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A B S T R A C T  
 

Understanding the concentrations of Carbon Dioxide (CO2) and greenhouse gases is very important in 
solving the problem of climate change. These emissions are the major cause of global warming, which, 
in turn, has many effects on the environment, economy and society. For this reason, the prediction models 
for these emissions must be precise to aid policy makers in planning for the effects of the climate in the 
future. To evaluate the emission data of different continents, this paper seeks to identify related patterns 
and findings that can help reduce emissions worldwide. The dataset used contains emission data and 
geographic information from several countries and allows the comparison of several ML models. The 
models that have been reviewed in this study are linear regression (LR), decision tree regression (DT), 
random forest regression (RF), support vector regression (SVR), k-nearest neighbor regression (KNN), 
the XGB regressor, the gradient boosting regressor, Ridge and Lasso. Among the models, the gradient 
boosting regressor was found to have the best prediction capability, with an R-squared value of 0. The 
highest value of the mean absolute error (MAE) was 929, and the lowest mean squared error (MSE) was 
2535.30. This model outperforms the other models because of its excellent ability to identify the complex 
interactions between the input variables and emissions. The conclusions stress the possibility of using 
ensembles, such as gradient boosting, for emission forecasting and present a contribution to studies of 
this issue for researchers and policymakers. This is a nominal attempt in the ongoing global endeavour 
to gain insight and curb the determinable levels of CO2 and greenhouse gas emissions for effective 
decision-maki

1. INTRODUCTION 

Carbon Dioxide (CO2) and greenhouse gas emissions are some of the biggest problems facing society today with respect 

to the environment. These emissions are mainly a result of human activities, which include industrial energy production, 

the cutting down of trees and the use of fossil fuels. CO2 and other greenhouse gas (GHG) emissions have increased global 

temperatures and thus adversely affect natural systems and their associated services, human well-being, and worldwide 

economies [1]. To overcome this challenge, the best approach is to understand the origin, current levels, and possible future 

behavior of these emissions. This study has the following objectives: offering such insights by estimating and calculating 

CO2 and greenhouse gas emissions via various modeling strategies. Figure 1 below depicts the global carbon cycle. 
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Fig. 1. Global carbon cycle [2] 

The major research questions answered in this study include the nature and extent of the geographical and sectoral 

dispersion of CO2 and greenhouse gases. Applying conventional methodologies to the results of a system to emissions 

makes it difficult for a sector to predict and prescribe policy measures to reduce emissions. Additionally, inadequate 

comprehensive models that can be used to project emissions for the next few years, depending on the trends that are 

anticipated and developed, hamper the development of effective measures for reducing emissions. 

 As stated earlier, the broad objective of this study is to formulate and test CO2 and greenhouse gas emission models that 

are capable of capturing the system dynamics of the emitting entities from one region to another and from one sector to 

another. Thus, the focus of this study is to compare several methods used in machine learning (ML) and artificial 

intelligence (AI) to determine the best methods for emissions forecasting and provide recommendations for policymakers 

and other stakeholders. 

Artificial intelligence (AI) [3][4] and machine learning (ML) [5] are tools that may be helpful for improving the forecasting 

of CO2 and greenhouse emissions. When big datasets and efficient algorithms are involved, AI and ML have a better ability 

to find patterns that are not easily discerned otherwise. These techniques can also learn from new data and then perform 

better in the future than the previous methods do. In this context, AI and ML can be used to build not only forecaster models 

to predict probable future emissions but also policy impact models to determine how various interventions may impact 

emissions in the future, helping in formulating the right strategies to combat climate change. 

 

2. BACKGROUND AND RELATED WORK 

Global increases in greenhouse gas (GHG) emissions and carbon dioxide (CO2) in particular have been rapidly escalating, 

and are one of the most pressing global challenges to date [6], [7]. The emissions from which these results are primarily 

due to human activity, such as industrial processes, energy production, agriculture and transportation [8]–[10]. Rising 

global temperatures, extreme weather events, sea level rise, and disturbances in ecosystems have been caused by the build 

up in GHGs in the atmosphere [11]–[13]. Paris Agreement encompasses the need to take collective efforts to control the 

climate change and achieving carbon neutrality [14], [15]. Yet the dynamics of GHG emissions globally are difficult to 

understand, necessitating precisely collated data, analyzed, and predicted [16], [17]. 

Artificial Intelligence (AI) has fast become a game changer in dealing with environmental problems by providing 

sophisticated ways to work with large scale, disparate datasets [18], [19]. AI allows researchers to uncover patterns, predict 

future trends [20]–[22], inform and deliver actionable insights into CO2 and GHG emissions. For instance, machine 

learning algorithms are really good at uncovering correlations between socioeconomic factors and emissions level, and 

deep-learning methods are really good at running fancy atmospheric models [23], [24]. More often used nowadays are AI 
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driven predictive models to predict emissions under a number of policy scenarios, helping policymakers to decide on an 

informed basis [25]. 

AI integration brings a special contribution to analysis with addressing regional emission disparities across continents. The 

variable industrialization levels, energy consumption patterns, and environmental policies result in diverse emission 

profiles for which this deserves comprehensive analysis [26]. The AI helps harmonize of datasets across multiple sources 

to make global estimates of emissions more precise and reliable [27]. In addition, real time monitoring of emission hotspots 

can be conducted using satellite imaging, natural language processing (NLP) and geospatial analytics for the development 

of targeted interventions with AI powered tools [28]. 

Even so, many challenges remain with the use of AI in environmental science. To enable any AI model to produce 

sustainable and impactful outcomes. So, the researchers must tackle issues including data availability, quality, and 

interpretability, not to mention the energy expense in building them. However, there is immense potential for the synergy 

between environmental research and AI to speed up progress towards global climate goals by allowing for the efficient and 

data informed solutions to reduce CO2 and GHG emissions. 

ML models have been applied in recent years to forecast GHG emissions because of their ability to handle complex, variable 

data. A major study [29] undertook the use of classical regression, ML learning and deep learning (DL) algorithms to 

forecast the CO2 and nitrous oxide (N2O) fluxes of agricultural fields in the Quebec region. The applied algorithms yielded 

reasonably high performance, and the best result was given by the long short-term memory (LSTM) model, for which the 

R coefficient was 0. 87 for CO2 and 0.86 for N2O, with an RMSE of 30 and p<0.05 for both experiments at 86. 3 

mg·m−2·hr−1 and 0. 19 mg·m−2·hr−1, respectively. On the other hand, classical models such as RF and SVM had 

comparatively low accuracies for peak N2O fluxes, and deeper ML models were comparatively less accurate overall and 

were also more sensitive to overfitting. 

To predict total GHG emissions, including CO2, CH4, N2O and fluorinated gases, a predictive model of machine learning 

with mathematical programming as a mix of the two techniques was developed by [30] to measure Iranian energy sector 

emissions for the time series between 1990 and 2018. Among the nine selected ML algorithms, namely, ANN, AR, 

ARIMA, SARIMA, SARIMAX, RF, SVR, KNN, and LSTM, facet improvement with PSO and GWO provided enhanced 

results, with error rates of at least 31.7% and 12.8%, respectively. The forecast of the hybrid model was higher than 1096 

Mt/year of Iran’s GHG emissions by 2028 compared with the individually applied ML methods. 

In Turkey, while the production capacity of energy has improved, the GHG emissions of the country are still high. In [31], 

the authors compared support vector machines (SVMs) and artificial neural networks (ANNs) for the prediction of CO2, 

CH4, N2O and fluorinated gases emitted by different sectors. Certain features of SVMs that generalize the details and 

importance of ANNs for classification and regression were illustrated from data obtained from the Turkish Statistical 

Institute for the period of 1990--2019. The analysis was performed via MATLAB 2019b, and the goal of the study was to 

increase the prediction efficiency and reliability. 

In Study [32], OLS, SVM, and GBR were adopted for predicting CO2 emissions through transportation for 30 countries 

with high emissions. Hence, the gradient boosting regression model with combined features (GBR_ALL) seemed to 

provide an excellent performance model with the highest R² value of 0.9943, an rRMSE of 0.1165 and a mean absolute 

percentage error of 0.1408%. It was found that transportation features were somewhat significant for the whole set of cities; 

however, the transport features were much more significant. Nevertheless, the general transport standards of the city and 

socioeconomic features were shown to be important for Tier 1 and Tier 2 cities, with GDP and population being particularly 

important indicators. 

[33] subsequently analyzed the performance of several ML methods in forecasting CO2 emissions from buildings up to 

2050 via linear regression, ARIMA, and shallow and deep neural network univariate and multivariate methods. In 

particular, the study analyzed different methods of feature extraction, namely, lagged values and polynomial 

transformations, for various regions worldwide: Brazil, India, China, South Africa, the United States, Great Britain, the 

world average and the European Union. By means of this profound analysis, these key questions have been answered, 

offering an understanding of how to accomplish consistent projection of long-term CO2 emissions for the building sector. 

 

3. PROPOSED FRAMEWORK 

The proposed framework starts with a collection dataset on CO2 and greenhouse gas emissions. Next, we perform 

exploration data analysis, also known as EDA, to visualize the patterns, trends and relationships present in the dataset. Data 

cleaning and normalization as well as the handling of missing data are some of the preprocessing techniques that are used 

before modeling. There are many types of ML models that are used. Finally, the performance of the models is compared 

and tested, as shown in Figure 2, to determine how well they capture the actual emission trends. 
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Fig. 2. Proposed Framework 

3.1. Data collection 

The dataset applied in this work is obtained from [34] and reports data on CO2 emissions and greenhouse gases from 

different countries and continents. This paper is organized in tabular form and contains a total of two hundred and four 

entries, where each row refers to a country/region and certain attributes. 

Data fields: 

• Region: Region refers to the name of the country or the region where the material is located. 

• CO2 Emissions (Mt): Carbon dioxide emissions expressed in megatons that represent million metric tons. 

•  Greenhouse gas emissions (Mt): This is the total, or the sum total, of the greenhouse gas emissions calculated in 

megatons. This column has some missing data, and information is available for 179 of the 204 fields. 

•  Continent: The continent in which the country or the region is situated. 

This dataset is useful for environmental science, social interaction planning and demonstrations for instruction and learning 

to understand worldwide CO2 and greenhouse gas emissions and their consequences for climate change. Table 1 presents 

CO2 and greenhouse gas emission data (in megatons) for various countries, along with their continent and total gas 

emissions. Missing values are indicated as "NaN." 

TABLE I.  CO2 AND GREENHOUSE GAS EMISSIONS 

 Region CO2 Emissions (Mt) Greenhouse Gas Emissions (Mt) Continent Overall_gas_emission 

0 Afghanistan 5.68 98.9 Asia 104.58 

1 Albania 4.49 10.1 Europe 14.59 

2 Algeria 177.08 218.9 Africa 395.98 

3 Angola 20.19 79.7 Africa 99.89 

4 Anguilla 0.02 NaN North America NaN 

... ... ... ... ... ... 

199 Vietnam 327.91 376.5 Asia 704.41 

200 Western Sahara 0.24 NaN Africa NaN 

201 Yemen 12.26 21.8 Asia 34.06 

202 Zambia 9.27 40.7 Africa 49.97 

203 Zimbabwe 10.22 31.4 Africa 41.62 
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3.2. Exploratory Data Analysis (EDA) 

To enhance comprehension of the dataset's structure and uncover correlations that could enhance the predictive models for 

CO2 and greenhouse gas emissions, we conducted an initial analysis of its general characteristics, known as exploratory 

data analysis (EDA) [35]. This section presents an overview of the dataset along with the findings from this analysis that 

are directly relevant. Table 2 presents the cumulative greenhouse gas emissions (in megatons) across six continents. Asia 

is the highest emitter at 12,481.71 Mt, followed by Europe at 9,785.59 Mt and Africa at 6,069.65 Mt. North America and 

Oceania contribute 4,603.74 Mt and 4,436.94 Mt, respectively, while South America has the lowest emissions at 1,823.93 

Mt. These data highlight regional disparities in greenhouse gas emissions globally. 

TABLE II.  CUMULATIVE GREENHOUSE GAS EMISSIONS ACROSS CONTINENTS 

 Continent Overall_gas_emission 

1 Asia 12481.71 

2 Europe 9785.59 

0 Africa 6069.65 

3 North America 4603.74 

4 Oceania 4436.94 

5 South America 1823.93 

 
Figure 3 visualizes the distribution of CO2 gas emissions across different continents. Asia is the largest contributor, 

responsible for 40.1% of the emissions, followed by Europe at 32.2%. North America and Africa account for 9.1% and 

10.7%, respectively. Oceania and South America had the lowest percentages, with 3.2% and 4.6%, respectively. This chart 

clearly shows emissions by region, with a focus on the greater influences of Asia and Europe on global CO2 and greenhouse 

gas emissions. These results imply the need for specific emission reduction measures in these high-emission zones. 

 

Fig. 3. Distribution of CO2 gas emissions across different continents 

Figure 4 presents the distribution of greenhouse gas emissions across regions of the globe. Asia leads with 27.6%, which 

in itself contributes to the total emissions. Europe accounts for 21.2% of the total production, North America accounts for 

the smallest share, with only 13.1%, Africa and South America accounting for 17.9% and 4.7%, respectively. Oceania 

represents 15.5% of this distribution, indicating the unequal burden of climate change around the world and the need for a 

differentiated approach toward emissions around the world. 
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Fig. 4. Global greenhouse gas emissions by region. 

The total gas emissions have hence been distributed across different continents, as shown in Figure 5. Asia remains the 

most dominant contributor of FDI, with 31.8 APEC of total emissions, whereas Europe accounts for 25.0%. Africa 

contributes 15.5%, highlighting its significant share. North America and Oceania contributed 11.7% and 11.3%, 

respectively. South America has the smallest share at 4.7%. 

 

Fig. 5. The distribution of total gas emissions across different continents 
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Figure 6 compares CO₂ emissions and overall greenhouse gas emissions among the top ten countries in Asia. On the left, 

China has the highest CO₂ emission, at 12,670 Mt, which is significantly higher than that of India (2,690 Mt) and Japan 

(1,080 Mt). The other countries, including Indonesia and South Korea, contribute much smaller amounts. On the right, the 

greenhouse gas emissions chart shows a similar trend, with China again leading at 12,400,000 Mt. India and Japan 

remaining the next highest emitters, but the scale of emissions is much greater than that of CO₂ alone. This highlights 

China's critical role in Asia's environmental impact and underscores the urgency for emission reduction strategies in these 

leading countries. 

 

Fig. 6. Compares CO₂ emissions and overall greenhouse gas emissions among the top ten countries in Asia. 

Figure 7 presents the CO₂ emissions and total greenhouse gas emissions for the top ten countries in Europe. In the CO₂ 

emissions chart, Russia stands out as the largest emitter at 1,910 Mt, followed by Germany (673.6 Mt) and Turkey (481.25 

Mt). The remaining countries, including the UK and Italy, show significantly lower emissions, indicating a concentration 

of responsibility among a few nations. On the right, the chart of greenhouse gas emissions provides a similar picture, where 

Russia tops at 2,500,000 Mt, which is significantly higher than that of Germany and the UK. These data reflect the massive 

contribution of Russia to the overall emission level in Europe and therefore highlight the need to focus on effective climate 

policies that would affect high-emission countries only. 

 

Fig. 7. CO₂ emissions and total greenhouse gas emissions for the top ten countries in Europe 
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The indicators of CO₂ emissions and the total greenhouse effect in the ten largest countries in South America are shown in 

Figure 8. Examining the chart of the CO₂ emissions, we find that Brazil is the top-ranked country and ranks 466.77, 

followed by Argentina, which contributes 184.04 Mt, and Venezuela, which contributes 96.92 Mt. Other countries, i.e., 

Chile and Peru, have lower total emissions, indicating that emissions are centralized. To the right, the emission of 

greenhouse gases chart also accentuates Brazil’s leadership, with the overall emission having scaled to 1,000,000 Mt. 

Argentina and Venezuela follow but at significantly lower levels, reinforcing Brazil's pivotal role in the region's 

environmental impact. 

 

Fig. 8. CO₂ and total greenhouse gas emissions for the top ten countries in South America 

Figure 9 depicts the CO₂ and greenhouse gas emissions from the top ten countries in North America. In the left chart, the 

United States is the predominant emitter, with a staggering 4,850 Mt, followed by Canada (582.07 Mt) and Mexico (487.77 

Mt). Other nations, such as Trinidad and Tobago and Cuba, contribute much smaller amounts, highlighting the 

concentration of emissions among a few key players. On the right, the greenhouse gas emissions chart reinforces this trend, 

with the United States again leading at 6,000,000 Mt. Saint Lucia and Canada following, but their figures are significantly 

lower. These data emphasize the critical role of the United States in North America's emissions landscape and underscore 

the importance of focused climate policies in these leading countries to address environmental challenges effectively. 

 

Fig. 9. CO₂ and greenhouse gas emissions from the top ten countries in North America 
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Figure 10 depicts the CO₂ and greenhouse gas emissions from the top ten countries in Africa. In the left chart, South Africa 

leads with 404.97 Mt, followed by Egypt (265.96 Mt) and Algeria (177.08 Mt). Other countries, such as Nigeria and 

Morocco, contribute smaller amounts, indicating a significant concentration of emissions among a few key nations. On the 

right, the greenhouse gas emissions chart shows Seychelles at the top with 780 Mt, followed by Comoros (590 Mt) and 

South Africa (513.40 Mt). Egypt and Nigeria also feature prominently. 

 

Fig. 10. CO₂ and greenhouse gas emissions from the top ten countries in Africa 

Figure 11 presents the CO₂ and greenhouse gas emissions for the top ten countries in Oceania. In the CO₂ emissions chart, 

Australia stands out with 393.16 Mt, significantly outpacing its neighbors—New Zealand, for example, contributes only 

32.37 Mt. Other countries, such as New Caledonia and Papua New Guinea, produce even less, reflecting Australia's major 

role in regional emissions. Conversely, the greenhouse gas emissions chart shows a different narrative. The Solomon 

Islands lead with 940 Mt, followed closely by Vanuatu at 870 Mt and Samoa at 690 Mt. Australia, while still being a 

significant emitter, which ranks lower in this context with 615.40 Mt. 

 

Fig. 11. CO₂ and greenhouse gas emissions for the top ten countries in Oceania 

Finally, Figure 12 provides a comparative analysis of CO2 emissions and average greenhouse gas emissions across various 

regions, highlighting the top emitters. In the chart on the left, which focuses on total CO2 emissions, Indonesia and Iran 
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lead with emissions just under 700 megatons (Mt), followed closely by Germany, South Korea, and Saudi Arabia, each 

surpassing 600 Mt. The remaining regions—Canada, Mexico, Turkey, Brazil, and South Africa—contribute between 500 

and 400 Mt. On the right, the chart depicting average greenhouse gas emissions reveals that China is the overwhelming 

leader, with emissions significantly higher than those of other regions. The United States is second largest, followed by a 

significantly large difference from the third largest emitter, India. Some of the countries that emit a lower level of 

greenhouse gases than China does, and the U.S. includes Russia, Japan, Brazil and Indonesia. 

 

Fig. 12. Comparative analysis of CO2 emissions and average greenhouse gas emissions across the top emitters 

This underscores the significant impact of specific countries on global emission levels, highlighting the need for targeted 

policies to address these disparities and mitigate climate change effectively. 

3.3. Preprocessing 

The first step of the preprocessing phase is data reading, which is performed with the help of the Pandas library [21]. This 

dataset provides data about CO2 emissions, greenhouse gas emissions and the continents to which they belong. These data 

were then transformed into a structure DataFrame so that it is in a better form to start working with. 

[36] The management of missing data was important in this phase. Some cells had missing values, which were mostly for 

two variables: greenhouse gas emissions (Mt) and overall gas emissions. These missing cases were handled via proper 

techniques of imputation, such as the mean/median imputation, where gaps where data were missing were filled with data 

with equivalent mean or median values, respectively, or complete cases were dropped if there were more missing data that 

would affect the analysis. 

 Following the data cleaning process [37], the data were preprocessed by splitting them into training and test sets. The 

training set and test set were created with the training set comprising 80% of the entire dataset and the test set comprising 

20% of the entire dataset. This division helped ensure that the majority of the data were given for training the model and 

that only a small portion of the data that the model had never encountered was given for testing the model. This process 

prepares the data for the next step, which involves training several of the ML models to forecast the emissions of CO2 and 

other greenhouse gases. 

3.4. Applying ML models 

This study employs a variety of ML models to analyze and predict CO2 and greenhouse gas emissions across different 

continents. Each model offers unique advantages, and the following models were used: 

1. Linear Regression (LR): Linear regression models the relationship between a variable 𝑦 and one or more 

independent variables 𝑋 by fitting a linear equation [38]: 

𝑦 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 + 𝜖                                                         (1) 
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where 𝛽0 is the intercept, 𝛽1, 𝛽2, … , 𝛽𝑛 are the coefficients of the independent variables, and 𝜖 is the error term 

[39]. 

2. Decision Tree Regression (DT): Decision Tree Regression uses a tree-like model of decisions. The prediction is 

made by splitting the data into subsets at each node on the basis of the feature that results in the greatest reduction 

in variance: 

Variance Reduction = Var(𝑦) − (
𝑛left 

𝑛
Var(𝑦left ) +

𝑛right 

𝑛
Var(𝑦right ))                                 (2) 

where 𝑛 is the total number of instances and where 𝑛left  and 𝑛right  are the instances in the left and right branches, 

respectively [40]. 

3. Random forest regression (FR): Random forest regression is an ensemble method that aggregates the predictions 

of multiple decision trees [41]: 

�̀� =
1

𝑇
∑  𝑇
𝑡=1 𝑓𝑡(𝑥)                                                                             (3) 

where 𝑇 is the number of trees, 𝑓𝑡(𝑥) is the prediction from the 𝑡-Th tree, and �̀� is the final prediction [42]. 

4. Support Vector Regression (SVR): Support Vector Regression attempts to find a function 𝑓(𝑥) that deviates 

from the actual observed values 𝑦𝑖  by at most 𝜖 for all training data while ensuring that this function is as flat as 

possible: 

𝑓(𝑥) = ∑  𝑛
𝑖=1 𝛼𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏                                                               (4) 

where 𝐾(𝑥𝑖 , 𝑥) is a kernel function, 𝛼𝑖 are the Lagrange multipliers, and 𝑏 is the bias term [43]. 

5.  K-Nearest Neighbors Regression (KNN): K-Nearest Neighbor Regression predicts the value �̀� of a new data 

point by averaging the values of its K-nearest neighbors: 

�̀� =
1

𝐾
∑  𝐾
𝑖=1 𝑦𝑖                                                                               (5) 

where 𝑦𝑖 are the values of the K nearest neighbors [44]. 

6. XGBRegressor: This is a specific implementation of the gradient boosting framework, which optimizes the 

following objective function: 

Obj(𝜃) = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , �̀�𝑖

(𝑡)
) + ∑  𝑡

𝑗=1 Ω(𝑓𝑗)                                                     (6) 

where 𝑙 is a loss function, �̀�𝑖
(𝑡)

 is the prediction from the 𝑡-th tree, and Ω(𝑓𝑗) is a regularization term for the tree 

structure [45]. 

7. Gradient boosting regressor: The gradient boosting regressor builds models sequentially, each one correcting the 

errors of its predecessor. The model is based on the minimization of the loss function: 

𝐿(𝜃) = ∑  𝑛
𝑖=1 𝑙(𝑦𝑖 , �̀�𝑖

(𝑚)
) + ∑  𝑀

𝑚=1 𝛾𝑚                                                        (7) 

where 𝑙 is the loss function, �̀�𝑖
(𝑚)

 is the prediction at iteration𝑚, and 𝛾𝑚 are the weights [46]. 

 

8. Ridge Regression: Ridge regression modifies the linear regression model by adding a regularization term to the 

loss function to penalize large coefficients: 

Minimize(∑  𝑛
𝑖=1   (𝑦𝑖 − �̀�𝑖)

2 + 𝜆∑  
𝑝
𝑗=1  𝛽𝑗

2)                                                         (8) 

where 𝜆 is the regularization parameter and where 𝛽𝑗 are the coefficients [47]. 

 

9. Lasso Regression: LASSO regression adds a ℓ1 regularization term to the linear regression model, which can 

shrink some coefficients to zero, effectively performing variable selection: 

Minimize(∑  𝑛
𝑖=1   (𝑦𝑖 − �̀�𝑖)

2 + 𝜆∑  
𝑝
𝑗=1   |𝛽𝑗|)                                                         (9) 

where 𝜆 is the regularization parameter and where 𝛽𝑗 are the coefficients. 

These models were selected to offer a comprehensive analysis of emission trends, each providing different insights and 

capabilities for predictive tasks [47]. 

3.5. Model evaluation 
Evaluating the performance of the ML models was a critical part of the analysis. Two primary metrics were used for this 

evaluation: the mean squared error (MSE) and R-squared (R²). 
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The mean squared error (MSE) measures the average of the squares of the errors, that is, the average squared difference 

between the actual and predicted values. A lower MSE indicates a better fit of the model to the data. The MSE is calculated 

via the following equation [48]: 

 MSE =
1

𝑚
∑  𝑚

𝑖=1 (𝑋𝑖 − 𝑌𝑖)
2

 (best value = 0;  worst value = +∞)
                                                           (10) 

• ᵐ is the number of observations, 

• X represents the actual values, 

• Y represents the predicted value. 

R-squared (R²): a statistical measure that represents the proportion of the variance for the dependent variable that is 

explained by the independent variables in the model. It provides an indication of how well the model's predictions match 

the actual data. An R² value closer to 1 indicates a better fit. The R-squared value is calculated via the following equation 

[48]: 

R2 = 1 −
∑  𝑚
𝑖=1 (𝑋𝑖−𝑌𝑖)

2

∑  𝑚
𝑖=1 (Ý−𝑌𝑖)

2

 (worst value = −∞; best value = +1 ) 

                                                       (11) 

• X represents the actual values, 

• Y represents the predicted value, 

• Ý is the mean of the actual values. 

In this study, both the MSE and R² were calculated for each of the ML models used, providing a comprehensive assessment 

of model performance. These metrics help determine which model is most effective in predicting CO2 and greenhouse gas 

emissions, with a focus on minimizing the error (MSE) and maximizing the explained variance (R²). 

 

4. RESULTS AND DISCUSSION 

The results of applying various ML models to predict CO2 and greenhouse gas emissions reveal significant differences in 

model performance, as presented in Table 3. 

TABLE III.  THE RESULTS 

ML Method MSE R² 

LR 4718.99 0.8678 

DT 3684.03 0.8968 

FR 3043.89 0.9147 

SVR 36771.12 -0.0295 

KNN 11757.80 0.6708 

XGBRegressor 20658.38 0.4216 

GradientBoostingRegressor 2535.30 0.9290 

Ridge 4718.99 0.8678 

Lasso 4719.25 0.8678 

 
LR demonstrated a good fit, achieving an R-squared value of 0.868 and an MSE of 4718.99. This finding indicates that 

while the model explains a substantial portion of the variance in the data, there is room for improvement, particularly in 

reducing the error. DT regression improved upon LR, with an MSE of 3684.03 and an R-squared of 0.897, showing its 

ability to capture nonlinear relationships within the data. RF regression further enhanced the predictive accuracy, achieving 

an MSE of 3043.90 and an R-squared value of 0.915, reflecting its effectiveness in handling the complexity and variability 

of the data. 

The gradient boosting regressor emerged as the best-performing model, with the lowest MSE of 2535.30 and the highest 

R-squared value of 0.929. This suggests that gradient boosting is particularly well suited for this predictive task, as it 

effectively balances bias and variance. However, SVR performed poorly, with an MSE of 36771.13 and an R-squared of -

0.030, indicating that it was unsuitable for this dataset. Similarly, KNN regression also struggled, with an MSE of 11757.81 

and an R-squared of 0.671. 

The XGB Regressor and Lasso models showed moderate performance, with the XGB Regressor achieving an MSE of 

20658.39 and an R-squared of 0.422, whereas Lasso had an MSE of 4719.25 and an R-squared of 0.868. Ridge regression 

had similar results to linear regression, indicating that regularization did not significantly improve the model's performance 

for this dataset. 
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Figure 13 illustrates the relationship between the actual and predicted values across various regression models, with each 

point representing a prediction. The dashed diagonal line serves as a reference for perfect predictions; points closer to this 

line indicate better model performance. This analysis underscores the importance of selecting the appropriate regression 

model on the basis of the dataset's characteristics and prediction objectives. 

 

Fig. 13. Relationships between actual and predicted values across various regression models 

These results highlight the effectiveness of ensemble methods, particularly gradient boosting, in handling complex 

environmental datasets. However, the limitations of some models, such as support vector regression and k-nearest 

neighbors, underscore the importance of model selection on the basis of the specific characteristics of the data. 

 

5. CONCLUSION AND FUTURE WORK 

In this work, emissions of CO2 and other greenhouse gases across various continents were assessed, and emission forecasts 
from regression models were used to determine the impacts of these gases on the world environment. Thus, the gradient 
boosting regressor is one of the most effective models, providing the highest accuracy, with an R squared of 0.929, and the 
lowest mean squared error (MSE), the minimum of which is recorded as 2535.30. The better performance of this model can 
be attributed to the increased handling capability for the emission data’s underlying pattern. There are other such models that 
are also helpful to some extent, but the accuracy and predictive ability of these models are not consistent and therefore make 
important the choice of the right model. Therefore, the findings of this study offer important information to political decision-
makers and environmental scholars. Emission predictions are vital when measures are taken in the fight against global 
warming. The model’s capacity to highlight which configurations have the highest accuracy in various situations may help 
in determining the best direction for future studies to take and in improving existing measures to encourage environmental 
protection. As such, subsequent studies should examine other factors and more sophisticated methods for increasing the 
expected level of prognostic precision. Furthermore, it can consider actual time data and analyze regional characteristics to 
obtain more comprehensible emission trends. If analyses are repeated and improved upon, then the problems presented by 
global greenhouse gas emissions can be more suitably handled, and lasting solutions for earth can be provided. 
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