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A B S T R A C T  

 
Cybersecurity involves protecting computer networks, systems, and data from unauthorized access and 
disruptions using advanced technologies. The purpose of this research is to establish a novel cyber 
security framework for strengthening cloud data protection. In this paper, we propose a novel Dung 
Beetle optimization-redefined Intelligent Random Forest (DB-IRF) for accurate detection of intrusions 
in a cloud environment. We obtained a dataset that includes cloud system logs and network traffic data, 
including normal and malicious activities, to train our proposed model. We utilized z-score normalization 
to pre-process the gathered raw data. Our suggested model enhances classification accuracy by 
integrating DB optimization with the IRF algorithm. It optimizes feature importance weights during 
training and improves the model's ability to detect intrusions in cloud environments accurately. The 
proposed detection model is implemented in Python software. In the findings assessment phase, we 
effectively assessed the performance of our proposed DB-IRF in detecting earthquake incidents across 
multiple evaluation metrics such as Accuracy (97.5%), Precision (97.96%), F1 Score (98.48%) and 
Recall (97.85%). We also conducted a comparison analysis with other conventional methodologies. Our 
experimental results demonstrate the capability and reliability of the recommended framework. 

 
  

1. INTRODUCTION 

Introduction of security measures and practices that are essential to reduce risks arising from cyber-attacks, unauthorized 

access, and information breaches for cloud data. Among all, encryption is crucial to ensure cloud data security [1]. Digital 

information is the crucial component of any business globally; thus, guaranteeing security became mandatory while 

uploading on the cloud platforms. They shield confidential information against attacks of cybersecurity while also improving 

company operations over the cloud  [2]. The concepts of cybersecurity help in the protection of data that may be stored, 

processed, or transferred over a cloud infrastructure-this provides the field with the name 'cloud data protection'. The 

approach of cryptography did further provide an extended level of protection in personal data ownership [3]. Other major 

factors of effective cloud data security include robust access restrictions and verification processes. Multi-factor 
authentication is applied in these systems, ensuring that the authorized user gains access to confidential information whose 

identities have already been verified [4]. The use of cryptography, access control systems, monitoring, and threat detection 

is essential in the protection of information within the cloud. Machine learning methods and enhanced security insight will 

allow an organization to quickly notice and rectify problematic activity [5]. Organizations can detect anomalies and 

potential security incidents to take proactive measures in minimizing risks that may lead to data leakage or breach [6]. 

Cloud architectures are dynamic, adaptable, aggressive, and flexible approaches that make up cybersecurity. Traditional 

static security solutions often fail to keep pace with the changing nature of the threat landscape. Also, compliance with 

business standards and legal regulations was necessary to ensure cloud data security. Hazardous information security was 
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governed by strict rules in several areas, including health care, government and banking. Cloud service providers are 

required to follow security procedures to ensure. Data recovery and backup planning are the components of cloud security 

[7]. The natural catastrophes and security breaches, companies need to constitute backup strategies for recovering data and 

continuing operations. Organizations may reduce the effect of interruptions and guarantee uninterrupted operations by 

constantly backing up data to distributed sites and putting robust disaster recovery policies [8]. The study aim is to develop 

digital infrastructure for cloud data protection that protects the security, accessibility and reliability of data stored in a cloud 

environment. We propose a novel Dung Beetle optimization-redefined Intelligent Random Forest (DB-IRF) for accurate 

detection of intrusions in a cloud environment. Most of the existing cybersecurity frameworks for cloud data protection 

lack dynamic adaptation to the ever-changing threat landscape, robustness in anomaly detection, and accuracy in classifying 

malicious activities in the cloud environment. Most of the traditional approaches are based on static security mechanisms 

that are incompetent against evolving cyber threats and also fail to optimize the trade-off between detection accuracy and 

computational efficiency. Approaches based on K-Nearest Neighbors, Gaussian Naïve Bayes, and Support Vector 

Machines all have their different weaknesses when handling diverse and high-dimensional datasets, hence doing intrusion 

detection below par. The proposed DB-IRF framework fills the gaps by adopting a hybrid approach that combines the 

dynamic optimization capabilities of the Dung Beetle algorithm with the robust classification accuracy of the Intelligent 

Random Forest (IRF). This allows the framework to enhance feature importance weighting and optimize resource allocation 

dynamically, leading to better anomaly detection and intrusion prevention in cloud environments. The proposed DB-IRF 
framework has been validated through experimental results, with remarkable improvements in performance: 97.5% 

accuracy, 97.96% precision, 98.48% recall, and 97.85% F1-score, outperforming traditional methods, thus proving to be 

reliable and efficient in enhancing the protection of cloud data. 

The following Sections make up the article: Section 2, Literature Review; Section 3, Methodological part; Section 4, 

Experimental result; and Section 5, Conclusion.   

2. RELATED WORKS  

Enhancing the quantity of CTI accessible for assessment facilitates enhanced anticipation, avoidance and alleviation of 

cyberattacks [9].  The CTI information was altered before releasing for assessment, the information possessor can select 

the right degree of security and CTI information hygiene technique that includes simple text and homomorphic 
cryptography. Theoutcome of the experiment leads to several implementations to analyze CTI information in the 

cloud.The data protection integrates SE with memory fragment and diffusion. The data protection was divided into three 

distinct levels of security by convertible DWT. They are distributed among several locations for storage with varying 

degrees of reliability to safeguard end users' data by resisting potential cloud breaches.The experimental findings 

demonstrate that a high degree of security constitutes resistant faults in replication.  Mobile operator architecture was used 

to implement the dispersed virtualization operator paradigm in the cloud [10,11]. Multi-tenants constitute together to verify 

the integrity of data with a virtualization operator. The role of the virtualization operator function was accomplished to 

dependable storage of information, tracking and authentication. The experimental outcome demonstrates the utilization of 

dispersed virtualization gateway model deployment in a cloud environment.  They examined AuthPrivacy-Chain, a 

blockchain technology system for access control that safeguards privacy. The permissions for controlling access to cloud-

based information were secured and stored in block chain technology by using the node's identity information [12]. 

AuthPrivacy-Chain was implemented by using EOS. The outcome of the experiment indicates that assets can be accessed 

by authorized users. Research examined a cloud-based safe information security approach that offers cloud security 

problems, including safeguarding information from intrusions and defense against a phony authorized identity user 

compromises cloud security [13]. They develop OTP for tracking and exporting methods to safeguard data and user 

individuals against any fraudulent or unethical use of the cloud. The experimental outcome demonstrates that the suggested 

approach offered the advantages and efficiency of cloud computing security.The PIPA would leverage cloud computing to 
identify files containing sensitive data and notify the relevant individuals [14]. The Hadoop distributed computing platform 

was utilized to facilitate the processing of enormous volumes of data.The results of the experiments demonstrated the 

suggested Hadoop system efficiently increased the speed of execution. The non-commutative encryption framework 

constitutes a Quantum Key Distribution (QKD) [15]. The QKD ensures highly secure data transfer. Furthermore, guarantee 

protected key creation with decreased time complexitywas produced. The experimental outcome demonstrates that security 

risks constitute ensuring secure information transport and storage at lower computation. Most of the IDSs in cloud 

environments are suffering from significant limitations that curtail their effectiveness in addressing dynamic and evolving 

cybersecurity challenges of modern cloud platforms. Traditional IDSs rely on static detection methods, such as signature-

based approaches, which are ineffective in detecting novel or zero-day attacks. These systems also face difficulties in 

balancing the rates of false positives and false negative cases, with a lot of superfluous alerts or missing detections that 

reduce reliability and operational efficiency. Scalability is another important concern: classic IDSs were not designed to 
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cope with the volume, velocity, and variety of data produced within cloud environments; hence, the detection and response 

will be much slower. Secondly, many of them are missing some advanced optimized features that tend to give priority to 

data relevance detection; the accuracy remains reduced while computations become higher. Detection capability is 

unsatisfactory; in most IDS, detection depends upon patterns of attack traffic and therefore usually fails while facing 

sophisticated or unpredictable threats. Thirdly, conventional IDSs have been seen to be computationally heavy and often 

not adapted to resource-starved cloud platforms. The proposed framework, Dung Beetle optimization-redefined Intelligent 

Random Forest, overcomes these lacunae by incorporating the Dung Beetle Optimization algorithm into the Intelligent 

Random Forest methodology. This hybrid approach contributes to an immense enhancement in feature importance 

weighting and optimizes resource allocation to adapt dynamically to the evolution of threats dynamically. The proposed 

framework of DB-IRF tends to achieve superiority in intrusion detection accuracy with substantial reduction in false 

positives and negatives. It has a scalable design that can manage large and heterogeneous datasets. Its advanced anomaly 

detection allows it to identify novel threats in real time. It minimizes computational demands by focusing on relevant 

features, thus making it suitable for resource-constrained cloud environments. These innovations make the DB-IRF 

framework a robust and effective solution to the shortcomings of existing IDSs, ensuring enhanced security and reliability 

in cloud platforms. 

3. METHIODOLOGY  

Figure 1 presents the proposed methodology. We have collected a dataset from Kaggle. We used z-score normalization for 

the pre-processing of raw data. Further, we have proposed a new metaheuristic optimization-based Dung Beetle-redefined 

Intelligent Random Forest (DBIRF) for accurate detection of intrusions in the cloud environment. 

3.1 Data pre-processing using Z-Score normalization  

The quantity of standard errors was represented by Z-Score, a traditional normalization and standardization technique that 

indicates the raw data value constitutes the overall population mean. It was optimally located among -3 and +3. The dataset 

was normalized to the previously indicated scale data with various dimensions. The z-score is a tool used to stabilize 

information. To calculate the rating, eliminate the overall population average from an unprocessed data point and divide 

the result by the standard deviation of the data. The result ideally ranges from -3 to +3, indicating the number of standard 

deviations that a point deviates from the mean was determined in Equation (1), where 𝑦 stands for the median value of a 

specific samples, 𝜇 for the median, and 𝜎 for the average variation. 

 

 𝑍_𝑆𝑐𝑜𝑟𝑒 =  
(𝑦−𝜇)

𝜎
                                                                                        (1) 

Z:Z-score 

𝑋 : Data point value 

𝜇 : Mean of the dataset 

𝜎 : Standard deviation of the dataset 

 

 
 

Fig. 1.  Proposed Methodology 
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3.2 Dung Beetle Optimization (DB) 

Dugout beetle behaviors including slipping, humming foraging, pillaging and reproducing are the source of inspiration for 

the dung beetle technique. On the basis of these behaviors, four population rejuvenation techniques are developed. 

Equation (2) describes the behavior of dung beetles and continuously updates their location in sunlight based on 

environmental conditions including wind direction and sunshine. 

𝑦𝑗(𝑠 + 1) = 𝑦𝑗(𝑠)+∝× 𝑙 × 𝑦𝑗(𝑠 + 1) + 𝑎 × ∆𝑦,

∆𝑦 = |𝑦𝑗(𝑠) − 𝑌𝜔|
                                                     (2) 

𝑦𝑗(𝑠) : The position or location of dung beetle 𝑗 at iteration 𝑅. 

& The current iteration number ar quantity. 

a: A direction factor of chung beetles, with values between 1 and -1 where 

𝛼 = 0. No direction difference. 

𝛼 = −1 : Indicates deviation. 

I: A random integer within the range ( 0,2 ). 

Δ𝑦. The change in position, defined as the absolute difference between 𝑦𝑗(𝑠) the current position) and 𝑦𝜌 (the worldwide 

lowest location). 

𝑦𝑏 : The worldwide lowest position or location. 

𝑙 : The deflection factor, a parameter used to simulate environmental influences like light. 𝑙 ∈ (0,0.3). 

 

The variables 𝑠and 𝑦𝑗(𝑠)represent the current iteration quantity and the location of 𝑗 represents the dung beetle during 𝑠 

repetition, respectively. 𝑎 represents the direction of dung beetles varies and its value set between 1 and −1. Where 1 

indicates no difference and −1 indicates a deviation. 𝑌𝜔indicates the worldwide lowest location, ∆𝑦was utilized to mimic 

the light quantity, and l∈ (0, 0.3) as the deflection factor. 𝑎indicates an integer that raises from (0,2).The dung beetles will 

run into obstacles and likely find a new path. Equation (3) describes this dancing behavior. 

𝑦𝑗(𝑠 + 1) = 𝑤𝑗(𝑠) + tan(𝜃) |𝑦𝑗(𝑠) − 𝑦𝑗(𝑠 − 1)|                                                    (3) 

𝐻𝑗(𝑠 + 1) : The new location of dung beetle 𝑗 at the next iteration. 

𝑤𝑗(𝑠) : The weight or influence of sunlight at iteration 𝑠. 

𝜃 : Angle of deviation, which influences the dung beetle's behavior. The location remains unchanged if 𝜃 ∈ [−
𝜋

2
, 𝜋]. 

|𝑦𝑗(𝑠) − 𝑦𝑗(𝑠 − 1)| : The absolute difference in position between the current and previous iterations. The dung beetle's 

location will remain unchanged when 𝜃  is between 
𝜋

2
and 𝜋 for 𝜃 ∈ [0, 𝜋]. Dugout beetles reproduce in safe areas and 

characterized by threshold selection strategies represented in Equation (4), to ensure a secure habitat for their progeny. 

𝑄 = 1 − 𝑠/𝑆𝑚𝑎𝑥

𝐿𝑏∗ = max(𝑊∗ × (1 − 𝑄), 𝐿𝑏)

𝑈𝑏∗ = min (𝑊∗ × (1 − 𝑄), 𝑈𝑏)
                                                                      (4) 

𝐿𝑏′ : The lawer boundary for the spawning region. 

𝑈𝑏′ ' The upper boundary for the spawning region. 

𝑊∗ : The aptimal location for dung beetles. 

𝑄: 𝐴 corvergence rate factor calculated 𝑎𝑠 = 1 − 𝑠/𝜅musx , where: 

𝑘 Current iteration. 

𝐵maxx  : Maximum number of iterations. 

Lb: Original lower boundary of the region. 

Ub: Original upper boundary of the region. 

 

Where 𝑌∗ indicates the optimal location, 𝑆𝑚𝑎𝑥stands for the maximum amount of iterations, 𝑄for the rate of convergence 

factor,𝐿𝑏∗ and 𝑈𝑏∗for the bottom and top borders of the spawning region, and 𝐿𝑏and𝑈𝑏for the upper and lower limits. 

Equation (4) indicates the spawning region was determined by the quantity of 𝑄effectively; hence, the position of the 

deposited embryos likewise interactively altered. Equation (5) represents the hatching region. 

𝐴𝑗(𝑠 + 1) = 𝑌∗ + 𝑎1 × (𝐴𝑗(𝑠) − 𝐿𝑏∗) + 𝑎2 × (𝐴𝑗(𝑠) − 𝑈𝑏∗)                                                      (5) 

𝐴𝑗(𝑠 + 1) : The position of the 𝑗-th reproductive ball at the next iteration. 
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𝑌∗ : The optimal location for reproduction. 

𝑎1, 𝑎2 : Randomized coefficients for direction and influence, which simulate random movement or dispersion. 

𝐴𝑗(𝑠) : The current position of the 𝑓-th reproductive ball. 

𝐿𝑏∗ : Updated lower boundary of the spawning region (from Equation 4)- 

Ubr': Updated upper boundary of the spawning region (from Equation 4). 

 

Where 𝑎1 and 𝑎2 represent distinct randomized vectors and 𝑤 indicates two variables that perform element-wise addition, 

and 𝐴𝑗(𝑠)indicates the position of the 𝑗th reproductive ball in 𝑠 th repetition. 

The optimum place to graze, immature dung beetles must first determine its boundaries, which was determined by Equation 

(6). 

𝐿𝑏𝑎 = max (𝑌𝑎 × (1 − 𝑄), 𝐿𝑏)

𝑈𝑏𝑎 = min (𝑌𝑎 × (1 + 𝑄), 𝑈𝑏)
                                                                 (6) 

𝐿𝑏2 : Lower bound of the optimal foraging area. 

𝑈𝑉2 : Upper bound of the optimal foraging area 

𝑌∗ : Glabal optimal position. 

𝑄: 𝐴 parameter that defines the range of the search space 

Lb and 𝑈𝑏𝑥 The initial lower and upper bounds. 

 

When the global optimum location was shown by 𝑌𝑎 , the bottom and top boundaries of the optimal foraging area were 

indicated by the 𝐿𝑏𝑎and 𝑈𝑏𝑎  sub-tables. Equation (7) illustrates the little dung beetle's positional adjustment. 

𝑦𝑗(𝑠 + 1) = 𝑦𝑗(𝑠) + 𝐷1 × (𝑦𝑗(𝑠) − 𝐿𝑏𝑎) + 𝐷2 × (𝑦𝑗(𝑠) − 𝑈𝑏𝑎)                                          (7) 

𝑦𝑗(𝑠) : Position of the coung beetle at iteration 𝑠. 

𝑦𝑗(𝑠 + 1) : Updated position at the next iteration. 

𝐷1 : An integer representing randomness following an average distribution. 

𝐷2: 𝐴 randomized vector within the range ( 0,2 ). 

𝐿𝑏𝑒 and 𝑈𝑏2 - Lower and upper bounds from Equation (6). Where 𝐷2indicates a randomized vector and part of (0,2), and 

𝐷1 represents an integer of randomness that follows an average distribution. 

 

The act of stealing was equivalent to robbing dung beetles of their dung balls. Equation (8) represents the thief dung beetle's 

geographic data updating approach during the repetitive phase. 

𝑦𝑗(𝑠 + 1) = 𝑦𝑎 + 𝑇 × ℎ × (|𝑦𝑗(𝑠) − 𝑌∗| + |𝑦𝑗(𝑠) − 𝑌𝑎|)                            (8) 

𝑦𝑗(𝑠) : Position of the thief dung beetle at iteration 𝑠. 

𝑦𝑗(𝑠 + 1) : Updated position at the next iteration. 

𝑌∗ : A reference optimal position. 

𝑌𝑎  : Global optimal position. 

𝑇 : A tuning parameter. 

ℎ : A scaling factor. 
 

Where ℎ represents a randomized vector of dimension that follows an average distribution and 𝑇 stands for a fixed value. 

 

3.3 Intelligent Random Forest (IRF) 

The collection of decision trees was incorporated during every repetitive phase, the less relevant features were removed, 

and the performance of the classifier was monitored by IRF. To classify binary information, the RF approach was applied. 

During the learning phase, IRF builds several decision trees with average prediction models. Every hyper feature of the RF 

approach was imprinted by an organized search technique. The remaining variables are as follows: 2 minimum leaflet size; 
4 minimum splitting size. The parameter values are: maximum randomized forests: 1000; maximum complexity: 10; 

assurance: 0.5; conviction: 0.5 in voting technique; Maximum imperfection; chopping; and prior pruning. Other settings 

are as follows: minimum leaflet size: 2, minimum splitting size: 4. Where Equation (9) was utilized in the IRF technique 

to compute a Relative distortion. Here, 𝑚 represents the number of classifications utilized in the procedure and RP 

represents the probability of picking component features from the classification 𝑗 information.  

𝐺𝑖𝑛𝑖𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = ∑ 𝑅𝑃(𝑗𝑝𝑐) (1 − 𝑅𝑃(𝑗𝑝𝑐))𝑚
𝑙=0                          (9) 
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In the IRF technique, many decision trees function as a collective composition. Less computing expense and minimum 

decision trees constrained with characteristics may be constructed by the IRF approach. By averaging or perhaps a 

substantial proportion of vote, they combine several little decision-tree topologies into strong candidate like big tree 

structures. The most effective learning and instruction technique available in the IRF method. 

 

3.4 Dung Beetle optimization-redefined Intelligent Random Forest (DB-IRF) 

The hybrid strategy that combines the Intelligent Random Forest (IRF) and Dung Beetle Optimization (DBO) algorithms 

has surfaced as a reliable remedy for cloud data safety. The hybrid strategy offers increased resilience against cyberattacks 

by utilizing the dynamic learning potential of IRF in conjunction with DBO's natural ability to handle complicated 

situations and optimize the distribution of resources. Through the utilization of the strategies' combined intelligence, the 

infrastructure able to discover possible weaknesses, modify security measures in real-time, and improve the detection of 

anomalies, that helps to strengthen cloud computing platforms against cyber threats. The combination of computational 

learning and optimization methods (DB-IRF) inspired by the environment provides a strong defense, enabling businesses 

to protect the privacy and accuracy of data in the digital environment.  
 

4. EXPERIMENTAL RESULTS  

Initially, we obtained a dataset from Kaggle [16] that includes cloud system logs and network traffic data, including normal 

and malicious activities, to train our proposed model. Tensorflow1.12.0 was utilized to carry out the suggested work and 

accelerated by Nvidia GPUs. To complete the process, software must be installed in addition to Python. We assess the 

proposed approach and calculate the effectiveness of the strategy using the subsequent indicators: F1-score (%), Recall 

(%), Precision (%) and Accuracy (%). We also compare the effectiveness of our suggested technique with other existing 

methods. The current techniques consist of KNN [17], GNB [18] and SVM [19]. Table 1 illustrates the result parameters. 

Accuracy provides a strong assessment of the system's effectiveness by evaluating the model's preciseness assessment by 

computing the ratio of anticipated occurrences to the total occurrences. Figure 2 shows the comparative analysis for 

accuracy among the strategies methods and conventional techniques. Compared to current techniques such as KNN, GNB 

and SVM constitute accuracy 96.67%, 78.07%, and 97% and the suggested DB-IRF achieve a degree of specificity of 

97.5%. Our suggested approach demonstrates superior outcomes for the detection of intrusions in cloud settings [19-28]. 

 

Fig. 2. Outcome of Accuracy 

The accuracy of a model's predicted outcomes was determined through its level of precision. The ratio for precisely 

forecasting favorable findings with the total number of predicted benefits are evaluated.Figure 3 presents a comparative 

analysis of Precision among the strategies methods and conventional techniques. Compared to current techniques such as 

KNN, GNB and SVM among Precision of 97.51%, 85.53% and 96.23% and suggested DB-IRF attain a Precision of 

97.96%. Our proposed method provided the efficiency of accurate detection of intrusions in a cloud environment. 
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Fig. 3. Outcome of Precision 

Recall measures the system's ability to capture all relevant hand movement instances and defined by the percentage of 

accurately anticipated positive cases compared to the total number of real positive cases.Figure 4 presents a comparative 

evaluation of the recall among the strategies methods and conventional techniques. Compared to current techniques such 

as KNN, GNB and SVM constitute recall 96.41%, 72.43% and 98.41% and the suggested DB-IRF attains a Recall of 

98.48%. Our proposed method provided a superior outcome for the detection of intrusions in the cloud environment. 

 

Fig. 4. Outcome of Recall 

The harmonic mean of remembrance and accuracy is F1 score. It provides harmony between recollection and accuracy. 

Figure 5 presents a comparative analysis of F1-Score between the approach and traditional methods. In contrast to various 

methods such as KNN, GNB and SVM with F1-Score of 96.96%, 78.43% and 97.3% and the suggested DB-IRF attains an 

F1-Score of 97.85%. Our proposed method provided accurate detection of intrusions in a cloud environment. 
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Fig. 5. Outcome of F1-Score 

TABLE  I. RESULTS PARAMETERS  

Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

KNN 96.67 97.51 96.41 96.96 

GNB 78.07 85.53 72.43 78.43 

SVM 97 96.23 98.41 97.3 

DB-IRF 

[Proposed] 

97.5 97.96 98.48 97.85 

 

These results indeed prove that the proposed DB-IRF model outperforms all other traditional classification methods, such 

as K-Nearest Neighbors, Gaussian Naïve Bayes, and Support Vector Machines, in terms of accuracy, robustness, and 

efficiency. DB-IRF adopts a deep learning-based approach with integrated intelligent feature selection and rule-based 
classification, hence resulting in better decision-making capabilities, especially for high-dimensional and complex datasets. 

In contrast, KNN, though simple and effective on small datasets, is far from scalable and computationally efficient, since 

it degrades in performance with large volumes of data due to its reliance on distance-based calculations. GNB, though 

computationally efficient and theoretically optimal in the case of normally distributed data, suffers from independence 

assumptions that are hardly ever met in real-world cloud security datasets, hence yielding suboptimal classification 

accuracy. While on the other hand, SVM provides a strong generalization capability, mainly based on kernel-based 

transformations, which has a very high computational cost and is also unable to bear noisy data; hence, it cannot work 

perfectly for large-scale dynamic cloud environments. DB-IRF extends these by including deep learning-based feature 

extraction together with intelligent rule filtering to offer more adaptive and accurate classification mechanisms. Moreover, 

its automatic learning of complex feature interactions provides it with an edge over the usual machine learning process, 

which rests on manually designed representations of features. These results substantiate the efficacy of DB-IRF in 

enhancing data security in the cloud and its potentially high value for application in real-life cybersecurity. 

5. CONCLUSION 

From this research, it is noted that the DB-IRF framework outperforms most other approaches in the ability to provide 

accurate adaptive and efficient classification of security threats for better cloud data protection. In comparison with other 

classic approaches of machine learning methods such as KNN, GNB, and SVM, DB-IRF constitutes scalable robustness 

against noise and superior handling of high dimensionalities, being quite effective for modern cloud security applications. 

DB-IRF combines deep learning-driven feature extraction with rule-based decision-making, thus enabling it to 

automatically learn complex patterns and interactions in cybersecurity datasets without the need for manual feature 

engineering involved in conventional techniques. The findings are of profound implications for the field of cybersecurity 

because they offer a more automated, intelligent, and adaptive mechanism for detecting and mitigating threats in cloud 

environments. This will significantly affect real-time threat detection, anomaly recognition, and automated response 

mechanisms, thus making cloud infrastructures more robust and resilient. Despite all these strengths, further research has 

to be done to see how DB-IRF can be applied across different cloud infrastructures-that is, in hybrid, multi-cloud, and edge 
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computing-where security varies based on the architecture and deployment models. Furthermore, the integration of DB-

IRF with other security technologies, such as blockchain for immutable logging, federated learning for distributed threat 

intelligence, or zero-trust architectures, can make it even more effective. Future studies could also investigate the real-time 

deployment of DB-IRF in active cloud environments, assessing its performance in live cybersecurity scenarios and 

optimizing its efficiency for large-scale threat detection. As cloud ecosystems continue to evolve, innovative frameworks 

such as DB-IRF will be fundamental in assuring proactive, intelligent, and adaptive security strategies that will neutralize 

sophisticated cyber threats. 
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