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A B S T R A C T  

Genome sequencing has significantly improved the understanding of HIV and AIDS through accurate 
data on viral transmission, evolution and anti-therapeutic processes. Deep learning algorithms, like the 
Fined-Tuned Gradient Descent Fused Multi-Kernal Convolutional Neural Network (FGD-MCNN), can 
predict strain behaviour and evaluate complex patterns. Using genotypic-phenotypic data obtained from 
the Stanford University HIV Drug Resistance Database, the FGD-MCNN created three files covering 
various antiretroviral medications for HIV predictions and drug resistance. These files include PIs, 
NRTIs and NNRTIs. FGD-MCNNs classify genetic sequences as vulnerable or resistant to antiretroviral 
drugs by analyzing chromosomal information and identifying variants. A patient's HIV strain can be 
classified as susceptible or resistant to 17 different treatments. The FGD-MCNN transforms DNA 
genotype and HIV data into mathematical metrics, providing valuable insights into treatment-resistant 
HIV strains through pooling analysis. With remarkable accuracy, the FGD-MCNN deep learning system 
predicts HIV medication resistance using behavioral and genome-wide data from the HIV database. DNA 
patterns can be classified as resistant or susceptible by 17 antiretroviral drugs, providing valuable 
information for treatment planning and medical judgment. The model's parameter values illustrate the 
connections between neurons and the complex webs observed in the data have been examined. This study 
improves treatment effectiveness and expands the knowledge of HIV/AIDS. 

 

 

1. INTRODUCTION 

Millions of individuals around the world are infected with acquired immunodeficiency syndrome (AIDS) and Human 
Immunodeficiency Virus (HIV). Common ways of transmitting the virus include mother-to-child transmission, infected 
needles, unprotected sexual contact and contact with tainted blood [1]. It targets CD4 cells inside the immune system. Stages 
of disease development that are characterized by opportunistic infections or malignancies and a severely weakened immune 
system are acute infection, clinical delay and AIDS. The goal of antiretroviral therapy (ART) is to stop the virus from 
reproducing as much as possible so that the immune system can recover, and AIDS cannot develop [2]. Examples of 
preventative strategies include voluntary HIV testing, sterile needle availability, safe sexual practices, pre-exposure 
prophylaxis and the elimination of stigma [3]. To combat the epidemic, governments, corporations and civil society groups 
must work together. There must be a persistent political commitment as well as more financing for infrastructure and medical 
research. There is additional emphasis on how successful treatment is. It illustrates how lowering the viral load to 
undetectable levels by antiretroviral treatment (ART) can extend life and lower the rate of transmission [4]. HIV mutations 
and treatment resistance have been linked; certain mutations result in resistance even in non-receivers of the medicines. HIV 
is a crucial substance for HIV research and treatment as well as maintenance. Two methods are available for assessing drug 
resistance: genotype assessments, which determine the risk of HIV infection and phenotypic testing, which measures drug 
resistance directly by giving antiretroviral agents to patients who can be harmful to themselves and wild-type attachment 
strains. Based on the genetic composition of the strains, HIV predicts medication resistance using statistical methods [5]. 
Next-generation sequencing (NGS) has revolutionized DNA sequencing methods, particularly for HIV drug resistance. Its 
high sensitivity allows for the simultaneous sequencing of millions of DNA pieces, providing vast data. NGS helps detect 
minority resistant variants (MRVs) at frequencies below 20%, improving patient outcomes and guiding treatment decisions. 
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Appropriate external quality assessment methods are needed to ensure accuracy and consistency [6]. There are two primary 
forms of HIV, or human immunodeficiency virus: HIV-1 and HIV-2. Most infections worldwide are caused by the most 
prevalent and ubiquitous variety, HIV-1. Based on genetic variations in the envelope and polymerase genes, it has several 
subtypes, groupings and recombinant forms. HIV-2 is less widespread, mostly found in West Africa, although it spreads 
more slowly, and it is not as transmissible. If untreated, both strains have the potential to develop AIDS; however, HIV-2 
advances more slowly. Comprehending these classifications and variations is imperative in the advancement of efficacious 
measures for prevention, diagnosis and therapy, in addition to epidemiological monitoring as well as tracking patterns in 
HIV infections worldwide [7]. Figure 1 depicts the structure of HIV (Source: 

https://biosci.mcdb.ucsb.edu/immunology/Immunodeficiencies/HIV-structure.htm). 

 
Fig. 1. HIV Structure  

HIV is a particular type of virus that spreads to people when they encounter infected body fluids such as blood, semen, 

vaginal secretions, or breast milk. Despite this, HIV is not a disease that affects everyone, and many people are not affected 

globally. Antiretroviral medications, which target several stages of the HIV replication lifecycle, are crucial for controlling 

HIV infection. Entry inhibitors, referred to as fusion inhibitors, stop the HIV from fusing with the CD4 cell membrane of 

the host. The reverse transcription process, which converts HIV RNA to DNA, is the target of reverse transcriptase 

inhibitors.  They are sometimes referred to “Protease Inhibitors (PIs), Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

and Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs)”. Integrase inhibitors stop HIV DNA from integrating 

into the host's genome, which stops the virus from replicating. Protease inhibitors suppress the development of mature and 

infectious virus particles by acting at the end of the HIV replication cycle. To obtain the highest level of viral suppression 

and avoid medication resistance, combination treatment entails the use of several categories of drugs [8]. Deep learning is 

used for medication resistance examination and HIV/AIDS strain prediction using genomic sequencing. The process 

involves gathering genotype-phenotype data from Stanford HIV DB, extracting features and classifying the data using a 

fine-tuned gradient descent fused multi-kernal neural network (FGD-MCNN). The next part of this study is section 2: 

Related works, section 3: Material and methods, section 4: Result and section 5: Conclusion.  

 
Fig. 2. Workflow Model  

 

https://biosci.mcdb.ucsb.edu/immunology/Immunodeficiencies/HIV-structure.htm
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2. RELATED WORKS  

The paper [9] presented a novel method for predicting HIV strains using generative topographic mapping, achieving an 

average balanced accuracy of 0.89 ± 0.01, with potential applications in healthcare informatics and sequence space 

exploration. The paper [10] examined how artificial intelligence (AI) can be used to improve treatment methods and prevent 

antimicrobial resistance through medication discovery, treatment optimization, and system design coupled with outcome 

prediction. The study [11] used artificial neural network (ANN) models to estimate HIV-1 protease inhibitors' resistance 
potential, accurately predicting drug resistance tendencies with sensitivity, specificity, accuracy and Matthews correlation 

coefficient values. Researchers [12] used machine learning techniques and Random Forest to predict HIV resistance using 

various descriptor types, finding prediction performance more sensitive to specific medications than the descriptor used. 

Researchers [13] had developed new antiretroviral drugs to address safety and effectiveness concerns, targeting HIV 

reverse transcriptase along with an early virus-host interaction. This can be achieved by predicting HIV resistance using 

clinical and biochemical data, benefiting treatment optimization and drug creation. The study [14] bioinformatics 

techniques used machine learning and deep learning, aided by biotechnology advancements and high-throughput 

sequencing, were revolutionizing computational biology research and biomedical informatics by identifying disease 

patterns, forecasting disease progression as well as enhancing precision medicine research in genomics. The research [15] 

analyzed that HIV drug resistance mutations could lead to limited treatment options coupled with viral collapse, 

necessitating accurate measurement of medication resistance frequency for health policy development and patient care. 

Bioinformatics innovations can aid this study. Using algorithms based on genetics, neural networks, probabilistic research, 

unpredictable modeling and recognition of patterns to address computational problems along with the application domain 

expertise, the study [16] investigated machine learning techniques in HIV/AIDS diagnosis, screening, treatment and 

vaccine development [17-20]. 

3. MATERIAL METHODS  

Deep learning is applied to medication resistance examination and HIV/AIDS strain prediction using genomic sequencing. 

There are several phases in the process, which include gathering and preparing the genotype-phenotype data from the 

Stanford HIV DB. This data is subjected to feature extraction by a Convolutional layer and pooling layer processed and 

feature selection involves mutations and mixtures of mutation codons that are converted into an integer vector. The vector 

is used for classifying the data using fine-tuned gradient Descent fused multi-kernal convolution neural network (FGD-

MCNN) that is employed to identify the error or resistance level between the pre-drug and post-drug stages in the training 

model, evaluating it, as well as validate it. Figure 2 depicts the research model of this study [21-27]. 

3.1 Data Collection  

The genotypic-phenotypic (Figure 3) dataset comes from the “HIV Drug Resistance Database at Stanford University”, 

(Source: https://i-base.info/guides/changing/resistance-tests) which has been collecting information from global HIV 

medication resistance programs for more than ten years, as shown in Figure 4.  The collection contains the phenotypic 

values of 17 antiretroviral medications together with the sequencing of HIV strains from different subtypes. More than 

20,000 phenotypic findings are accessible for examination. But, before neural networks can be trained using this dataset's 

raw data, it must be processed. 

3.2 Strain Prediction and Drug Resistance Analysis using Fine-Tuned Gradient Descent Fused Multi-

Kernal Convolutional Neural Network (FGD-MCNN) 

To train neural network models to predict HIV drug resistance, a genotypic-phenotypic dataset is created utilizing the 

“Stanford University HIV Drug Resistance Database (HIVDB)”. PI, NNRTI and NRTI are the three different files that 

make up the dataset. Predicting drug resistance in HIV therapy is a significant use of statistical learning techniques. By 

using genomic data analysis, these techniques help to clarify the relationships between treatment results and mutation 

patterns. Using the Multi-Kernal convolutional neural network (MCNN) layers, one can classify genomic sequences as 

susceptible or resistant to antiretroviral medications and find notable alterations that affect phenotypic fold resistance levels 

in the convolutional layer. These strategies support the creation of successful HIV treatment and management plans as well 

as their implementation. The files include abbreviations for the pertinent amino acids, which function as markers for the 

mutations discovered in the sequences. These mutations representation is converted into matching code numbers before 

that is fed into the neural network model for training. The data at codons (1 to 250 for RTIs and 1 to 70 for PIs) has been 

supplemented with the predictor factors that will be fed into the neural network. To be able to handle mixture mutations, 

each amino acid involved in the mixture at a given codon is taken as well and each integer vector is added together to create 

a composite integer vector in the pooling layer. Using a modified genotypic-phenotypic dataset, the creation and 

development of neural network models for HIV medication resistance prediction, the non-linear correlations between 

https://i-base.info/guides/changing/resistance-tests


 

 

 

 

181 Abdulsahib et al, Applied Data Science and Analysis Vol.2025, 178–186 

mutations in genomic sequences and associated phenotypic fold resistance levels are captured by fine-tuned gradient 

Descent fused multi-kernal convolutional neural network (FGD-MCNN). There are several levels in the architecture, 

including input, concealed and output layers.  Each HIV medication's phenotypic factor resistance data is transformed to 

binary values, where 0 denotes vulnerability to the drug and 1 denotes drug resistance. Figure 5 depicts the classification 

model for HIV/AIDS strain prediction and drug resistance analysis 

3.3 Fine-tuned gradient Descent optimization (FGDO) 

The neural network's weights indicate the way neurons in its various layers are connected. Weights are adjusted during 

training by the FGDO method, which considers the error that is determined at the output layer. The paces at which weights 

are changed during training to reduce the error between anticipated and actual values are determined by the rate of learning 

parameter. The models have different hidden layer depths, and the number of iterations needed to reach convergence 

depends on which antiviral medication is being used. Users can add genetic information about an individual's HIV strain 

and classify it as either vulnerable to or resistant to 17 antiretroviral medications using an approach called the input file. It 

allows users to choose a specific variation for training models. Pseudo-code 1 will explain the optimization method. 
Pseudocode 1: FGD Optimization  

𝑰𝒏𝒑𝒖𝒕(𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑆𝑒𝑡 𝑡 ⊏ 𝑄, 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 𝜂, 𝑅𝑎𝑡𝑒, 𝐹𝑎𝑐𝑡𝑜𝑟 𝜆, 𝑚°  𝑜𝑓 

 𝑙𝑎𝑡𝑒𝑛𝑡 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑄) 

𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝑂 𝑎𝑛𝑑 𝑅 ;  
𝑚 = 0  

𝑾𝒉𝒊𝒍𝒆 𝑛𝑜𝑡 (𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒)𝒅𝒐  

                        Randomly Shuffle Observed Entries in 𝑇;   
𝒇𝒐𝒓 𝑒𝑎𝑐ℎ (𝑣, 𝑗) ∈ 𝑇 𝒅𝒐  

𝒇𝒗,𝒋 = (𝒒𝒗𝒋 −  ∑ 𝒐𝒗𝒍 . 𝒓𝒍𝒋
𝑳
𝒍=𝟏 )  

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒓 ∈ {𝟏 … 𝒍}𝒅𝒐𝒐́𝒗𝒍 = 𝒐𝒗𝒍 + 𝜼 . (𝒇𝒗,𝒋. 𝒓𝒍𝒋 − 𝝀. 𝒐𝒗𝒍)  

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒓 ∈ {𝟏 … 𝒍}𝒅𝒐𝒓́𝒍𝒋 = 𝒓𝒍𝒋 + 𝜼 . (𝒇𝒗,𝒋. 𝒐𝒗𝒍 − 𝝀. 𝒐𝒍𝒋)  

𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒓 ∈ {𝟏 … 𝒍}𝒅𝒐𝒐𝒗𝒍 = 𝒐̀𝒗𝒍 𝒂𝒏𝒅 𝒓𝒍𝒋 =  𝒓̀𝒍𝒋  

end for 

𝑚 = 𝑚 + 1  

end while 

Output (O,R) 

 
Fig. 3.  HIV Drug Resistance Test  

 
 

Fig. 4.  Stanford Data Base (Source: HIV Drug Resistance Database (stanford.edu)) 

 

https://hivdb.stanford.edu/
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A dropdown list with the options P, Q, R, S, T and U and X allows users to choose a variant from inside the input file's 

variant Information section shown in Figure 6. If a value other than X is chosen, the models are trained using the genotype-

phenotype data from the subtype's master dataset. If a value is chosen, the system uses the filtered data to train the neural 

network model, removing the genotypic sequences of variant S and the phenotypic resistance values that go along with 

them from the original data set. 

4. RESULTS AND DISCUSSION 

The HIV Drug Resistance Predictor Tool is a tool intended to forecast an individual HIV strain's susceptibility or resistance 

to 17 antiretroviral drugs. Utilizing a dataset of genotype-phenotype correlations from sources such as the Stanford HIVDB 

internal database, it employs 17 neural network models for training. Users can provide input data that contains the subtype 

and mutation information needed by the utility. Following the analysis of the input data, a Drug Resistance Report is 

produced that summarizes the predictions of the neural network models for each medication based on the mutations present 

in the input HIV strain. This report assists doctors in determining the best medication regimen based on the drug 

susceptibility of the HIV strain. The application is a R script that can take in Excel sheet data, transform it into a neural 

network training and building format, optimize the networks for training and classify HIV strains according to how sensitive 

or resistant they are to drugs that treat HIV. A set of measures based on the confusion matrix is used to assess the models' 

performance shown in Figure 7.  

 

 
 

Fig. 6.  Input Data File  

 

 
Fig. 5. Classification Model 
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Fig. 7. Confusion Matrix 

 

TABLE I. PREDICTION AND PIS DRUG RESISTANCE OUTCOMES 

 
Drug Name No. of 

Training 

Sequence 

Fold 

Resistance 

cut-off 

Model 

Accuracy 

Model 

Sensitivity 

Prediction Remark 

FPV-Fosamprenavir 19348 6 90.03 90.15 Easily  

Vulnerable 

Model Valid 

NFV-Nelfinavir 1947 4 89.48 92.5 Resistant Model Valid 

ATV-Atazanavir 8670 3 88.11 89.45 Easily 

Vulnerable 

 

DRV-Darunavir 9834 3 95.34 91.63 Easily 

Vulnerable 

Model Valid 

SVQ-Saquinavir 687 10 97.04 58.43 Easily 

Vulnerable 

Model Valid 

IDV- 

Indinavir 

1835 4 91.28 90.48 Easily 

Vulnerable 

Model Valid 

LPV- 

Lopinavie 

1205 2 94.85 97.36 Easily 

Vulnerable 

Model Valid 

TPV-Tipranavir 958 9 89.48 73.42 Easily 

Vulnerable 

Model Valid 

 
TABLE II. PREDICTION AND NRTIS DRUG RESISTANCE OUTCOMES 

 
Drug Name No. of Training 

Sequence 

Fold Resistance 

cut-off 

Model 

Accuracy 

Model 

Sensitivity 

Prediction Remark 

 

AZT-Zidovudine 1839 3 84.39 83.37 Easily Vulnerable Model Valid 

D4T- 

Stavudine 

1923 1.5 93.47 84.38 Easily Vulnerable Model Valid 

TDT-Tenofovir 

Disoproxil 

Fumarate 

1176 1.5 77.78 82.75 Easily Vulnerable Model Valid 

ABC- Abacavir 1937 3 80.93 79.32 Easily Vulnerable Model Valid 

3TC-Lamivudine 2746 3 85.38 77.54 Easily Vulnerable Model Valid 

DDI-Didanosine 1220 1.5 75.05 74.19 Easily Vulnerable Model Valid 

 
TABLE III. PREDICTION AND NNRTIS DRUG RESISTANCE OUTCOMES 

Drug Name No. of Training 

Sequence 

Fold Resistance 

cut-off 

Model Accuracy Model Sensitivity Prediction Remark 

Reverse Transcriptase Inhibitor Drug 

EFV-Efavirenz 1839 3 84.93 87.85 Easily Vulnerable Model Valid 

NVP-Nevirapine 1943 3 87.23 85.39 Easily Vulnerable Model Valid 

ETR-Etravirine 867 3 72.11 85.29 Easily Vulnerable Model Valid 
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The model's total accuracy in designating easily affected sequences as vulnerable and resistant sequences as resistant are 

known as accuracy. 

Accuracy =
TP+TN

TP+TN+FP+FN
                                                                             (1) 

The frequency with which the model predicts resistance to antiretroviral medication is measured by sensitivity.  

Sensitivity =  
TP

TP+FN
                                                                                 (2) 

The neural network models built to predict HIV medication resistance to antiretroviral medicines are included in the table 

1 for PIs Drug Resistance Outcomes, table 2 for NRTIs Drug Resistance Outcomes and table 3 for NNTRIs Drug Resistance 

Outcomes along with their predictions and performance metrics. The number of sequence and fold resistance cut-off values 
are taken from the Stanford DB. The graphic shows the neural network models and performance indicators that were 

developed to predict HIV drug resistance to antiretroviral drugs in the Figure 8. 

 

5. CONCLUSION  

HIV/AIDS strain prediction by genomic sequencing and drug resistance assessment are two areas where deep learning 

techniques are being used. To create a reliable HIV medication resistance predictor tool, this study shows how to combine 

feature extraction, classification, optimization and data gathering methodically. Comprehensive genotype-phenotype 

datasets obtained from the Stanford HIV DRDB can be used to train neural network models for drug resistance prediction 

to 17 antiretroviral medications. The procedure of feature extraction allows genomic sequences to be classified as resistant 

or susceptible by converting mutation patterns into numerical numbers. FGD-MCNN is used to create the classification 

model, which captures non-linear relationships between phenotypic fold resistance levels and mutations in genomic 

sequences; FGD-MCNN drives the optimization process, which works to reduce the error between the actual and 

anticipated values. The HIV Drug Resistance Predictor Tool helps doctors to create individualized treatment plans by 

giving them important information on the drug vulnerability of different HIV strains. The accuracy and sensitivity are 

higher than the prediction model.  
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Fig. 8. Performance Graph for A) PIs Drug Resistance; B) NRTIs Drug Resistance; C) NNRTIs Drug Resistance 
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