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A B S T R A C T  
 

The unprecedented development and massive proliferation of Internet technology, computing /storage 
capability and emerging business model, like cloud and IoT, brings not only incredible changes to human 
lifestyle but also numerous, complex and continuing cyber security threats, one noticeable example 
among them is malware. Static analysis has been popular and widely used in many anti-virus engine. 
However, static analysis can be avoided using techniques such as packing, polymorphism, and 
metamorphism. In this paper, I propose a novel method focuses on the feature extraction, which exploits 
the inherent encryption behaviour of ransomwares. Specifically, runtime malicious sequential analysis is 
adopted to establish the desired feature set, which further facilitate the identification of the inherent 
encryption function. With the proposed method, an accuracy level of 96% was achieved 

 
  

 

1. INTRODUCTION 

Despite the fact, the unprecedented and massive proliferation of the Internet, applications and computing has enhanced 
human lifestyle, it comes along with numerous complex threats[1]. Threats including malicious software, popularly referred 
to as malware. It is designed to disrupt the operations of a computer, collect sensitive information, or gain access to private 
systems[2]. The emergence of malware can be traced back to the late seventies[3], after which the world has continued to 
witness advanced, evolved and mutated malware types with the capacity to inflict considerable system damage. The most 
popular malware categories include ransomware, Worms, Viruses, and Trojans[4]. And the focus of this paper is on 
ransomware and malicious sequential analysis of its runtime behaviour. Ransomware is a special form of malware that 
encrypts files in victims computer and creates demands message for payment to decrypt the infected files. 

In 2016 saw organized criminal gang extensively used malware. In fact, the mass media labelled 2016 “the year of the 
ransomware”[5]. Growing ransomware’s popularity is an excellence get-rich and win-win marketing strategy through 
extortion when compare to other malware forms. Ransomware effects are irreversible when appropriate encryptions are used 
[6]. Given this irreversibility and the extortionist approaches used by ransomware writers, victims often pay amounts between 
USD 10,000 and USD 17,000 for corporates and between USD 300 and USD 700 for individuals[7]. Despite 
recommendations against paying the ransom, it is often the only way for most corporates and individuals to re-access their 
locked or encrypted files[8].  

While researchers have been working hard to detect ransomware, malware writers have been focusing on developing 
workaround to avoid detection. The most common detection method used are based on signatures. This method entails the 
comparison of signature string extracts from a sample recorded in its database. Once the string matches a record, the sample 
will be deemed malicious. Clearly, this method is only efficient to existing known malware. Moreover, it can be avoided 
easily by using obfuscation technique[9]. 

Another simple detection method is static analysis. As a passive approach, static analysis studies the opcode and the 
properties of the malware with the hope of extracting the structural properties from the binary strings and source codes that 
inimitably denote the malware[10-11]. Nevertheless, malware writers have adopted the technique of packing and other 
obfuscation technique to prevent the revealing of the actual payload. Furthermore, if the writers choose to use packers to 
further compress and encrypt their payloads, static analysis also fails to perform the detection[11]. 

These limitations associated with static analysis triggered the birth of dynamic analysis. The purpose of dynamic analysis is 
to understand the malware through its behaviour. Dynamic analysis is performed by executing the malware in a safe virtual 
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environment to monitor and log the behaviour and changes to the system. Researchers or analysts perform the behaviour 
analysis in a simulated sandbox or debugger platform to understand the activities of the targeted malware[12]. The dynamic 
analysis technique shows more effectiveness in the identification of the actual intention of the malware under 
observation[13]. Following the approach of dynamic analysis and according to the final state of the virtual environment after 
execution, we classify the ransomware as three different classes: no-execution, partially executed and fully executed. 

The no-execution class implies that the sandbox has not been infected. This is common with ransomware that is equipped 
with anti-virtualization techniques. The partially executed outcome shows that ransomware is in the midst of the process. 
Since some ransomware may take longer time to run than others, so it is common that they are in the partially executed state 
because researchers had not allocated enough time for them. In this case, the ransomware is still running and the ransomware 
note is not displayed in either the background or the foreground. The uniqueness of most ransomware are that they will self-
terminate once they display the ransomware message. With the fully executed outcome, the ransomware with the ransom 
note display. 

This is one of the great distinctions between ransomware and other malware. The life of ransomware is short. It runs, 
encrypts, and displays a ransom message before exit. The whole execution takes an average of 3 minutes depending on the 
amount of content in the victim’s computer. The full-execution outcome is the most desired because it enables the 
analyst/researcher to capture the full picture of the behaviour of ransomware by allowing an appropriate amount of time to 
run. 

The features extracted from behavioural analysis fall under two categories. They are API calls and file system changes. The 
API calls extract information such as DLL used, n-gram feature, sequence of API and API graph, and they all can be 
mathematically translated into features. This extraction of the feature can be affected by adding extra and non-sensical API 
calls. However, feature extraction from file system changes is not affected. This is simply because it ignores the extra code 
or function added to malware. 

Our work focuses on extracting features from a higher abstraction level which is capable of providing high, semantically 
meaningful information. The proposed framework converts the closely related behaviour pattern from ransomware into 
distinctive feature. The use of high-level abstraction in behavioural analysis is vital when analysing ransomware dynamically. 
Unlike other malware, the damage caused by ransomware is observable visually after the system is compromised. 
Ransomware often leaves numerous traces of its present actions, which can provide useful information about its behaviour. 
This approach provides better ransomware classification. 

In contrast, extant research presents with three significant limitations that are worth noting. Firstly, most of the researchers’ 
proposed methods or models deal with malware in a very general sense or even do not include ransomware for the detection. 
Secondly, the features selected for the detection are massive, for example, more than 2000. Finally, most of the features (n-
gram) used are general in nature and not tailored to a specified malware class. In an attempt to overcome these significant 
limitations, we initiated two measures. First, we extract features that are specific to ransomware using high abstraction level 
information. Second, we introduce a small feature group for maximum performance. 

The proposed method contributes to the literature and practical understanding of ransomware by introducing a small, but 
specialized feature to increase the detectability of different ransomware class by using Pattern Sequence Extraction for 
feature engineering. 

The rest of the paper is organized as follows. Section II will describe the related work. The third section provides a detailed 
description of the method used to extract the high-level features and the machine learning model. In section IV, the results 
are compared and discussed. Section V is the discussion where thought, decision and limitation of the proposed method 
brought forward. The last section concludes the finding of the proposed method. 

2. RELATED WORK 

As mentioned earlier, there are three primary techniques for malware detection: signature-based, static-based, and 
behavioural-based methods. The signature-based method has been widely used in many anti-malware applications[14] due 
to its simplicity and ease of feature extraction. This method involves comparing the extracted signature with the one stored 
in the database. If there is no match, the test sample is classified as benign. 

In static-based detection, features are extracted by analysing the opcode, binary string, and source code. Unique properties 
identified during this analysis are extracted as features. However, both the signature-based and static-based methods have 
drawbacks and often fail to detect variants of known or unknown malware. Malware developers employ obfuscation 
techniques such as polymorphism and metamorphism[15], which are highly effective and still prevalent in modern malware 
samples. 

On the other hand, behavioural-based detection monitors the behaviour of suspicious samples for unusual activities. If the 
activity attempted by the sample is considered abnormal or unusual, it is labelled as malicious[14]. The features for 
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behavioural-based detection are extracted dynamically, leading to the term "dynamic analysis." This method allows the 
sample to be executed in a controlled environment called a sandbox[12], with most sandboxes implemented in a virtual 
environment using virtualization software like VMWare or Virtualbox[16]. 

One of the most commonly used features for behavioural detection is API call analysis[17]. This approach involves 
monitoring the requests made by Windows executables in the operating system. API calls can be extracted either statically 
or dynamically, with dynamic extraction being preferable due to its ability to evade evasion techniques like encryption and 
packing[16]. 

Ronghua[18] proposed a method that relies solely on API calls as features to differentiate between benign and malicious 
samples. This straight-forward approach is effective, achieving an accuracy of up to 97%. However, it fails to reveal the 
sequence of malware behaviour, and malware developers can bypass detection by inserting dummy API calls[19]. 

The work in[20] represents one of the earliest attempts to detect malicious files by examining the sequence of API calls. 
Hofmeyr20 argued that short sequences of API calls are more likely to belong to legitimate files. Dolly[21] also utilized API 
call sequences for their model, capturing these calls and employing feature selection to filter out distinct API sequences. 

The sequence of API selection is based on the odds ratio selections algorithm on four API grams. The experimental results 
were better than those reported in[18]. Notably, Dolly’s proposal also recorded the number of occurrences of the API call 
sequence from the executable as a feature. However, this method fails to detect polymorphic and unknown malware. 
Additionally, as reported in[19], malware developers can manipulate the sequence of API calls by adding insignificant APIs 
in between the main API calls to disrupt the sequence. 

To address this problem, Y. Ki et al.[19] Introduced a sequencing method to group DLLs or API calls and use them to 
identify encryption activity. However, this method still suffers from the issue of intentionally adding insignificant API calls. 
To mitigate this problem, the results are filtered from the file activities to produce a cleaner sequence. 

Ki[19] also proposed another API call sequence extraction method that utilizes DNA sequence alignment algorithms like 
Multiple Sequence Alignment (MSA) and Longest Common Subsequence (LCS) to extract API call sequence patterns. This 
sequence algorithm is classified into global alignment and local alignment. Global alignment is useful for finding sequences 
of the most similar length and strings, while local alignment identifies highly similar subsequence in a given sequence. This 
method is capable of detecting unknown malware[19]. 

According to [21], API mining is one of the more popular methods for selecting API calls. Ye[21] introduced an intelligent 
malware detection system that employs an Objective-Oriented Association (OOA) mining algorithm to generate rules from 
extracted API calls. Ahmadi[22] used the iterative pattern mining method to extract frequent iterative API call patterns and 
included the Fisher score as part of the feature selection. Fan 2 proposed the Malicious Sequential Pattern Extraction (MSPE) 
mining algorithm to identify malicious API call sequences. MSPE adopts the concept of OOA to discover sequential patterns 
with malicious characteristics. 

Another approach, known as API dependency, has been introduced to detect highly obfuscated malware. Based on the idea 
that new malware is a recreation of a previous sample, Ammar[23] proposed the use of API call dependency to build an API 
call graph for malware detection. This graph tracks and presents the flow of values between procedures in graphical form to 
be understood by human and visualise. The system extracts API calls and their dependencies from the sample, with each 
API call representing a node linked by dependencies. The proposed system adopts the Longest Common Subsequence (LCS) 
algorithm for graph matching. Importantly, API calls represent a low-level abstraction, and it is generally recognized that 
behaviour analysis at a higher abstraction level can be used to extract the fingerprint of malware[24]. This fingerprint 
comprises system state changes such as file changes and process creation. Rather than assessing malware solely based on 
low-level system events, Bailey et al.[24] Focus on understanding what the malware does to the system. This is crucial for 
assessing the extent of damage caused. Aziz[25] proposed a behavior-based automated malware analysis system that profiles 
the malware sample under consideration using file system, network activity logging, and registry monitoring. Researchers 
in [26] also proposed a model capable of distinguishing benign from malicious activity by capturing file interactions with 
the system. This interaction focuses on file system and registry activities such as reading, writing, and executing files. 

Recently, works such as[27] have attempted to extract features from both high and low-level system events. Sandboxes, such 
as Cuckoo for API call extraction and Virmon, a Windows kernel-level notification routine for behaviour analysis, have been 
implemented. These methods have achieved accuracy levels of up to 92% using the online machine learning service Jubatus. 
The lower accuracy compared to [18] and [21] can be attributed to the dataset used, which contains more recent and 
sophisticated malware. Another contributing factor is the massive number of features (N-grams) used, which can reach into 
the thousands and include a large proportion of unimportant features[23]. 



 

 

129 Chee Keong NG et al, Applied Data Science and Analysis Vol.2023, 126–142 

3. METHODOLOGY 

In principle, the operation of ransomware occurs in three stages: the first stage searches for the target file, the second stage 
encrypts the target file, and the third stage displays the ransom message. These stages illustrate the behaviour of the 
ransomware, and features are extracted based on them. 

3.1Feature of Encryption Process 

It is worth mentioning that while some older versions of ransomware may use the search function to locate target files within 
a folder for efficiency reasons, most of them have abandoned this approach. On the other hand, the newest ransomware 
adopts the concept that “all files will be encrypted anyway”, and therefore, it encrypts any files it encounters on the hard 
drive. As a result, recent ransomware only requires two steps, as shown in the Figure 1. 

 

Fig. 1. The basic operation for ransomware 

 

Different ransomware variants employ various encryption methods to achieve their objectives. There are three types of 
encryption methods. The first method involves modifying the targeted file to render it inaccessible, even though there are no 
observable visual differences. This method can be found in the Spora ransomware family, although it is not widely used. 
The second method reads, encrypts, and then deletes the target file. In this approach, the target file is not permanently 
removed from the disk, and there is a high chance of file recovery. The last method is the most advantageous from the 
attacker’s perspective because the chance of retrieving the file is practically zero with a valid key/ password. This method 
reads, encrypts, and overwrites the target file with the encrypted version, permanently removing the original file from the 
disk. This method is popular and is adopted by many ransomware families, such as Cerber and TeslaCrypt. 

The proposed model consists of two sections. The first section is used to monitor how the sample interacts with the sandbox, 
and the second section involves the feature extraction process. In the first section, bait files, which are also the targeted files 
for the analysed ransomware, are used to entice the ransomware into compromising them. These files are often in popular 
formats. For this research, we selected MS Word (.docx), ZIP (.zip), and image (.jpg) file formats to monitor the behaviour 
of the ransomware. The sample is executed within a safe and secure virtual sandbox environment using the Noriben 
sandbox[29]. After the monitoring process, the malware activities are logged and extracted for the second section. 

The feature extraction process begins by identifying the sequence of file activities related to the encryption process in the 
log file. This is done by locating the bait files used. Each sequence may vary in length due to the introduction of noise or the 
sample’s multi-encryption capabilities. The excess activities are filtered to determine the precise encryption steps for feature 
formulation. The method for extracting features related to the encryption function is defined below. 

Figure 2 shows the first step of the feature extraction process. A sample contains a series of file activities for all the bait files. 
Let sample be Sample = {b1, ..., bt}, where b1 is the first file activity and bt is the last activity. The encryption activities 
need to be identified and extracted. The activities are organised into sets of activities for the encryption process for each bait 
file. The encryption activities in each bait file is formulated as s = {bi, bi+1, ..., bi+n}, where s is referred to a bait file is the 
j-th bait file, i is the start point of the encryption activity associated with j, and n is the last position of the encryption process 
for file j. In this way, an encryption sequence for multiple bait files can be denoted as S = {s1, s2, ..., sm}, where length(sj) 
and length(sj+1) are not necessarily the same (note: the i refers to any location). In order to filter and retain the actual activity 
of the encryption function, bi is associated with bm, if path within bi = bm = bait file name of s. This step is illustrated in 
Figure 3. 
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Fig. 2. Step 1: Extract the encryption sequence from the bait files. The sequences for encryption activities are identified. This is demonstrated by the 
blue coloured boxes. Each sequence is extracted and they are vary in length 

 

Fig. 3. Identification and Organization of Encryption Activities Across Multiple Bait Files 

 

TABLE I. FEATURE EXTRACTED FROM THE ENCRYPTION PROCESS 

S/No Feature Description Formula 

1  
 

Enc1 ... Enc6 Each Enc represent a process activity 
bi, where path of bait file in bi = path of 

bait file in bi+1 

2 
EncryptionStep  

 
 

Number of activities for the encryption 
process 

length(s) 

3 EncryptionMin Minimum number of activities Min(S) 

4 EncryptionMax Maximum number of activities for the encryption process with noise Max(S) 

5  
 

EncryptionMean The average number of activities for the encryption process 
∑ (𝑠𝑖 … 𝑠𝑛)𝑛

𝑖=1

𝑛𝑢𝑚𝑜𝑓𝑆
 

 

The third step is to formulate the feature using the information extracted from the first two steps. Table I shows the formula 
for each feature. 

3.2 Ransomware Message Feature 

Unlike other malware where secrecy is vital, ransomware ensures that its victim receives the message of its infiltration after 
all target files are encrypted. In other words, ransomware will reveal itself via its message in the final stage of its operation. 
The message is displayed in the following manner: 

 Execute notepad to display the ransomware message  

 Execute the default browser to display the ransomware message; 

 Execute the default photo viewer to display the ransomware message; 

 Change the background of the desktop to display the ransomware message. 
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Most ransomware will select one or more of these methods to ensure its victims know of its presence. The form of message 
can be in text (txt),picture (jpg or png) or hypertext (HTML). After analyzing the log record of several ransomware samples, 
we are able to identify a few messaging behaviors such as the creation of the message file, number of file created and type 
of file created. We also encountered few ransomware, which create the message file before the encryption process.  

Most ransomware create and store their messages in the target directories after they have encrypted the file in those 
directories. The ransomware note is a useful feature for distinguishing ransomware families. The features selected to 
represent the ransom message are as listed below: 

 The number of message formatted in; 

 Position of the message; 

 The message file. 

3.3 Proposed Model 

 

 

Fig. 4. Proposed Model 

The proposed model consists of 3 main stages. The first stage is behavioural extraction. During this stage, the behaviour of 
the ransomware is captured by executing the sample in a sandbox. The report log is extracted from the sandbox for the next 
stage. The next stage is the feature extraction stage. The feature extraction is described in section 3.1 in detail. Virustotal 
API[30] is used to determine the label of each sample. The final stage of the proposed system requires the prepared dataset 
to be fed into the machine learning algorithms for the result. The dataset is divided into training set and test set. While the 
training set is used to obtain the classification model, the testing set is used for evaluation purposes. Figure 4 illustrates the 
overview of the proposed method. 
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4. EXPERIMENT AND RESULT 

4.1Experiment Setup 

The experiment is performed on a higher-performance laptop. The laptop is equipped with Windows 7, 2.60GHz i7-3720QM 
CPU, 12 GB of RAM and 512 GB of SSD hard drive. An automated Sandbox, Noriben, is also implemented to collect the 
runtime behaviour of the ransomware sample. It was deployed to extract windows kernel-level notification routines.  

Noriben is a simple sandbox written using python. The analysis in the sandbox adopts procmon. The procmon extracts 
information at the high abstraction level. This information includes the state changes of the operating system resources such 
as file registry, process/ thread and network activities. These states are saved into a log file. 

4.2 Ransomware Dataset 

The sample for the dataset is obtained from virusShare Malware Platform31 and Malware-Traffic-Analysis[29]. VirusShare 
is one of the largest repositories that provides virus sample for research purpose. VirusShare has grouped the samples 
according to the malware type and members are able to download the samples in form of zip file format. Despite this, testing 
and analysis are necessary since most of the samples do not exhibit the ransomware behaviours. Most of the ransomware 
samples presented in the zip file are prior to 2016 and the oldest sample goes as far as 2013. 

The ransomware samples in the Malware-Traffic-Analysis repository are categorized in accordance with the class type of 
ransomware. The samples selected are between 2016 and 2017. The sample downloaded from the Malware-Traffic-Analysis 
repository provides a more accurate label for the dataset. However, the repository has a fairly limited amount of ransomware 
samples. 

TABLE II. PROPOSED FEATURE SET 

Feature Description Feature Description 

RegSetValue  Number of registry set value activities 

RegDeleteKey  Number of registry delete key activities 

RegDeleteValue  Number of registry delete value activities 

SetSecurityFile  Number of set security file activities 

TotalReg  Total number of RegSetValue, RegDeleteKey and RegDeleteValue 

ProcessCreate  Number of process created 

Enc1  First file activity for the encryption process 

Enc2  Second file activity for the encryption process, if any 

Enc3  Third file activity for the encryption process, if any 

Enc4  Forth file activity for the encryption process, if any 

Enc5  Fifth file activity for the encryption process, if any 

Enc6  Sixth file activity for the encryption process, if any 

EncryptionStep  Number of activities for the encryption process 

EncryptionMin  Minimum number of activities 

EncryptionMax  Maximun number of activities for the encryption process with noise 

EncryptionMean  The average number of activities for the encryption process 

NumOfMsg  Number of activities for the encryption process 

MsgFile  Number of activities for the encryption process 

MsgPos Number of activities for the encryption process 

TCPNetwork Number of activities for the encryption process 

 

The samples downloaded contain PE and DLL from virusShare. Since the sandbox used recognized executable sample file 
only, PE files are selected. The sample is allowed to be executed in a virtual Windows 7 environment with .NET framework 
4.5.1 installed for 3 minutes until the ransom message is shown. Commonly used files such as Microsoft Word documents, 
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pictures, and zip files are kept in the sandbox to allow ransomware to unveil its full potential. The ransomware samples that 
run successfully are then included into the dataset. 

Finally, our dataset is comprised of 1008 ransomware samples, 19 distinct features and 13 different classes of ransomware. 
Table II describes the 13 features that are extracted by analysing the behaviour pattern of ransomware. 

 

4.3 Evaluation Metric 

To assess the performance of the proposed feature, the following evaluation measures were used in the result: 

 Accuracy (overall and balanced) 

 Precision (overall and balanced) 

 Recall (overall and balanced) 

 F2 Measure (overall and balanced) 

These indicators are standard means of measuring that are used to determine the effectiveness of the proposed model. Unlike 
the evaluation metric for binary classification, the calculation used in the evaluation metrics for the multiple classification is 
more complex. Before we proceed to the formulation, let’s consider the following: 

 q is the number of families. 

 Yi is the ground truth class assignment of the ith sample. 

 xi is the ith sample. 

 h(xi) is the predicted class for the ith sample. 

 |.| is the cardinality of a set. 

Let S = {(xi, Yi)|1 ≤ i ≤ q)} be the test set. For the j-th class yj, four basic quantities characterizing the classification 
performance on this class can be defined based on h(.)[32]: 

TPj = |{xi|yj ∈ Yi ∧ yj ∈ h(xi), 1 ≤ i ≤ q}|;      (1) 
FPj = |{xi|yj /∈ Yi ∧ yj ∈ h(xi), 1 ≤ i ≤ q}|;      (2) 
TNj = |{xi|yj /∈ Yi ∧ yj /∈ h(xi), 1 ≤ i ≤ q}|;      (3) 
FNj = |{xi|yj ∈ Yi ∧ yj /∈ h(xi), 1 ≤ i ≤ q}|.      (4) 

TPj, FPj, TNj and FNj represent the true positive, false positive, true negative, and false negative with respect to yj. 

The accuracy test is used to determine the number of samples being classified correctly. This is calculated after comparing 
the predicted results with the ground truth. The accuracy test for class j is defined by the number of samples being correctly 
classified in class j divide by total samples in class j : 

𝐴𝐶𝐶𝑗 =  
|𝑌𝑗 ∩ ℎ(𝑥𝑗) 

𝑌𝑗 ∪ ℎ(𝑥𝑗)
 ,      (5) 

Precision is the ratio of how much of the predicted sample is correct. The numerator finds how many classifications in the 
predicted vector has common with the ground truth, and the ratio computes, how many of the predicted true classifications 
are actually in the ground truth. The precision is used to measure the relevance of the result. 

Recall is the ratio of how many of the actual classifications are predicted, The numerator finds how many classifications in 
the predicted vector has in common with the ground truth, it then finds the ratio to the number of actual labels and getting 
the fraction of the actual labels are predicted. 

Recall is a measure of how many truly relevant results are returned. The precision and recall procedures for class j are 
achieved based on formulas shown below respectively: 

 

𝑃𝑗 =  
𝑇𝑃𝑗

𝑇𝑃𝑗+ 𝐹𝑃𝑗
 ,       (6) 

𝑅𝑗 =  
𝑇𝑃𝑗

𝑇𝑃𝑗+ 𝐹𝑁𝑗
 ,              (7) 
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In this study, we focus on ransomware classification, no clean sample is involved in any of the experiment. The true positive 
means the classification of the target ransomware to the targeted ransomware family and false positive refers to the 
classification of the wrong sample to the targeted ransomware. False negative is interpreted as the misclassification of the 
target ransomware to the wrong family. 

F1 score is the harmonic average of the precision and recall. F1 is used to reveal the balance between the precision and recall 
procedures. The formula for achieving this is shown below: 

𝐹1 = 2 ∗  
𝑃∗𝑅

𝑃+𝑅
 ,       (8) 

Each test class has a different sample size and needs to be calculated according to the proportion over the entire sample size. 
It can be formulated as: 

𝑝𝑟𝑜𝑝𝑗 =  
𝑛𝑢𝑚_𝑜𝑓_𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑒𝑛𝑡𝑖𝑟𝑒_𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 ,      (9) 

The formulas to calculate the overall result for precision, recall, F1 and accuracy are as follows: 

𝑃𝑜 =  ∑ (𝑝𝑟𝑜𝑝𝑖 ∗  𝑃𝑖) , 𝑤ℎ𝑒𝑟𝑒 (1 ≤  i ≤  q)𝑛
𝑖=1     (10) 

𝑅𝑜 =  ∑ (𝑝𝑟𝑜𝑝𝑖 ∗  𝑅𝑖), (1 ≤  i ≤  q) 𝑛
𝑖=1      (11) 

𝐹1𝑜 =  ∑ (𝑝𝑟𝑜𝑝𝑖 ∗ 𝐹1𝑖), where(1 ≤  i ≤  q) 𝑛
𝑖=1     (12) 

𝐴𝐶𝐶𝑜 =  ∑ (𝑝𝑟𝑜𝑝𝑖 ∗  𝐴𝐶𝐶𝑖)
𝑛
𝑖=1 , where(1 ≤ i ≤ q)    (13) 

where o represents the consolidated end result for its representative. 

The result for performance measurement is computed using SKlearn which is one of the machine learning package from 
Python. SKlearn is a useful tool that provides high consistency in the computed result. 

4.4 Machine Learning Implementation 

In order to demonstrate that the proposed feature can produce high-performance results, 8 machine learning models are 
adopted. The machine learning models are part of the Python SKlearn package. The selected machine learning models have 
a good reputation and are widely used in many research papers27. They are: 

 Cat Boosting[33] is a machine-learning model that addresses the challenges posed by categorical features in data. It 
is designed to handle categorical variables natively, without the need for preprocessing or one-hot encoding, which 
sets it apart from many other machine learning algorithms. 

 KNN[34] is short for k-nearest neighbour. KNN is a non-parametric and lazy learning algorithm. It uses the data 
point from training samples to predict the new sample point by matching it to the nearest k samples. k is the number 
of nearest training sets to the testing sample. 

 Decision Tree[35] is a classification-decision tree for the given dataset by recursive partitioning the data. The 
decision is grown using depth-first strategy. The algorithm considers all the possible tests that can split the data set 
and selects a test that gives the best information gain. 

 Histogram Boosting[36]: It uses a histogram-based approach for gradient boosting. It efficiently handles both 
numerical and categorical features, scales well with large datasets, and provides competitive performance for 
classification tasks while offering options for regularization to prevent overfitting. 

 Extra Tree Classifier[37] stands for extremely randomized trees. This model splits nodes by choosing cut-points at 
random. The whole learning sample is used to grow the trees. 

 Random Forest[38] is a combination of tree predictors such that each tree depends on the values of a random vector 
sampled independently and with the same distribution for all trees in the forest. 

 GX Boosting[39] stands for "Extreme Gradient Boosting". It is a powerful and widely used gradient-boosting 
machine-learning algorithm. It is known for its efficiency, scalability, and excellent predictive performance. 

 Gradient Boosting[40] builds a model in a stage-wise fashion and generalizes them by allowing optimization of an 
arbitrary differentiable loss function. 

Various settings were tested on the machine model to accomplish the best performance. After extensive experimentation, 
the performance achieved for machine learning, such as the Histogram Boosting, of each setting did not differ significantly 
from the default setting. The setting for the other machine learning did reveal better performance from the default setting. 
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For decision tree algorithm, the default setting of 5 max depths recommended in the SKlearn python package was employed, 
as the optimized setting. The optimized setting for the random forest learning model is 50 trees (n_estimators), 50 stages 
(n_estimators) for gradient boosting, 3 neighbours for KNN, C is 1 for SVM, 50 trees for ExtraTreeClassifier, and C for 
Logistic Regression is 0.001. 

4.5 Accuracy and Classification Result 

After the feature extraction process, the dataset was normalized and converted to more orthogonal directional using the 
Principal Component Analysis algorithm. The dataset is then split into two training and testing sets. The training and testing 
set are fed into the machine learning model and the results are displayed in Table III. 

TABLE III. OVERALL RESULT FOR EACH MACHINE LEARNING MODEL 

 
ACC 

(Training) 
ACC 

(Testing) Precision Recall F1 

Histogram Boosting 0.9834 0.9876 0.9877 0.9876 0.9876 

Cat Boosting 0.9768 0.9802 0.9799 0.9802 0.9796 

GX Boosting 0.9818 0.9851 0.9854 0.9851 0.9851 

Extra Tree 0.9967 0.9604 0.9460 0.9595 0.95 

Classifier 
Random Forest 1 0.9581 0.94076 0.9577 0.949 

Gradient Boosting 1 0.9431 0.9273 0.9429 0.9354 

KNN 0.9603 0.9480 0.9324 0.9480 0.9393 

Decision Tree 0.9288 0.9346 0.9186 0.9337 0.9252 

 

The proposed model is able to achieve good training and testing performance, as shown in Table III. The overall accuracy 
for training and testing shown in the table reveals that high accuracy results ranging from 92% to 99%. The high accuracy 
rate reveals high true positives for classifying the ransomware in their respective classes. Most of the machine learning 
algorithm models can achieve precision, recall, and F1 scores of 90% and above, which also reveal a low false negative and 
false positive. Among the machine learning models, Histogram Boosting Classifier and GX Boosting Classifier recorded the 
best performance. We further probe the details of them in our dataset and the results are reported in Tables IV and V . Both 
models are able to achieve an accuracy 98% and has a margin of 0.7 difference. The next runner-up is GX Boosting and 
Extra Tree Classifier which are able to achieve above 95% accuracy. In the following discuss, we focus on the result obtained 
from the 3 best performing machine learning models. 

TABLE V. PERFORMANCE FOR HISTOGRAM BOOST CLASSIFIER 

Family Num of Sample Precision Recall F1 Accuracy 

Cerber 107 1 1 1 1 

Locky 22 1 1 1 1 

Bandarchor 7 1 1 1 1 

Globelmposter 13 1 1 1 1 

Jaff 15 1 1 1 1 

CryptoShield 13 1 1 1 1 

TeslaCrypt 286 0.98 0.99 0.96 1 

Spora 14 0.67 1 0.8 1 

Wannacry 10 1 1 1 1 

Gpcoder 18 0.67 0.57 0.62 0.75 

Eldorado 235 1 0.98 0.99 0.98 

Xorist 259 0.97 0.98 0.98 0.99 

Filecoder 9 1 1 1 1 
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Table IV shows the performance result for Histogram Boost Classifier. The result reveals several perfect score for recall, 
precision, F1 and accuracy. The Histogram Boost algorithm is able to achieve 7 out of 13 classes in perfect result and at least 
4 near perfect score. The model is able to detect most of the ransomware to achieve 98%, this is due to the bad performance 
score for ransomware families like Gpcoder (57%). 43% of the testing sample has been classified as Xorist. It is also noted 
that there is a small number of Xorist ramsomware classified as Gpcoder but the number is insignificant. 

TABLE VI. PERFORMANCE FOR GX BOOSTING CLASSIFIER 

Family Num of Sample Precision Recall F1 Accuracy 

Cerber 107 1 1 1 1 

Locky 22 1 1 1 1 

Bandarchor 7 0.333 1 0.5 1 

Globelmposter 13 1 1 1 1 

Jaff 15 1 1 1 1 

CryptoShield 13 1 1 1 1 

TeslaCrypt 286 1 0.99 0.99 0.994 

Spora 14 0.67 1 0.8 1 

Wannacry 10 1 1 1 1 

Gpcoder 18 0.71 0.71 0.71 0.625 

Eldorado 235 1 1 1 0.99 

Xorist 259 0.98 0.96 0.97 0.96 

Filecoder 9 1 1 1 1 

 

Perfect score for recall, precision, F1 and accuracy achieved by the GX Boosting Classifier model can be seen in Table V. 
There are at least 6 out 13 perfect in each performance measure. However, there is a ransomware family which is not 
performed to expectation. It is Gpcoder. The accuracy rate is 62%. But this, however, does not affect the overall performance 
as Gpcoder ransomware made up of 2% of the dataset. 

TABLE VII. PERFORMANCE FOR CAT BOOSTING CLASSIFIER 

Family Num of Sample Precision Recall F1 Accuracy 

Cerber 107 1 1 1 1 

Locky 22 1 1 1 1 

Bandarchor 7 1 1 1 1 

Globelmposter 13 1 1 1 1 

Jaff 15 1 1 1 1 

CryptoShield 13 1 1 1 1 

TeslaCrypt 286 0.981 0.991 0.986 0.991 

Spora 14 0.667 1 0.8 1 

Wannacry 10 1 1 1 1 

Gpcoder 18 0.667 0.571 0.615 0.571 

Eldorado 235 1 0.981 0.990 0.981 

Xorist 259 0.972 0.981 0.977 0.981 

Filecoder 9 1 1 1 1 

 

For Table VI , the Cat Boosting Classifier model has achieved perfect accuracy score for 8 ransomware families and 2 
ransomware families with near perfect score. The inability to score perfect overall result is due to the near perfect score for 
some families and also contribution by 1 imperfect ransomware family. These imperfect score is contributed by Gpcoder 
class ransomware. 
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Histogram Boosting Classifier, Cat Boosting Classifier and GX Boosting provide some consistency as shown in Tables IV, 
V and VI . Specifically, they perform poorly for Gpcoder family. An initial observation is that the poor performance result 
may be incurred by the insufficient sample for the training process. It is clear from Table IV , V and 6 that all poorly 
performed families are relatively small in number of samples. However, this assumption is quickly overruled after a closer 
examination. It is apparent that 61% of the ransomware families used in the experiment have under 20 samples and 92% of 
these families are able to achieve 80% and above in accuracy testing. 

In order to reveal the rationale behind the poor performance, the performance results from other machine learning models 
are analysed. After examining the results, it is reasonable to conclude that the poor performance result is caused by inefficient 
labelling. There are inconsistencies while retrieving the result for the label from various Anti-Virus engines in VirusTotal. 
The decision for the label for each sample is made mostly based on the most frequent keyword appearing in the Anti-Virus 
engines. In the subsequent discussion, we try to investigate this phenomenon further in a quantitative manner. For this aim, 
the confusion matrix of the success rate of the Histogram Boosting Classifier model in recognising the samples from different 
families is depicted in Figure V. 

 

Fig. 5. The Confusion Matrix for Histogram Boosting Classifier 

It displays the correct and incorrect prediction with respect to the actual ground truth. The confusion matrix is made up of m 
x m entries where m is the total number of ransomware families. The rows of the table represent the actual families and the 
columns represent the predicted families. The diagonal elements in the matrix show the number of correct predictions, they 
can also be projected as the true positive to the actual families. The off-diagonal shows the number of incorrect predictions 
which will be referred to as the false positive (top right side) and false negative (bottom left side). 

As mentioned previously, the inaccuracy levels associated with Gpcoder is due to the inconsistencies among the Anti-Virus 
engines. As shown in Figure V , the classification of Gpcoder family has evenly spread across a few families such as Xorist. 
However, it is still manage to retain 50% of its own uniqueness. Note that however, designing an efficient labelling 
mechanism is important but it is out of the scope of this work. And quantitatively, the amount of samples from Gpcoder is 
small (i.e, 2%), it will not impact the classification performance significantly. 
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5. PROPOSED METHOD AND API CALLS BASED MODEL 

TABLE VIII. COMPARISON OF PROPOSED METHOD WITH OTHER METHOD 

Reference Year Method Feature Type Num of 
samples Accuracy 

Proposed 
Method 2023 Histogram Boosting 19 Classification(13) 1000 98% 

24 2015 SVM 26 Classification(12) 115157 98% 

41 2016 Similarity Threshold NA Binary 13600 96% 

42 2017 RNN 239 Binary 15700 96% 

28 2018 Random Forest 28 Binary 100 MB 87% 

 

The purpose of the proposed feature extraction method is to illustrate the theory of using less but vital feature can be effective 
in classification. This section will consist of 2 parts. In the first part, we will perform an observational comparison for the 
proposed method and other proposed models. Table VII summarizes the number of feature, classification type, number of 
samples and accuracy rate of the proposed method and other existing works. Ransomware Detection and classification is not 
a new subject and the proposed method has scored very promising accuracy result. The number of classes and dataset do 
affect the accuracy score. 28 scores an accuracy rate of 87% for detection, this is the lowest in the table. One of the reason 
is that the size of the dataset and the feature set are relatively small and it is insufficient to achieve an above 90% accuracy 
result. Works in [41] and [42] are able to produce high accuracy result since they use binary classification. It is common to 
have high accuracy result for such classification if sufficient dataset is provided. This is evidentially proven in 41, there are 
13600 samples for 2 classes. It can be observed from the table that work in [43] scores 98% for the classification test by 
using massive dataset. It is clear that there are several factors that needs to be fulfilled in order to achieve good performance 
result. They are: 

 Small classification size, 

 Large feature size and 

 Large dataset. 

On the contrary, the proposed method does not follow any of the above recommendations. Table VII shows the proposed 
method has the smallest feature set, among the smallest dataset and has the largest classification size. And yet it is able to 
achieve an accuracy of 96%. The feature extraction technique has also contributed to and directly impacted the result. 

In the second part, we will evaluate API calls-based model with the proposed model. In this evaluation, the number of 
features and the performance based on accuracy will be compared against the proposed model. The ransomware samples 
used in the proposed model are converted into the API calls dataset for the API-based model. 

As mentioned, there are 2 types of feature extraction from dynamic analysis. They are feature based on API calls and feature 
based on file activities. API calls-based feature extraction has been used widely and is being adopted in many proposed 
models. 

The aim of the proposed dynamic analysis is as following: 

 use few features and maintain classification accuracy, 

 take advantage of feature extracted from the high abstraction level and 

 use a sequential extraction for the encryption process. 

I compare the proposed feature and the API calls-based dynamic analysis proposed by [18]. First, we compare both models 
conceptually. The difference in the feature is discussed. The experiment is also conducted and the result will be revealed in 
detail later in this section. 

During the experiment conducted, there were 127 features in the feature set after extracting the API calls from all the different 
families. For simplicity purposes, we will use the API calls from the three more popular ransomware families. Table VIII 
lists the example of a dataset for each of the 3 different ransomware families using API Calls. There are 33 unique API calls 
extracted in total. 
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TABLE IX. API CALLS EXTRACTED FROM CERBER, LOCKY AND TESLACRYPT18 

LdrLoadDll LdrGetProcedureAddress OpenSCManagerW 

OpenServiceW NtDuplicateObject NtCreateThreadEx 

NtResumeThread SendNotifyMessageA WNetGetProviderNameW 

NtClose CreateProcessInternalW NtAllocateVirtualMemory 

NtFreeVirtualMemory LdrGetDllHandle GetFileType 

DeleteFileW GetSystemDirectoryW GetSystemWindowsDirectoryW 

RegOpenKeyExA RegOpenKeyExW LoadStringW 

RegQueryValueExW RegCloseKey NtOpenKey 

NtQueryValueKey NtCreateMutant GetNativeSystemInfo 

NtQueryAttributesFile NtOpenSection NtMapViewOfSection 

NtCreateSection OleInitialize 0NtCreateFile 

 

According to [18], if all these API calls are required to form a feature set for each sample in vector, the vector will contain 
33 rows for the 3 ransomware families. This is illustrated in Table IX . Each API call is considered as a feature. The amount 
of API call will increase when the number of ransomware families increases. It is vital to ensure that all extracted API calls 
are included into the feature set. Hence, the feature set for the API calls-based dynamic analysis will always have more than 
a hundred features in its dataset. Another issue is the level of difficulty to include new ransomware family into the dataset. 
The new ransomware family may add new API calls to the existing list which will require the dataset to be 
recreated again. 

TABLE X. API CALLS FOR CERBER, LOCKY AND TESLACRYPT18 

Sample  Feature Representation 

TeslaCrypt {1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

Cerber {0,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0} 

Locky {1,1,0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1} 

 

The proposed feature does not have such an issue as the design of the feature extraction method is based on the behaviour of 
the ransomware. The feature set is tailored for most ransomware families and will not change if an unknown ransomware or 
a new ransomware family is required to be added to the dataset. The encryption process activity is represented using 6 feature 
spaces and this can be seen in Table II. The proposed features have provided enough room for new ransomware family if its 
encryption process requires more dimensional space. 

 

TABLE XI. THE ACCURACY PERFORMANCE FOR API CALLS DYNAMIC ANALYSIS AND THE PROPOSED MODEL18 

 Dynamic process18 
using API Calls 

Proposed Model 

Random Forest  0.8529  0.9604 

Gradient Boosting  0.8529  0.9273 

KNN  0.8824  0.9480 

Decision Tree  0.7353  0.9346 

 

Table XI shows the accuracy comparison for the proposed model and the dynamic analysis using API calls. For the API call-
based dynamic analysis, the experimental ransomware samples are analysed using the cuckoo sandbox to extract the API 
calls. The API calls are factorised and translated using various popular machine-learning models. The result shows the 
accuracy performances for the machine learning models like Random Forest Decision Tree and KNN. In Table 10, it shows 
that the API call-based model only achieves 88% whereas the proposed model is able to derive 96%. 
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TABLE XII. THE DURATION TAKEN FOR API CALLS BASED DYNAMIC ANALYSIS AND THE PROPOSED MODEL TO CONVERT FEATURE18 

 Dynamic process18 
using API Calls 

Proposed Model 

Random Forest  0.8529  0.9604 

Gradient Boosting  0.8529  0.9273 

KNN  0.8824  0.9480 

Decision Tree  0.7353  0.9346 

 

In the next experiment, we record the amount of time taken for the classification process. Table XII shows the duration for 
each process. The proposed method and API-based dynamic analysis have different processes. Despite the difference, the 
tasks in some processes such as running the sandbox, extracting information from the sandbox and converting features are 
similar. In this experiment, the sandbox for both models is executed for 3 minutes. It is clearly shown in the table that the 
API calls-based dynamic analysis takes more process than the proposed model to create the feature. But it takes a shorter 
duration to create the dataset < 1s. This is due to the simplicity of the extraction method. The difference, however, is not 
significant and does not impact the performance of the proposed model. 

 

6. DISCUSSION 

6.1 Limitation 

While the proposed feature has yielded good results, there are several limitations encountered during the experiment’s 
implementation. First and foremost, the proposed feature is limited to executable files and has not been tested on other file 
formats. This limitation is partly due to the choice of sandboxes used in the experiment. There are more advanced sandboxes, 
such as Cuckoo44, which offer greater functionality and the ability to analyze different file formats. Despite the 
recommendations for such advanced sandboxes, we opted for the less popular Noriben sandbox. We made this decision 
because Noriben offered advantages such as ease of setup and customization for the specific purposes of this experiment. Its 
simplicity aligned with the objectives of our experiment, leading us to overlook the sandbox’s limitations. 

Additionally, some of the created features depend on the content within the virtual machine. The placement of bait files may 
influence measurements for features like maximum encryption length and encryption mean value. The content’s role is 
crucial, especially when considering the behaviour of ransomware. To capture high-level behavioural activities, bait files in 
various formats are necessary. The goal is to simulate the real working environment as closely as possible with “real” files. 
To minimize inconsistencies, we can extract more encryption sequence samples for feature 
formulation. 

The sandbox used in our experiment does not employ any counter-antivirtualization techniques. Samples with 
antivirtualization measures remain inactive in the sandbox environment, making it impossible for the feature extractor to 
gather information for the log file. In this paper, the implementation of counter-antivirtualization techniques is not 
emphasized and falls outside the scope of our focus. We have primarily concentrated on the functioning samples to align 
with the objectives outlined in this paper. 

 

6.2 Partially Executed Sample 

Partially executed samples occur when monitoring stops while the ransomware is still active. In most cases, this situation is 
undesirable. The reason is that the full potential or sometimes the true objective of the malware remains undisclosed due to 
insufficient time allocated to the sample. During data collection, some ransomware takes longer to compromise the honeypot 
than others. However, this is not a significant issue and has no impact on data collection. Three minutes are typically 
sufficient for most ransomware to complete their objectives and partially executed ransomware 
samples still provide adequate information about the encryption process, ransom text file, and changes in the registry. This 
information is available in the log as long as the ransomware is active. 

 

7. CONCLUSION 

Malware behaviour can be used to distinguish between different malware families. This paper described the key behaviours 
of ransomware: searching, encrypting, and displaying. It also discussed some dynamic analysis frameworks and their 
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limitations. Feature extraction is a challenging task, as it is an ever-evolving concept with new approaches constantly aiming 
to outperform their predecessors. Our proposed method is simple, relevant, and unique. It utilizes features that best describe 
ransomware behaviour to improve classification performance. These features can be extracted from runtime behavioural 
analysis. One of the most important components used in building the feature set is the encryption function. Sequential 
analysis is performed to determine and extract these features. The results show over 98% accuracy during training and testing. 
Many of the behavioural tendencies used in this research can be applied as representative features for defining ransomware 
behaviour. In the future, we plan to extend this research to other malware families and experiment with polynomial feature 
sets. This will help us determine the extent to which our approach can be applied to understand the behaviours of other 
malware classes and families. Additionally, we encourage other researchers across different platforms to test our proposed 
methodology to either confirm our findings or challenge them. This will help us identify the strengths and weaknesses of our 
feature extraction approach and inform our efforts to improve it. 
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