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A B S T R A C T  

This article provides a comprehensive review of recent advancements in data classification methods 
within the context of big data and cloud computing. As organizations increasingly rely on massive 
volumes of digital information, robust classification techniques have become essential, particularly for 
handling sensitive or confidential data. The study explores key approaches, including automated 
document classification and encryption-based strategies, each addressing distinct challenges related to 
security and efficiency. Emphasis is placed on how these methods safeguard data confidentiality, 
integrity, and availability critical factors in mitigating unauthorized access and cyber threats. The review 
also identifies pressing research gaps, such as the need for more scalable, efficient, and user-friendly 
classification systems that can adapt to the evolving nature of big data. The objective is to provide an in-
depth overview of current practices, highlight persistent challenges, and outline promising directions for 
future research in this crucial field. 

 

 

1. INTRODUCTION 

Organizations face the challenge of managing vast volumes of data due to digitization. Data privacy regulations exist to 

protect sensitive information; however, manually identifying private documents is impractical. Therefore, systems that can 

efficiently classify documents and detect confidential content are essential [1], ensuring security and confidentiality. 

Traditional security solutions often struggle with large datasets exceeding database capacities. Sensitive data attracts threats 

that can harm an organization’s reputation and stakeholder trust. Big data analysis, such as examining email behavior, can 

facilitate phishing attacks, highlighting the importance of securing data in cloud systems [2]. Protecting information 

throughout storage, management, analysis, and transfer is critical, with robust solutions emphasizing confidentiality, 

integrity, and availability. Data security involves preventing unauthorized access and maintaining authenticity through 

encryption and signature systems [3]. Attribute-Based Encryption (ABE) enables secure communication with multiple 

receivers and access control. Attribute-Based Signatures (ABS) allow verification of document legitimacy without revealing 

the signer’s identity. Attribute-Based Signcryption (ABSC) combines ABE and ABS features efficiently, with lower 

computational and transmission costs, providing strong data security [4]. 

In large-scale data analysis, three factors are crucial: accessibility, privacy, and consistency. Confidentiality restricts access 

to authorized personnel, integrity allows controlled modification, and availability ensures data usability. Centralized storage 

of sensitive data increases risks of loss, sabotage, and hacking. Risk evaluation methods classify hazards based on assets, 

vulnerabilities, threats, and likelihood [5]. Encryption and hidden access controls enhance data security, though managing 

large datasets complicates implementation [6–7]. Smart security strategies monitor users exhibiting abnormal activity, using 
logs, behavioral cues, and keyword libraries to detect potential threats. However, cloud reliability remains a concern, with 

70% of users expressing data security worries. Innovative cloud-based encryption methods aim to address these issues [8]. 

Homomorphic encryption (HE) allows computation on encrypted data without decryption. RSA2 demonstrates 

multiplicative HE, while Paillier supports additive HE [9]. Fully Homomorphic Encryption (FHE) enables all operations on 

encrypted data while preserving encryption integrity, but designing practical FHE systems remains challenging. 

Conventional encryption relies on key exchanges, which can be vulnerable if keys are compromised. Even when leaving 

cloud services, users’ sensitive data may remain accessible to others [10]. FHE, introduced by Gentry in 2009, is promising 

but requires further advancement for universal compatibility. 
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Fig. 1. Big Data Encryption Technology for  Image Encryption. 

The fundamental issue is maintaining data security and privacy amid rapidly growing digital data. Conventional security 

measures, designed for static data, are inadequate for the dynamic and extensive nature of multimodal data [11], increasing 
risks of unauthorized access, breaches, and cyberattacks like phishing. Reliance on often-untrusted cloud services further 

exacerbates these concerns. Homomorphic Encryption (HE) enables computations on encrypted data, preserving 

anonymity, but its practical application and performance remain limited. The key challenge is developing robust, scalable, 

and efficient security methods that ensure data privacy, integrity, and availability, while accommodating the specific 

demands of big data and cloud computing environments. 

The main objectives for review paper: 

1) To review and categorize existing data classification methods and emerging encryption technologies in the context 

of big data and cloud computing. 

2) To evaluate their effectiveness, scalability, and limitations in ensuring data security, confidentiality, and integrity. 

3) To identify key research gaps and propose future directions for developing more robust and adaptive solutions. 

2. LITERATURE REVIEW 

Researchers have increasingly focused on data security, yet many protocols are designed for static data and struggle with 

large datasets exceeding traditional database capacities. Sensitive personal information remains a prime target for threats 

that can damage organizational trust and reputation. For instance, big data exploitation can enable phishing attacks by 

analyzing users’ email habits, posing risks to communication security. Securing big data in cloud computing is critical, as 

breaches can harm a company’s reputation [12]. Table 1 summarizes the literature survey. Recent studies [13] highlight 

growing interest in secure data outsourcing to untrusted cloud servers. Homomorphic Encryption (HE) enhances data 
privacy for both consumers and cloud providers and has been applied in various computing scenarios to preserve 

anonymity. For example, [14] proposed a privacy-preserving solution for IoT applications using communication-efficient 

BGN HE techniques, while [15] introduced a secure cloud computing system leveraging HE to protect user data 

confidentiality. 

The unpredictable nature of multi-modal data presents unique challenges for classification models, often reducing their 

performance [16]. HE allows secure computations on encrypted data without revealing content. Unlike traditional 

encryption methods that rely on key sharing, HE addresses confidentiality concerns even when access is restricted to 

authorized parties. However, widely used cloud services pose risks: if encryption keys are compromised, unauthorized 

users may access sensitive data, and former service providers’ employees or contractors may retain access [17–18]. Fully 

Homomorphic Encryption (FHE) faces inefficiency due to reliance on matrix-based computations; minor decryption errors 

can result in incorrect messages. Using simpler encryption/decryption methods can mitigate such issues while maintaining 

security [19]. 

The model securely transfers input to a nonlinear transformation, decrypts the owner’s data, performs computation, re-

encrypts the output, and transmits it. However, this process imposes additional delays on the user [20]. Security measures 

using arbitrary execution commands address these concerns, ensuring data reaches the authorized recipient safely. In cloud 

environments, encryption ensures that only recipients with the sender’s private key can decode the data. Users must provide 

a private key for secure computation, and as computations become complex, key exposure risk increases [21]. Symmetric 

encryption requires compatible keys for both parties and secure key backup. Security breaches can extend processing times 
and computational load, while encryption mechanisms provide robust privacy and protection [22]. 
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Recent research explores diverse approaches to big data security and analytics. Studies [23–27] propose integrated methods 

for classifying and securing big data, emphasizing risk-based mobility control. [28] summarizes cybersecurity trends and 

challenges. Security-by-design frameworks for cloud-based big data deployment are introduced in [29–31], complemented 

by reviews of database security and privacy attributes [32]. Blockchain-based storage security and flexible protocols are 

proposed in [33], while [34–37] focus on cloud data protection using partitioning, partial decryption, and analysis. 

Classification methods for evolving data and phishing detection are discussed in [38–39], including weak KNN-based 

random chunk selection. Deep learning models for encrypted mobile traffic classification are presented in [40–42], 

alongside blockchain-auditable privacy-preserving schemes for IoT [43–44]. Integrated methodologies for classification 
and security are reiterated, with studies on adversarial attacks in fault detection systems [45–48] and MDSA algorithms for 

real-time measurement data classification [49]. Identity-based dynamic data auditing schemes for medical big data, risk 

indicator systems, and early economic security analysis via big data are explored in [50–51]. 

TABLE I.  LITERATURE SURVEY  

Reference Method Research Gap Merits Demerits 

[11] Secure Data Outsourcing 
Need for improved cloud 

server reliability 
Enhances privacy between 

cloud servers and users 
Reliance on cloud servers, 

potential inefficiency 

[12] 
Fully Homomorphic 

Encryption 
Applicability and 
efficiency of FHE 

Enables computations on 
encrypted data 

Still needs major 
Improvements for broad use 

[13] 
Proprietary Encrypted 

Patterns 
Secure and efficient 

Encryption techniques 

Solves confidentiality 
concerns in data 

sharing 

Potential security risks in 
encryption process 

[14] 
Privacy- Preserving 

Mechanisms 
More efficient privacy- 

preserving solutions 
Preserves data privacy 

Increases Computational 
overhead and time 

[15] CryptoNets 
Enhanced security in 

neural network models 
Allows encrypted 

predictions on cloud 
Complex and potential 
Information leakage 

[16] 
HE-based Framework for 

Big Data 
More efficient and user 

friendly solutions 
Safeguards sensitive data 

Response time issues, 
Interaction complexity 

[17] BGN HE Techniques Improved IoT data security 
Privacy preserving 

For IoT applications 
High complexity, 

potential data leakage 

[18] 
Secure Cloud 

Computing Platform 
Secure data processing 

Methods 

Utilizes HE to 
protect user data 

privacy 

Requires access to decryption 
keys 

[19] 
Multi-modal 

Data Classification 
Enhanced classification 

models 

Special treatment for higher 
variability of 

data 

Performance issues with 
regular models 

 
[46] 

Automatic 
Document 

Classification 

Accuracy and reliability in 
diverse data sets 

Efficient handling of 
large volumes of 

data 

Potential misclassification 
issues 

[47] 
Big Data Security 

Mechanisms 

Scalable and 
adaptable 

security for big 
data 

Protects fixed data against 
threats 

Insufficient for dynamic 
nature 

of big data 

[48] 
Phishing Detection 

Techniques 

Broader 
applicability and 

detection 
capabilities 

 
Targets email based 

threats 

Limited to 
specific types of 

threats 

[49] 
Cloud Computing 
Security Solutions 

Comprehensive 
security 

solutions for 
cloud systems 

Enhances 
organizations’ 

reputation and trust 

May not be fully 
effective against 

all threats 

[50] 
Data Storage 

and 
Management 

Secure 
decentralized 
data storage 

methods 

Ensures data 
confidentiality, 

integrity, availability 

Concentration of 
data increases 
risk of attacks 

[51] 
Intelligentdriven 
Security Model 

Improved data 
loss and leakage 

prevention 

Monitors users 
for abnormal 

behaviors 

No protection 
against data loss 

and leakage 

[52] 
NP-Hard Data 

Analysis 

More efficient 
computational 

methods 

Addresses 
crucial issues in 
big data analysis 

Computationally 
intensive 

[53] 
Confidentiality 

Techniques 

Feasible and 
efficient big data 

confidentiality 

Protects big data 
From unauthorized 

access 

Implementation 
difficulties for 

big data 

[55] 
Risk Metrics- 

Based Assessment 

Comprehensive 
risk assessment 

for big data 

Promotes risk 
management 

May not cover 
all potential risks 
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TABLE II. RESEARCH GAP  

Parameter Description 

Improved Reliability and Efficiency of Cloud 

Servers 
Developing more reliable and efficient cloud server solutions to enhance data security and privacy 

Applicability and Efficiency of FHE Advancing FHE to make it broadly applicable and efficient for various platforms and data types. 

Secure and Efficient Encryption Techniques 
Creating encryption methods that are both secure and efficient, particularly for proprietary 

encrypted patterns, to mitigate potential security risks in the encryption process 

Cost-effective Data Handling Methods 

Ensuring Security and Privacy 

Finding ways to ensure data security and privacy in a cost-effective manner, especially in the 

context of large scale data handling, encryption, and signature techniques 

Comprehensive Risk Management 

Techniques for Big Data 

Creating more comprehensive and all-encompassing risk management techniques that address a 

wider range of potential threats and vulnerabilities in big data. 

User-Friendly and Efficient Big Data 

Security Solutions 

Developing solutions that are both user-friendly and efficient in handling the unique complexities 

and response time issues associated with big data security. 

Enhanced Security in Neural Network 

Models 

Improving the security aspects of neural network models, such as CryptoNets, to prevent potential 

information leakage and complexity issues. 

Efficient Privacy-Preserving Solutions 

Designing more efficient privacy-preserving 

mechanisms that reduce computational overhead and processing time while maintaining high 

levels of data privacy. 

 

3. METHODOLOGY 

3.1. DATA CLASSIFICATION TECHNIQUES AND EMERGING ENCRYPTION TECHNOLOGIES 

FOR BIG DATA 

Effective data classification and encryption are essential for managing and securing big data, addressing challenges related 

to the volume, variety, and velocity of modern datasets. The following classification techniques are commonly applied in 

big data environments, along with guidance on their suitability in different scenarios. Emerging encryption technologies 

are summarized in Table 3. 

 

Fig. 2. Emerging Encryption Technologies for Big Data 

Manual Classification: Involves human effort to classify data based on predefined criteria. It is most effective for small 

datasets or highly specialized data where domain expertise is critical. However, it is time-consuming and not scalable for 

large datasets. 

Automated Classification: Utilizes algorithms to classify data efficiently, making it suitable for large-scale environments. 

Key techniques include: 
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• Rule-Based Systems (RBS): Apply predefined rules set by domain experts. Effective when rules are stable but less 

adaptive to dynamic datasets. 

• Machine Learning (ML): Trains models on labeled datasets to classify new data. Best suited for structured and semi-

structured data where historical patterns exist. 

• Natural Language Processing (NLP): Analyzes text data to determine categories. Particularly useful in unstructured 

data scenarios like social media analysis or customer feedback. 

Supervised Learning: ML models trained on labeled data. Common algorithms include Decision Trees, Random Forests, 

Support Vector Machines, and Neural Networks. Highly effective for anomaly detection and predictive analytics when 
high-quality labeled datasets are available. 

Unsupervised Learning: Finds patterns without labeled data using techniques such as K-Means, Hierarchical Clustering, 

Apriori, and FP-Growth. Suitable for discovering hidden structures, clustering, and anomaly detection in unlabeled 

datasets. 

Semi-Supervised Learning: Combines a small amount of labeled data with a large volume of unlabeled data. Useful when 

labeling is costly, such as in medical or financial datasets, offering a balance between accuracy and resource efficiency. 

Deep Learning: Employs multi-layer neural networks to classify complex data, including images, speech, and text. 

Particularly effective in big data applications with high-dimensional and unstructured datasets but requires significant 

computational resources. 

Big Data-Specific Techniques: 

• MapReduce: Distributes data processing across a cluster of computers, enabling efficient handling of large-scale data. 

Best suited for batch processing and structured datasets. 

• Apache Spark: A unified analytics engine for big data with modules for streaming, SQL, machine learning, and graph 

processing. Offers high-speed in-memory computation, making it suitable for real-time analytics. 

Critical Analysis: Supervised and semi-supervised learning methods are generally more accurate for tasks like anomaly 

detection but require labeled data. Unsupervised methods are flexible and scalable for discovering patterns in raw data but 

may yield less precise results. Deep learning excels in complex, unstructured data scenarios but comes with high 
computational costs. Big data-specific frameworks like MapReduce and Spark improve scalability and processing speed, 

complementing classification techniques for practical cloud and distributed environments. 

TABLE III. EMERGING ENCRYPTION TECHNOLOGIES FOR BIG DATA  

Technique Description Advantages Challenges 

Homomorphic 

Encryption 

 

Allows computations on 

encrypted data without 

decrypting it first. 

Enhances data security and 

privacy, particularly in cloud 

computing. 

Computationally intensive and 

slower compared to traditional 

encryption. 

Quantum 

Cryptography 

 

Utilizes quantum mechanics 

principles to secure data. 

Theoretically unbreakable by 

conventional computers. 

Requires specialized hardware 

and infrastructure.  

Attribute-Based 

Encryption (ABE) 

 

Encrypts data such that 

decryption depends on user 

attributes 

Fine-grained access control More complex key management 

Blockchain-Based 

Encryption 

 

Uses blockchain technology to 

secure and verify transactions. 

Decentralization, immutability, 

transparency 
Scalability, energy consumption 

Multi-Party 

Computation (MPC) 

 

Allows multiple parties to jointly 

compute a function over their 

inputs while keeping those inputs 

private 

Enhances privacy and security in 

collaborative computations 

Computationally intensive, 

requires sophisticated protocols 

Post-Quantum 

Cryptography 

Develops cryptographic 

algorithms that are secure against 

quantum computer attacks. 

Future-proof against quantum 

computing threats 

Implementation and 

standardization are ongoing 

Data Masking 

and Tokenization 

Replaces sensitive data with non-

sensitive equivalents 

Protects sensitive information in 

non-production environments 

Requires secure handling of 

original data and mappings 

 

3.2 DATA CLASSIFICATION TECHNIQUES AND EMERGING ENCRYPTION TECHNOLOGIES 

FOR CLOUD COMPUTING 

The data classification techniques and emerging encryption technologies are essential for ensuring the security, privacy, 

and compliance of data in cloud computing environments, addressing the unique challenges posed by the scalability, multi-

tenancy, and distributed nature of cloud platforms. The data classification techniques are listed in Table 4 and emerging 

encryption technologies for cloud computing are listed in Table 5. 
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TABLE IV. DATA CLASSIFICATION TECHNIQUES FOR CLOUD COMPUTING 

Technique Description Techniques Use Cases 

Rule-Based 

Classification 

Uses predefined rules to classify 

data based on content, context, 

and metadata. 

Regular expressions, keyword 

matching, pattern recognition 

Effective for structured and semi-

structured data 

ML based 

Supervised 

Learning 

Models are trained on labeled 

datasets to classify new data 

Decision Trees, Random Forests, 

Neural Networks 

Classifying emails as spam or not, 

sentiment analysis 

ML based 

Unsupervised 

Learning 

Models identify patterns in data 

without predefined labels 

Clustering (K-Means, DBSCAN), 

Anomaly Detection 

Identifying anomalous data points, 

segmenting users 

NLP 

 

Analyzes text data to classify and 

extract relevant information 

Text categorization, sentiment 

analysis, topic modeling 

Automating customer service 

responses, analyzing customer 

feedback 

Content-Based 

Classification 

Analyzes the actual content of 

data files to determine their 

classification 

File type identification, data 

fingerprinting, pattern matching 

Identifying confidential documents, 

detecting sensitive information 

Context-Based 

Classification 

Considers the context in which 

data is created, accessed, and 

used to classify it 

Access patterns, user roles, data 

provenance 

Dynamic access control, compliance 

monitoring 

Big Data and 

Cloud-Specific 

Techniques 

Leveraging cloud-native tools 

and services to classify large 

volumes of data 

AWS Macie, Google Cloud Data 

Loss Prevention (DLP), Azure 

Information Protection 

Automating data classification and 

protection in cloud environments 

Data Tagging 

and Labeling 

Tagging data with metadata to 

categorize it based on sensitivity, 

compliance requirements, or 

business relevance 

- 

Enables easy identification and 

management of data across cloud 

environments 

 

 

 
Fig. 3. Data Classification Techniques for Cloud Computing 

 

TABLE V. EMERGING ENCRYPTION TECHNOLOGIES FOR CLOUD COMPUTING 

Technique Description Advantages Challenges 

Homomorphic 

Encryption 

 

Allows computations on 

encrypted data without 

decrypting it first. 

Enhances data security and 

privacy, particularly in cloud 

computing. 

Computationally intensive and 

slower compared to traditional 

encryption. 

Quantum 

Cryptography 

 

Utilizes quantum mechanics 

principles to secure data 

Provides theoretically 

unbreakable security against 

conventional attacks. 

Requires specialized hardware 

and infrastructure, not yet widely 

adopted. 

Attribute-Based 

Encryption (ABE) 

 

Encrypts data such that 

decryption depends on user 

attributes 

Fine-grained access control 

tailored to user roles and 

attributes 

Complex key management and 

policy enforcement. 

Blockchain-Based 

Encryption 

Uses blockchain technology to 

secure and verify data 

transactions. 

Decentralized, immutable, and 

transparent ledger for data 

security. 

Scalability issues and high energy 

consumption 
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Multi-Party 

Computation (MPC) 

 

Enables multiple parties to jointly 

compute a function over their 

inputs while keeping those inputs 

private 

Enhances privacy and security in 

collaborative computations 

without revealing individual data. 

Computationally intensive and 

requires sophisticated protocols 

Post-Quantum 

Cryptography 

Develops cryptographic 

algorithms that are secure against 

quantum computer attacks. 

Future-proof against potential 

quantum computing threats 

Ongoing research and 

standardization efforts needed 

Data Masking 

and Tokenization 

Replaces sensitive data with non-

sensitive equivalents to protect it 

in non-production environments 

Protects sensitive information 

while allowing functional use of 

data for development and testing 

Secure handling of original data 

and mappings, potential 

performance impact 

Secure 

Multi-Tenancy 

Ensures data isolation and 

protection in multi-tenant cloud 

environments 

Enhances security and privacy for 

different tenants sharing the same 

cloud infrastructure. 

Complex key management and 

maintaining performance. 

 

3.2.1  HOMOMORPHIC ENCRYPTION FOR CLOUD COMPUTING AND BIG DATA 

A form of encryption that allows computations to be performed on encrypted data without needing to decrypt it first. The 

results of these computations remain encrypted and can be decrypted later to reveal the correct result. Overall, 

homomorphic encryption is a powerful tool for ensuring data security and privacy in cloud computing and big data 

applications, despite its current performance and complexity limitations. 

Applications in Cloud Computing : Homomorphic encryption provides a robust solution for maintaining data privacy in 

cloud computing environments. It allows users to store and process sensitive information on cloud servers without exposing 

the underlying data to the service provider, ensuring that confidentiality is preserved at all times. In addition, it enables 

secure computations on encrypted data, including operations such as searching, filtering, and data analysis, without 

requiring decryption. This capability ensures that sensitive information remains protected even while being actively 

processed. Moreover, homomorphic encryption supports regulatory compliance by guaranteeing that data privacy and 

security are maintained throughout the computational process, helping organizations meet legal and industry standards for 

data protection. 

Applications in Big Data : In the context of big data, homomorphic encryption enables secure analytics by allowing 

organizations to analyze large datasets without revealing the underlying sensitive information. This is particularly valuable 

in sectors such as healthcare, finance, and other industries that handle confidential data. It also facilitates secure data 

sharing, allowing multiple parties to collaboratively analyze and utilize big data while maintaining strict privacy 

protections. Furthermore, homomorphic encryption supports outsourced computation, enabling organizations to delegate 

data processing tasks to third-party service providers without exposing raw data, thereby combining the benefits of cloud-
based resources with robust data security. 

Advantages & Challenges : Homomorphic encryption offers several significant advantages that make it a valuable tool for 

secure data processing. It enhances security by protecting data not only during storage and transmission but also while it is 

being actively processed. This ensures that sensitive information remains confidential throughout its lifecycle. Additionally, 

homomorphic encryption helps organizations maintain regulatory compliance by keeping data encrypted, thereby meeting 

legal and industry standards for data protection. Despite these benefits, the technology also presents notable challenges. 

Homomorphic encryption is computationally intensive, resulting in performance overhead that can make it slower than 

traditional encryption methods. Its implementation is complex, requiring specialized knowledge and resources, and 

scalability can be an issue when working with very large datasets due to the high computational demands involved. 

3.2.2 ATTRIBUTE-BASED ENCRYPTION (ABE) FOR CLOUD COMPUTING AND BIG DATA 

A type of encryption where the decryption of data depends on user attributes rather than specific keys. Access to the 

encrypted data is granted based on the attributes or policies defined by the data owner. Overall, ABE is a powerful 

encryption technique for enforcing fine-grained access control in cloud computing and big data environments, offering 

both security and flexibility despite some implementation challenges. 

Types of ABE : ABE comes in two primary types, each designed to enforce fine-grained access control over encrypted 

data. In Key-Policy ABE (KP-ABE), the access policy is embedded in the decryption key rather than the ciphertext. Data 

is encrypted with specific attributes, and only users possessing a decryption key whose policy matches these attributes can 

access the data. This approach is particularly suitable for scenarios where data producers determine who can access the 

information based on predefined attributes. In contrast, Ciphertext-Policy ABE (CP-ABE) embeds the access policy 

directly into the ciphertext. Data is encrypted according to a specified policy, and only users whose attributes satisfy the 

policy can decrypt it. CP-ABE is ideal for situations where data owners want to maintain direct control over who can access 

the data they share, allowing them to enforce access policies even after the data has been distributed. 
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Applications in Cloud Computing : ABE provides robust solutions for secure data management in cloud computing by 

enabling fine-grained access control. It allows organizations to precisely determine who can access specific data based on 

user roles, attributes, and predefined policies, ensuring that sensitive information is only available to authorized individuals. 

Additionally, ABE facilitates secure data sharing among multiple users without the need to distribute encryption keys 

directly, reducing the risk of unauthorized access. This capability also supports regulatory compliance by ensuring that 

sensitive data remains accessible only to authorized users, helping organizations meet legal and industry standards for data 

protection while maintaining strong security in cloud environments. 

Applications in Big Data : ABE enables privacy-preserving analytics by ensuring that sensitive information is accessible 
only to users with the appropriate attributes. This allows organizations to securely analyze large datasets without exposing 

confidential data to unauthorized parties. ABE also supports scalable data access, as access policies based on attributes can 

be efficiently applied across vast datasets, providing secure and flexible control over who can view or manipulate the data. 

Furthermore, ABE facilitates secure data collaboration, allowing multiple parties to share and work with data while 

ensuring that only authorized participants can access the information, thereby maintaining both privacy and security in 

large-scale data environments. 

Advantages & Challenges : ABE offers several advantages that make it highly suitable for secure data management in 

cloud computing and big data environments. It provides enhanced security by tying access control to user attributes, 

ensuring that only authorized individuals can access sensitive information. ABE also offers flexibility, allowing dynamic 

access control policies that can be easily updated as organizational requirements change. Additionally, it is scalable, making 

it well-suited for large-scale environments where managing individual encryption keys would be impractical. Despite these 

benefits, ABE presents certain challenges. Managing and distributing attribute-based keys can be complex and resource-

intensive, particularly in environments with many users. The encryption and decryption processes can also be 

computationally demanding, which may affect system performance. Furthermore, defining and maintaining access policies 

can be difficult, especially in dynamic or rapidly changing organizational settings, requiring careful planning and 

management to ensure consistent security. 

3.2.3 BLOCKCHAIN-BASED ENCRYPTION FOR CLOUD COMPUTING AND BIG DATA 

Blockchain-Based Encryption utilizes blockchain technology to secure and verify data transactions, ensuring integrity, 

transparency, and immutability of data. Overall, blockchain-based encryption provides a robust and secure framework for 

managing and protecting data in cloud computing and big data environments, despite challenges related to scalability, 

performance, and complexity. 

Key Concepts : Blockchain technology is built upon several key concepts that collectively ensure secure and reliable data 

management. Decentralization distributes data and transaction records across multiple nodes in a network, reducing the 

risk of a single point of failure and increasing system resilience. Immutability ensures that once data is written to the 

blockchain, it cannot be altered or deleted, thereby preserving the integrity of records. Transparency allows all transactions 

to be recorded on a public ledger accessible to all participants, promoting accountability and trust among users. Finally, 
cryptographic security protects the data on the blockchain using advanced cryptographic algorithms, making it tamper-

proof and secure from unauthorized access. 

Applications in Cloud Computing & Big Data : Blockchain technology enhances data security and management by enabling 

secure data storage, ensuring that information stored in the cloud is tamper-proof and protected from unauthorized access. 

It also strengthens data integrity by recording all transactions on the blockchain, allowing users to verify the accuracy and 

authenticity of stored data. Additionally, blockchain facilitates access control through smart contracts, automatically 

enforcing policies to ensure that only authorized users can access specific datasets. Blockchain provides mechanisms for 

data provenance, tracking the origin and history of data to ensure authenticity and integrity. It supports secure data sharing, 

allowing multiple parties to collaborate on large datasets while maintaining transparency and protecting against tampering. 

Moreover, blockchain creates immutable audit trails of all data transactions, which are valuable for compliance, regulatory 

reporting, and accountability in large-scale data environments. 

Advantages & Challenges : Blockchain technology offers several advantages that make it a powerful tool for secure and 

reliable data management. It provides enhanced security through decentralization and cryptographic techniques, ensuring 

that data is protected against tampering and unauthorized access. Data integrity is guaranteed because once information is 

recorded on the blockchain, it cannot be altered. Additionally, blockchain promotes transparency, fostering trust and 

accountability by maintaining a visible record of all transactions. Decentralized control reduces reliance on a central 

authority, increasing system robustness and resilience. Despite these benefits, blockchain also presents certain challenges. 
Scalability can be a concern, as managing large volumes of data on a blockchain may be limited by storage and processing 

capacities. Performance overhead is another issue, since blockchain transactions can be slower and more resource-intensive 

compared to traditional databases. The complexity of implementing and managing blockchain-based systems requires 
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specialized expertise, and some consensus mechanisms, such as proof-of-work, can result in high energy consumption, 

adding further operational considerations. 

3.2.4  QUANTUM CRYPTOGRAPHY FOR CLOUD COMPUTING AND BIG DATA 

Quantum Cryptography utilizes principles of quantum mechanics to secure data, providing theoretically unbreakable 

encryption. Overall, quantum cryptography provides cutting-edge security for cloud computing and big data environments, 

offering a high level of protection against current and future threats despite the need for specialized hardware and ongoing 

research. 

Key Concepts : Quantum cryptography leverages the principles of quantum mechanics to achieve highly secure 

communication. Quantum Key Distribution (QKD) uses quantum properties, such as superposition and entanglement, to 

securely distribute encryption keys between parties. Any attempt to intercept or measure the keys alters their quantum state, 

immediately alerting the communicating parties to potential eavesdropping. Quantum Random Number Generation 

(QRNG) enhances cryptographic security by producing truly random numbers through quantum processes. By exploiting 

phenomena such as photon behavior or radioactive decay, QRNG ensures that cryptographic keys are unpredictable and 

highly resistant to attacks, providing a robust foundation for secure encryption. 

Applications in Cloud Computing & Big Data : Quantum cryptography enhances security by enabling secure key exchange, 

ensuring that encryption keys are shared between cloud service providers and users without the risk of interception. It also 

strengthens data transmission security, protecting information sent between cloud servers and clients from tampering or 
eavesdropping. Additionally, quantum-based techniques support authentication, verifying the identities of users and 

devices in the cloud to prevent unauthorized access and enhance overall system security. Quantum cryptography ensures 

secure data transfer, protecting large volumes of information exchanged between nodes or data centers from interception. 

It also provides integrity assurance, guaranteeing that data remains unaltered during storage and transfer through secure 

quantum key distribution mechanisms. Furthermore, quantum techniques enable privacy-preserving analytics, allowing 

organizations to perform computations on sensitive big data while ensuring that encryption keys and data remain secure 

throughout the process. 

Advantages & Challenges : Quantum cryptography offers several compelling advantages that make it a powerful tool for 

secure communication. It provides unbreakable security, as any attempt to intercept quantum keys is immediately 

detectable, ensuring that encryption remains theoretically invulnerable. The technology is also future-proof, offering 

protection against potential threats from advanced computing, including quantum computers. Additionally, quantum 

systems utilize enhanced randomness, producing truly random cryptographic keys that further strengthen security. Despite 

these benefits, quantum cryptography faces several challenges. Implementation requires specialized hardware, such as 

sophisticated and often costly quantum devices. Distance limitations constrain the effective range of quantum key 

distribution, which can impact long-distance communication. Integrating quantum cryptography into existing cloud and 

big data infrastructures presents complexity, requiring careful planning and adaptation. Furthermore, many aspects of 

quantum cryptography remain in ongoing research, and practical deployment continues to evolve as the technology 
matures. 

3.2.5 DATA MASKING AND TOKENIZATION FOR CLOUD COMPUTING AND BIG DATA 

Data Masking:  The process of obscuring original data with modified content (characters or other data) to protect sensitive 

information. Ensures sensitive data is not exposed to unauthorized users while allowing it to be used in non-production 

environments such as development, testing, or training.  Overall, data masking and tokenization are crucial techniques for 

protecting sensitive information in cloud computing and big data environments, offering robust security, compliance, and 

usability despite challenges related to performance and complexity. 

Techniques : Data masking employs various techniques to protect sensitive information by replacing or obfuscating real 

data with fictional but realistic values. Static Data Masking (SDM) involves masking data in a static copy, typically used 
in non-production environments such as development or testing, to prevent exposure of sensitive information. Dynamic 

Data Masking (DDM) operates in real-time, masking data as it is accessed based on user roles, ensuring that unauthorized 

users cannot view confidential information while still allowing legitimate access. On-the-Fly Data Masking protects data 

during transfer or migration between environments, ensuring that sensitive information remains secure throughout the 

movement process without disrupting normal operations. 

Applications in Cloud Computing & Big Data : In cloud computing, data masking enhances security by enabling secure 

development and testing, protecting sensitive information in cloud-based non-production environments. It also supports 

compliance by ensuring that confidential data is not exposed, helping organizations meet regulatory requirements. 

Additionally, data masking facilitates data sharing, allowing realistic but anonymized data to be shared with third parties 

for analysis or collaboration without risking sensitive information. For big data applications, data masking enables secure 

analytics, allowing organizations to analyze large datasets without revealing sensitive details. It also supports data sharing 
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across departments or with external partners while maintaining privacy. Furthermore, data masking protects sensitive 

information stored in data lakes, ensuring that large-scale big data repositories used for analytics remain secure and 

compliant with data protection standards. 

Advantages & Challenges : Data masking offers several advantages that make it an effective method for protecting sensitive 

information. It enhances security by preventing unauthorized access to confidential data and supports compliance by 

helping organizations meet regulatory requirements for data protection. Additionally, data masking provides flexibility, 

allowing realistic data to be safely used in non-production environments, such as development, testing, or analytics, without 

risking exposure of sensitive information. However, implementing data masking also presents certain challenges. It can 
introduce a performance impact, as masking operations may add overhead and affect system efficiency. The process can 

be complex, requiring careful design and management of masking rules and techniques. Ensuring consistency is another 

challenge, as masked data must remain logically coherent and useful for its intended purposes, such as analytics, reporting, 

or testing. 

Tokenization : Replaces sensitive data with unique identification symbols (tokens) that retain essential information without 

exposing the original data. Protects sensitive data by substituting it with a token, which can only be mapped back to the 

original data through a secure tokenization system. 

Techniques : Tokenization protects sensitive data by replacing it with non-sensitive equivalents, called tokens, while 

preserving the usability of the data for processing and analytics. Vault-Based Tokenization stores the mapping between 

tokens and the original data in a secure database, or vault, ensuring that sensitive information can be retrieved only through 

controlled access. In contrast, Vaultless Tokenization generates tokens using algorithms without relying on a central 

database, reducing potential single points of failure and simplifying scalability. Both techniques provide robust methods 

for protecting sensitive information in cloud computing and big data environments. 

Applications in Cloud Computing & Big Data: In cloud computing, tokenization enhances security by protecting sensitive 

information throughout its lifecycle. It enables secure payment processing by replacing credit card numbers with tokens, 

reducing the risk of exposure. Tokenization also safeguards data storage in cloud databases, ensuring that sensitive 

information is never directly stored. Additionally, it supports secure data transmission, allowing tokens to be transmitted 
instead of actual sensitive data, thereby minimizing the risk of interception.For big data applications, tokenization ensures 

data privacy by protecting sensitive information within large datasets. It facilitates analytics by allowing organizations to 

analyze data without exposing the original confidential information. Moreover, tokenization supports regulatory 

compliance, helping organizations meet data protection requirements by consistently substituting sensitive information 

with secure tokens across cloud and big data environments. 

Advantages & Challenges: Tokenization provides several advantages that make it an effective method for protecting 

sensitive data in cloud computing and big data environments. It enhances security by reducing the risk of data breaches, as 

sensitive information is replaced with non-sensitive tokens. Tokenization also supports compliance, helping organizations 

meet regulatory requirements for data protection. Additionally, tokens retain the usability and format of the original data, 

allowing them to be used seamlessly in applications such as analytics, storage, and payment processing. Despite these 

benefits, tokenization also presents certain challenges. Token management is critical, as secure handling of tokens and their 

mappings is essential to prevent unauthorized access. Integration can be complex, particularly when introducing 

tokenization into existing systems and workflows. Furthermore, performance may be affected, as the tokenization process 

can introduce computational overhead, potentially impacting system efficiency. 

5. DISCUSSION 

This review highlights persistent research gaps in big data and cloud security, including inefficiencies in FHE, limited 

scalability of ABE, and integration challenges with blockchain and quantum cryptography. Current methods struggle with 

balancing performance, usability, and security for large-scale, dynamic datasets. Future research should prioritize scalable 

post-quantum cryptographic solutions to counter emerging quantum threats, along with lightweight and efficient FHE 

implementations. Additionally, developing hybrid frameworks that integrate machine learning with encryption can enhance 

adaptability. User-friendly, low-overhead privacy-preserving systems remain critical for practical adoption in real-world 

cloud and big data environments. 

6. CONCLUSION 

This systematic review provides a comprehensive analysis of current classification approaches and encryption technologies 

in big data and cloud computing, emphasizing their critical role in ensuring data security and privacy. The study highlights 

key findings, including the limitations of existing methods in terms of efficiency, scalability, and usability, and the ongoing 

need for adaptive solutions that can handle the dynamic and heterogeneous nature of big data. Emerging approaches, such 

as FHE, ABE, and blockchain-based techniques, offer promising avenues but face practical challenges, including high 

computational overhead and integration complexities in real-world cloud environments. The review identifies specific 
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research gaps, including the need for scalable post-quantum encryption, more efficient FHE implementations, and user-

friendly security solutions that do not compromise performance. By synthesizing these insights, the study provides a 

roadmap for future research, directing efforts toward the development of resilient, efficient, and comprehensive data 

classification and encryption systems. Overall, this work contributes to advancing the security and privacy of digital data, 

offering valuable guidance for researchers and practitioners seeking to address the evolving challenges of big data 

environments. 
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