dataset, encompassing all trials. This approach 

was adopted to develop a robust model capable of addressing the challenges posed by the complexity of brain signals. 
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3.1.1 Dataset-I (BCIC IV 2b dataset) 

In this dataset, three EEG channels, namely C3, Cz, and C4, were utilized to capture signals related to two motor imagery 

tasks involving the left hand and right hand. The dataset was collected from nine subjects at a sampling frequency of 250 

Hz. EEG data from a total of 160 trials were collected while the subjects watched a flat screen and sat in an armchair. 

Two types of recording sessions were conducted: training without feedback and evaluation with smiley feedback. In the 

first two sessions, subjects received a short warning tone and were instructed to perform a required motor imagery task 

lasting four seconds. This task was based on a pointing arrow presented on a blank screen. 

In the other three sessions, subjects were directed to move a gray smiley feedback symbol cantered on the monitor either 

to the right or left direction after hearing a short warning beep. The smiley feedback was displayed for four seconds, with 

its colour changing to red when moved in the wrong direction and to green when moved in the right direction. Figure 2 

illustrates the timing scheme of these two types of sessions [51]. 

(a) 

 

  (b) 

Fig. 2. Trials recording time scheme of BCIC IV 2b dataset (a) without feedback, (b) with smiley feedback. 

3.1.2 Dataset-II (BCIC II dataset) 

This dataset was collected from a single subject, a 25-year-old female. The EEG device utilized three EEG channels: C3, 

Cz, and C4, with a sampling frequency of 128 Hz. Each trial had a total duration of 9 seconds. 

The recording protocol for this dataset followed the Graz protocol. During the first 2 seconds, the participant remained still. 

At t=2 seconds, an acoustic stimulus appeared on the screen, initiating the trial, and a cross '+' was displayed for 1 second. 

At the third second (t=3), a cue in the form of an arrow pointing right or left was presented. There was a total of 280 trials 

for two types of motor imagery hand movements: right and left. The entire signal of the dataset was filtered using a notch 

filter with a range from 0.5 to 30 Hz [49]. Figure 3 illustrates the timing scheme of the recording technique. 
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Fig. 3. Trials recording time scheme of BCIC II dataset 

3.2 Pre-processing 

Undoubtedly, the EEG-MI signal is susceptible to contamination from various sources, including body movements, eye 

blinks, facial muscle activity, and environmental artifacts like electromagnetic fields produced by electrical devices [3]. 

Given that the framework is based on deep learning, minimal preprocessing is employed. Frequency filtering is conducted 

to improve the signal-to-noise ratio of the raw brainwaves and enhance the pertinent signal information. Specifically, a 

fourth-order Butterworth filter is applied within the range of 8-30 Hz, as the MI EEG signals are reliant on the alpha (8-13 

Hz) and beta (14-30 Hz) rhythms. 

 

3.3  VGG-19  

The classification of EEG signals poses a challenge that requires high-dimensional features to represent the latent 

characteristics of brain signals. CNN relies on the convolution process to extract dominant features by employing multiple 

kernels, also known as filters [23]. Transfer learning is a method that involves using a previously trained network to solve 

a new classification problem by retraining a few of its final layers. This approach saves a significant amount of time and 

requires fewer training samples compared to training the network from scratch. The pretrained VGG structure was initially 

developed by Andrew Zisserman and Karen Simonyan and trained on a dataset comprising 14 million images spanning 

one thousand classes from the ImageNet dataset. This deep learning framework has found applications in various research 

domains, delivering superior results in two key computer vision problems: localization and classification [52]. 

 

VGG-19 is an extension of the standard VGG architecture that maximizes the feature extraction process with an increased 

kernel size from 64 to 512. The network consists of units, each comprising a convolution layer followed by a pooling layer 

with a stride size of 2x2. The Rectified Linear Unit (ReLU) is employed as the activation function in this network, and 

max-pooling is used for down sampling. The input image size is 224x224, and there are three fully connected layers with 

4096 neurons in each, following the order of 4096, 4096, and 1000 layers. The classification concept in this CNN network 

is based on probability, utilizing the SoftMax function for multi-class problems [53]. Figure 4 provides an overview of the 

internal architecture of the VGG-19 neural network. The key components of VGG-19 include three types of layers: 

convolution, pooling, and fully connected. Further details about this network are outlined below:  

 

1) The Convolution layer: This layer is responsible for performing the convolution operation, applying filters to the 

input image to extract feature maps. This operation helps to identify specific features and aspects in the image's 

topographical map. The CNN network establishes spatial connectivity among neurons, known as local 

connectivity, which is useful for tasks like blurring, sharpening, and edge detection [54]. 

 

2) The Pooling layer: This layer is in charge of reducing the dimension of feature maps through downsampling. 

This process is essential for preventing overfitting and underfitting issues. The two common techniques for 
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pooling are max pooling and average pooling, chosen based on the presence of features in specific patches. In 

VGG-19, max pooling is predominantly used [55].  

 

3) The Fully Connected Layer: This layer is the final unit in VGG-19 and consists of three layers. It receives input 

from the previous layers, namely the pooling and convolution layers. The input to this unit is flattened, and a 

matrix multiplication process is carried out along with the addition of a bias offset to produce the final output [56]. 

 

 

Fig. 4. VGG-19 Architecture 

 

 

3.4 Short Time Fourier Transform for EEG Image Formulation 

The STFT, introduced by Gabor in 1946, stands as one of the most widely employed signal processing techniques for 

analyzing non-linear and non-stationary signals. Its strength lies in its capacity to capture both the phase and magnitude of 

a signal that varies over time and frequency [57]. The STFT dissects a long signal into segments, each using the same 

window size, and subsequently applies the Fourier transform to each of these segments [58]. This process represents an 

advanced form of Fourier analysis that presents a signal in a way that allows complete estimation in both the time and 

frequency domains. STFT leverages a window function to extract a portion of the time-domain signal, subsequently 

applying the Fourier transform to this section to unveil various characteristics of the signal [12]. In the context of STFT, 

the processed EEG signal x(t) is convolved with a short-time window that slides along the time axis. The output comprises 

a series of windowed signal segments. Each of these segments then undergoes Fourier transformation, resulting in two-

dimensional time-frequency representations of the original signal. The mathematical formulation for STFT is defined as 

follows [38]: 

 

 

STFT (τ, ω) = ∫ 𝑥(𝑡)𝑤(𝑡 −  𝜏 )𝑒−𝑗𝜔𝑡𝑑𝑡
+∞

−∞
                               (1) 
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In equation (1), w(t)and τ represents a fixed window size with a limited number of non-zeros on the time axis respectively. 

STFT method helps in understanding the embedded EEG signal features by consider the signal in two domains namely, the 

time domain and the frequency domain concurrently. The raw MI signals are defined as E = {(Xi, yi)|i = 1, 2,..., N}, where 

Xi ∈ RC×K  is a two-dimension matrix that represents the i-th MI  trial in the dataset for a given  C channels and K samples. 

The total number of samples in the dataset denoted as N, and the Xi corresponds to the total number of trials, and Yi 

corresponds to the label for each Xi trial. They get their values from L set that compromises M classes MI tasks. The total 

number of classes in this study is two class, and their label set denoted as: L = {l1 = “left t”, l2 = “right”}. Studies such as 

[17] reported the efficiency  of the STFT for creating 2D images (spectrograms) for 4 s length to be fed then  to the CNN  

as an input image. Therefore, were selected 4 s length which means a total number of 1000 samples for each of the MI 

signals in Xi trial.  Then we select a window size of 64 samples with 50 samples of an overlapping. The output of this 

process is in image capturing the power spectral density (PSD) of any given MI signal and their values measured in Hertz. 

Therefore, three images are produced for data collected using three electrodes. But, in this study, we aim to capture the 

alpha and beta frequency bands corresponding to the ERS and ERD motor activity, therefore, the output of this process is 

six images for each MI trail. 

 

3.5 STTL_RF Evaluation Metrics 

The performance of the proposed MTCNN model has been assessed using seven key metrics: accuracy, precision, 

sensitivity, specificity, F1 score, LogLoss, and AUC. Below, you can find Table I, which presents the mathematical 

equations for each of these metrics, along with a brief description of each [59]. In the table, the following abbreviations are 

used: TPL (true positive), TN (true negative), FP (false positive), and FN (false negative). 

 

TABLE I. THE EMPLOYED PERFORMANCE METRICS 

Evaluation 

metric 
Mathematical equation Explanation 

Classification 

accuracy 
𝐶𝐴 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

the ratio of the number of correctly classified samples to the total 

number of the same class input samples 

Precision Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

The number of correctly classified samples among all the classified 

samples. It tests the classifier's ability to reject irrelevant subjects. 

Recall 

(Sensitivity) 
Recall =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The number of correctly classified samples from all the positive 

representations. 

F1-score 𝐹1˗score =
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

The F1 score can be described as a weighted average of precision and 

recall, where an F1 score achieves its best value at 1 and the worst 

value at 0. 

Specificity Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 Assesses a model’s ability to detect true negatives of each category. 

Log Loss 
LogLoss = −

1

𝑛
∑  

𝑛

𝑖=1

[𝑦𝑖log𝑒(𝑦𝑖)

+ (1 − 𝑦𝑖)log𝑒(1 − 𝑦𝑖)] 

Log loss is the crucial classification metric based on probabilities. It 

defines the probability outputs of a classifier instead of its discrete 

predictions. 

 

 

The Receiver Operating Characteristics (ROC) curve is employed to assess the performance of the models. This curve 

allows us to evaluate the classification model's performance at various threshold settings, effectively measuring the degree 

of separability between classes. 

To evaluate how well the model will perform on unseen MI EEG inputs, k-fold cross-validation was employed in this 

study. In k-fold cross-validation, the data is divided into k subsets. Out of these subsets, k-1 are used for training the model, 

and the remaining one subset is reserved for testing the model. This process is repeated k times (folds), ensuring that each 

subset is used as the validation data at least once. The results from the k-folds can be averaged to determine the accuracy 

of estimation [60]. 
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4.  RESULTS AND DISCUSSION 

This section essentially presents and discusses the results of developing the MTCNN model for brain-controlled UAV 

using the Multi-Tiered technique. In the experimental part of this study, four experiments were conducted. The first 

experiment aimed to evaluate the hybridization of VGG-19 with the neural network (NN) classifier in order to assess the 

MTCNN model over a large dataset. The results indicated that the hybrid model achieved an impressive classification 

accuracy of 0.991. 

TABLE II. MTCNN MODEL TRAINING PART OVER DATASET-I (TRAINING PART) 

 

Subjects 

Performance Metrics 

Training 

Time 
Testing Time AUC CA F1 Precision Recall Logloss Specificity 

S1 295.350 14.389 0.997 0.997 0.997 0.997 0.997 0.022 0.997 

S2 334.561 17.496 1.00 0.997 0.997 0.997 0.997 0.010 0.997 

S3 309.507 14.945 0.994 0.997 0.997 0.997 0.997 0.095 0.997 

S4 238.119 13.967 0.994 0.997 0.997 0.997 0.997 0.042 0.997 

S5 324.393 14.134 1.00 1.00 1.00 1.00 1.00 0.005 1.00 

S6 322.377 14.507 1.00 0.997 0.997 0.997 0.997 0.009 0.997 

S7 289.967 15.152 1.00 0.997 0.997 0.997 0.997 0.012 0.997 

S8 270.951 15.037 1.00 0.997 0.997 0.997 0.997 0.007 0.997 

S9 297.584 15.451 1.00 0.997 0.997 0.997 0.997 0.009 0.997 

Mean 298.089 15.008 0.998 0.997 0.997 0.997 0.997 0.023 0.997 

 

 

The second experiment, conducted on "Dataset I training part," involved nine subjects and aimed to evaluate the MTCNN 

model's ability to overcome the problem of inter-subject variations. Since different subjects exhibit varying complexities 

in their brain signals, this experiment assessed the model's performance. The results of this experiment are presented in 

Table II, and the mean accuracy across the nine subjects was an impressive 0.997. 

 

Furthermore, to evaluate the MTCNN model's performance in addressing intra-subject issues, such as variations between 

recording sessions due to physiological factors and recording protocols, experiment 3 utilized "Dataset I Evaluation Part." 

This dataset incorporated feedback recording protocol, in contrast to the feedback-free protocol in experiment 2. The results 

of this experiment are presented in Table III, and the mean accuracy across the nine subjects remained at 0.997. 

 

TABLE III. MTCNN MODEL EVALUATION OVER DATASET-I (EVALUATION PART) 

 

Subjects 

Performance Metrics 

Training 

Time 

Testing 

Time 
AUC CA F1 Precision Recall Logloss Specificity 

S1 343.023 16.314 1.00 0.994 0.994 0.994 0.994 0.014 0.994 

S2 299.476 15.069 1.00 1.00 1.00 1.00 1.00 0.004 1.00 

S3 302.900 14.949 0.998 0.997 0.997 0.997 0.997 0.021 0.997 

S4 312.821 15.201 1.00 1.00 1.00 1.00 1.00 0.004 1.00 

S5 368.516 17.950 1.00 0.997 0.997 0.997 0.997 0.015 0.997 

S6 309.955 16.397 0.999 0.997 0.997 0.997 0.997 0.020 0.997 

S7 318.149 16.799 1.00 0.997 0.997 0.997 0.997 0.008 0.997 

S8 279.849 15.132 0.998 0.997 0.997 0.997 0.997 0.021 0.997 

S9 316.591 17.454 1.00 1.00 1.00 1.00 1.00 0.003 1.00 

Mean 316.808 16.140 0.999 0.997 0.997 0.997 0.997 0.012 0.997 
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TABLE IV.  MTCNN MODEL EVALUATION OVER DATASET-II (TRAINING PART AND TESTING PART) 

 

D
a
ta

se
t-

I 

Performance Metrics 

Training 

Time 
Testing Time AUC CA F1 Precision Recall Logloss Specificity 

Training Part 28.915 15.488 1.00 1.00 1.00 1.00 1.00 0.004 1.00 

Testing Part 371.380 14.732 1.00 0.996 0.996 0.996 0.996 0.014 0.996 

 

Comparing the results of Table II and Table III, it is evident that the challenges associated with brain signal complexity 

can be observed in the differences in mean values for training and testing times of the MTCNN model over two datasets: 

"Dataset II training part" and "Dataset II Evaluation Part" from the same subjects. This highlights the difficulties posed by 

session-to-session data collection. The longer time required for the MTCNN model to understand the distinctive features 

of the brain signal and distinguish between left and right commands underscores these challenges. However, despite the 

differences in training and testing times, the performance metrics of the MTCNN model remain consistent, with only slight 

variations in their values across the two recording sessions. 

Additionally, in experiment 4, the hybrid model was validated on another dataset, which in this study consisted of one 

subject but with two parts: the training part and the testing part. These parts represented data collected from two different 

recording sessions. The results for the MTCNN model in this experiment were highly promising, with a classification 

accuracy of 1.00 for the training part and 0.996 for the testing part, as presented in Table V, along with other performance 

metrics. 

 

TABLE V.  RESULTS COMPARISON WITH STATE-OF-THE-ART STUDIES RELATED TO DATASET-I 

Year Study Method Accuracy 

2015 [61] LDA-based wrapper SFS 90% 

2016 [62] STFT with KNN 83.57% 

2016 [63] WT+SE using SVM and KNN 86.4% 

2016 [64] MEMD + STFT with KNN 90.71% 

2017 [65] Fuzzified Adaptation with SVM 81.48% 

2019 [66] Genetic Algorithm with FKNN 84% 

2019 [58] STFT with CNN 89.73% 

2019 [67] CWT with 1D CNN 92.9% 

2020 [49] WPT+CWT with CNN 95.71% 

2021 [68] WTTD + CWT with CNN 96.43% 

2022 This Study Proposed Method 99.7% 

 

 

TABLE VI.  RESULTS COMPARISON WITH STATE-OF-THE-ART STUDIES RELATED TO DATASET-II 

Year Study Method Accuracy 

2014 [43] Hjorth parameter-LDA 79.1% 

2015 [40] CSP-EMD 72.30% 

2018 [41] CSP- autoregressive model 77% 

2018 [47] WDPSD 89.36% 
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2018 [48] A normalization model with one contralateral EOG channel 96.86% 

2019 [45] a separated channel convolutional network 83% 

2019 [38] STFT-VGG16 71.2% 

2020 [42] multi-domain features 79% 

2020 [46] CNN with hybrid convolution scale 87.6% 

2020 [44] Hilbert transform (HT)-SVM 82.50% 

2020 [49] CWT-VGG19 97.06% 

2021 [39] CWT-CNN 71.25 

2022 This Study Proposed Method 100%, 0.99% 

 

It is worth noting that when comparing the accuracy of the MTCNN model over dataset-I and dataset-II, the efficiency of 

the model becomes evident. In fact, the model has outperformed the accuracy reported in the literature, as presented in both 

Table V and Table VI. This comparative result underscores the model's capability in decoding MI brain signals related to 

both left- and right-hand movements, making it suitable for integration into the field of brain-controlled UAVs as a control 

command for managing the up and down movements of the aircraft. Furthermore, the MTCNN model holds the potential 

to make valuable contributions to the BCI-MI community by facilitating the deployment of this proposed model in MI-

based control systems. 

 

5. CONCLUSION 

The primary objective of this study is to develop a hybrid feature learning model capable of addressing the complexities of 

EEG signals when decoding MI signals associated with left- and right-hand movements for controlling the up and down 

actions of a UAV. To achieve this, the study employs a novel approach, known as the Multi-Tiered CNN (MTCNN) model, 

which combines a pretrained CNN with a classical neural network classifier and utilizes STFT spectrograms. The 

experimental phase of the study involved four key experiments. In the first experiment, the MTCNN model was evaluated 

using a large dataset, achieving an impressive classification accuracy of 0.991. The second and third experiments sought 

to assess the model's performance on two different datasets involving the same subjects. These experiments aimed to test 

the model's ability to overcome challenges related to inter-subject and intra-subject variations stemming from differences 

in brain complexities. Remarkably, the MTCNN model achieved a classification accuracy of 0.997 on both datasets, 

underlining its robustness. In the fourth experiment, the model was validated using another dataset, achieving classification 

accuracies of 100% and 0.996 on the training and testing parts, respectively. Notably, the MTCNN model outperformed 

the accuracy reported in the existing literature based on two BCI competition datasets. In conclusion, the MTCNN model 

demonstrates its capacity to decode MI signals associated with both left- and right-hand movements, making it a promising 

tool for controlling the up and down movements of a brain-controlled UAV. This innovation holds potential significance 

for advancing the field of brain-computer interfaces and MI-based UAV control systems.  
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