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ABSTRACT  
 

Smart clothing has changed the ways that human behaviour is observed and analyzed, finding its uses in 
health and fitness, and assisting in daily living. Nevertheless, conventional techniques used in HAR are 
mostly based on feature extraction by designers and the use of fixed algorithms that cannot address the 
dynamic aspects of human activities. HAR can be advanced through devices supported by artificial 
intelligence, and this research seeks to investigate how wearable technologies can improve this field of 
study. Hence, using CNN and RNN deep learning architectures this study constructs a comprehensive 
model with the potential of detecting various human activities instantaneously and accurately. The 
framework includes the use of sensor fusion approaches to process data collected from accelerometers, 
gyroscopes and heart rate sensors, to fully capture physical movements. Specifically, to high 
performance and efficiency in the computations of the model, several preprocessing and feature 
extraction techniques are employed. Outcome analysis shows that the proposed AI-based framework 
recognizes a subject’s identity with more than 95% accuracy across the different datasets comping basic 
machine learning techniques. The versatility of the system demonstrated in this work regarding wearable 
platforms and activities suggests that the proposed solution could be useful for practical application in 
fitness, health care, and rehabilitation. The findings of this work point to critical opportunities that are 
driven by AI for future wearable technology; a more adept and integrated system that can preserve the 
health and efficiency of humans. The results pave the way for further advancements in using AI to 
support HAR with a focus on scalability, real-time applicability, and inclusiveness.

 

1. INTRODUCTION  

Advancements in Human Activity Recognition (HAR) have occurred due to the incorporation of Artificial Intelligence 

(AI) as applied to wearable technology in the process. Smart devices, including wrist-wearable devices, are now embedded 

with measurement actuators like accelerometers, gyroscopes, and heartbeat measurement, which collectively harvest lots 

of data through evaluation in fusion with sophisticated AI algorithms that provide accurate and real-time results that dictate 

human activities. These advances in this technology offer vast applications in several sectors, such as healthcare, sports, 

and elder care where the analysis of physical patterns and actions is significant [1,2]. 

Conventional HAR systems include basic HAR sensor data and a set of manually designed features while employing the 

HAR static machine learning algorithms, which exhibit a poor ability to address the SD and DA issues. These systems fail 

to learn from variations and differences in settings such as changes in the position of the sensors, the age of users and or 

any environmental changes. However, the major disadvantage of traditional approaches is that the techniques are not very 

scalable and do not have real-time processing capability for actual use. These challenges have created an avenue that 

enabled AI-driven methods because these types of methods are capable of directly learning from raw sensor data and are 

also capable of learning across many activity scenarios [3,4]. 

HAR is a particularly active application of AI and more specifically of deep learning where from the sensor data, and 

without any need for human intervention, useful features can be extracted automatically. Some CNNs and RNNs have been 

proven to be fairly effective in this realm, and many researchers find them very promising. CNNs are primarily suitable for 

analyzing spatial patterns, and RNNs on the other hand are more suitable for analyzing temporal characteristics in the 

sequential raw sensor data. Collectively, these architectures are used to obtain the spatial and temporal content of humans’ 

actions [5, 6] 

The use of AI in HAR has been successful in several domains, proving its effectiveness as far as this paper’s scope is 

concerned. In healthcare, AI-based wearable systems allow for constant tracking of patients’ activities in the detection of 

diseases and monitoring of rehabilitation exercises. In fitness and sports, these systems give insights to advise performance 
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and avoid injuries. Furthermore, in elder care, these wearable devices with HAR features can identify falls or abnormal 

movements prevent delays in response and minimize the risks [7, 8]. 

Leveraging AI in HAR systems poses several limitations in their deployment for instance, Data quality and data variety are 

paramount as noises in sensors, missing values, and/or bias in given data are very damaging factors for applications. Other 

important aspects include the scalability and evidential capacities of the algorithm, often a critical factor in near-real-time 

application on wearable devices. Also, the user’s privacy and protection of information are crucial for the popularity of 

Wearable systems, as they gather personal data in most cases [9, 10]. For more explanation, Table 1 summarizes the above 

studies. 
TABLE I.  RELATED WORK IN AI FOR HUMAN ACTIVITY RECOGNITION (HAR). 

Ref. Focus Area Techniques 

Used 

Key Findings Challenges 

[3][4] Limitations of 
conventional HAR 

systems 

Static ML 
Algorithms 

Conventional HAR systems have limited 
scalability, real-time processing capability, 

and adaptability to variations. 

SD and DA issues, inability to learn 
from varying sensor positions, user 

differences, or environmental changes. 

[5][6] AI-driven methods in 

HAR 

CNNs, RNNs CNNs analyze spatial patterns, while RNNs 

analyze temporal characteristics; combined, 
they capture spatial-temporal actions. 

Scalability of AI models, ensuring 

robustness in varied activity scenarios. 

[7][8] Applications of AI in 

healthcare, fitness, and 
elder care 

AI-based 

Wearable 
Systems 

Enables real-time tracking, disease detection, 

rehabilitation monitoring, and fall detection. 

Data quality, noise in sensors, missing 

values, and user privacy issues. 

[9][10] Deployment challenges 

of AI in HAR systems 

Various AI 

techniques 

AI shows promise in near-real-time 

applications on wearable devices but faces 

scalability and data privacy concerns. 

Managing data quality, algorithm 

scalability, and ensuring user privacy 

protection. 

 

2. SIMULATION STRUCTURE 

The proposed Human Activity Recognition (HAR) framework uses convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) to extract local spatial features from segmented sensor data. CNNs extract spatial features, capturing 
nuances in activity signals like posture changes or gestures [11]. RNNs handle temporal dependencies, analyzing sequences 
and recognizing temporal patterns in activities [12]. Fully connected layers transform these features into distinct activity 
classes, enabling classification [13]. The final output layer produces the probability density for each activity class, providing 
probabilistic outputs for decision-making [14]. The design effectively combines spatial and temporal feature recognition, 
making it robust and precise in identifying activities [15]. The architecture is structured for efficient processing and 
adaptability to diverse datasets. Figure 1 illustrates the structure for efficient processing and adaptability to diverse datasets 
[16]. 

 

Fig. 1. Structure designed for efficient processing and adaptability to various datasets. 
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The HAR model was trained using a dataset divided into 80% for training and 20% for validation. The model was optimized 
using the Adam Optimizer for its adaptive learning rate capabilities and Categorical Cross-Entropy for minimizing 
classification errors. The training parameters included a batch size of 64, over 25 epochs, Dropout Regularization to prevent 
overfitting, and Early Stopping to monitor validation loss. The model's fine-tuning parameters included learning rate, dropout 
rate, and number of hidden units in the LSTM layers. To improve the model's ability to recognize activities comprehensively, 
it was integrated with time-domain features such as Mean and Signal Magnitude Area (SMA) and frequency-domain features 
like Spectral Energy and Entropy. This dual approach ensures the model has a detailed understanding of activity signals, 
enabling it to generalize across various activities effectively. To measure the performance of the HAR framework: 

1. Accuracy: The overall percentage of correctly classified activities. Eq.1 

2. Precision: Measures the true positive rate among all positive predictions, highlighting the ability to reduce false 

positives. Eq.2 

3. Recall: Identifies the true positive rate among actual positives, showing the model's sensitivity to correct 

predictions. Eq.3 

4. F1-Score: Provides a harmonic mean of precision and recall, particularly useful for imbalanced datasets. Eq.4 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝐹𝑃+𝐹𝑁+𝑇𝑃+𝑇𝑁
 (1) 

Precision =
𝑇𝑃

𝐹𝑃+𝑇𝑃
 (2) 

Recall =
𝑇𝑃

𝐹𝑁+𝑇𝑃
 (3) 

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙 
  (4) 

The model is optimized for real-time deployment on wearable devices, reducing size and computational requirements. It 

features pruning and quantization, lightweight embeddings for faster inference, and edge computing for local computations, 

making it efficient for real-time HAR applications on resource-constrained devices like fitness trackers and smartwatches. 

The framework's design ensures scalability and efficiency for real-world applications, with a modular design that allows 

integration with new data types or activities. Future iterations may incorporate advanced preprocessing techniques like 

wavelet transformations or autoencoders. Further development will involve extensive testing on diverse datasets. 

In addition to applying the naked sensor streams, the framework used derived features to enhance the recognition and produce 

a comprehensive account of the activity. The mean, standard deviation and signal magnitude area (SMA) offered further 

information on the general properties of the activity signals in the time domain. The temporal energy, entropy and major 

frequency bands provided more information regarding the periodicity of the activities in the frequency domain. These 

additional aspects were instrumental in improving the model’s capacity for comprehensive activity analysis, which in turn 

also introduced a degree of resilience to the system – essential for the often-unpredictable nature of activity-based 

recognition. Table 2 shows the features used in the model and how they enhance the accuracy of the activity recognition. 
 

TABLE II.  FEATURES USED IN THE MODEL 

Feature Type Examples Purpose 

Time-Domain Features Mean, SMA Capture statistical properties 

Frequency-Domain Features Spectral Energy, Entropy Characterize periodic activity patterns 

 

3. RESULTS 

This section provides the results of assessment of the proposed AI-based HAR framework alongside results from experiments 

performed on several datasets. General information about the performance of the model is discussed in the consideration of 

Tables 3,4,5, and 6, which contain the numbers of the results Moreover, the discussion of the problem analysis clarifies the 

difficulties and shortcomings that were faced during the implementation of the proposed model. 

From the results analyzed on all the datasets incorporated into the framework, the high accuracy and reasonable values for 

the measures of balance all pointed to the good performance of the proposed framework. The proposed model showed that 

the combination of CNN and RNN was useful for capturing both spatial and temporal features of sensor data for improved 

classification of multiple activities. 
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TABLE III.  PERFORMANCE METRICS ACROSS DATASETS 

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

UCI HAR Dataset 96.4 95.2 94.8 95.0 

WISDM Dataset 93.7 92.5 91.8 92.1 

PAMAP2 Dataset 94.9 93.8 94.1 94.0 

 

Table 4 summarizes the performance measures of the framework on the UCI HAR, WISDM, and PAMAP2 datasets. The 

highest accuracy was provided by the UCI HAR dataset with an accuracy of 96.4% proves that the model is recognizable 

for clean and well-sorted data. Lower accuracy in the WISDM dataset at 93.7% shows that problems arise when 

implementing on noisy, and a larger set of data. 

It will be remembered that the proposed model performed well in the identification of straightforward as well as compound 

activities. Even in the case of sitting, standing or walking, it was found to classify with nearly 100% accuracy. The outer and 

more complex movements such as climbing stairs or going from sitting to standing were somewhat more difficult due to 

concurrent sensor patterns. 
TABLE IV.  CLASSIFICATION ACCURACY BY ACTIVITY TYPE 

Activity UCI HAR Dataset (%) WISDM Dataset (%) PAMAP2 Dataset (%) 

Walking 98.3 97.1 97.8 

Sitting 97.5 95.4 96.6 

Climbing Stairs 93.2 91.7 92.8 

Transition Activities 90.5 88.9 89.4 

 

Table 5 enlists accuracy percentages of classification per activity. The most accurately identified were walking/sitting and 

transition activities were the most challenging for the algorithm because of their overlapping sensor signals. 

The proposed hybrid model based on CNN and RNN, has demonstrated better results than the conventional supervised 

methods like SVM and RF. Previous approaches have difficulty in handling sequential data and extensive preprocessing was 

often needed for the input data while the approach discussed here learned many useful features directly from the raw data. 
 

TABLE V.  COMPARISON OF MODEL PERFORMANCE 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

SVM 85.4 84.1 83.7 83.9 

Random Forest 88.6 87.3 86.9 87.1 

CNN-RNN (Proposed) 94.8 93.8 93.6 93.7 

 

In Table 6 we also see that CNN-RNN framework shows a significantly better performance than traditional models. The 

model, proposed in the current study had higher accuracy and F1-Score because it was able to capture the spatial and temporal 

characteristics better. 

To this end, the optimization approaches used, such as model pruning and quantization, enlarged the possibility of applying 

the outlined framework to wearable devices with low computational capabilities. The average time for inference was cut 

down to below 5 milliseconds per sample the system was therefore appropriate for real time use. As depicted in Table 8, the 

overall computational cost of proposed framework is shown to be minimal, and could be readily implemented on wearable 

platforms. 
TABLE VI.  COMPUTATIONAL EFFICIENCY METRICS 

Metric Value 

Model Size (MB) 18.6 

Inference Time (ms/sample) 4.7 

Memory Usage (MB) 210 

 

As mentioned above, although the proposed framework has shown high performance, some challenges were encountered. 
Noisy data became a problem in certain tests because noise intrigued by the sensors sometimes influenced classification 
results, for example, in the WISDM dataset. These types of denoising techniques may be improved to improve the robustness 
of the model further. Another difficulty was activity overlap: several activities were in some way similar to each other and 
were manifested by corresponding signal patterns, which occasionally caused confusion and error: climbing stairs and 
descending stairs are good examples. Lastly, the variability in real world reduced generalization because of variations in the 
position of the sensors, subjects and environment. Platforming from these challenges can be solved through more 
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incorporation of various types of data and advanced methods of preprocessing which may enhance availability of the 
framework for real life scenarios. 

4. CONCLUSION  

AI-based advancement with wearable technology put a new dimension to the context and acknowledgement of Human 
Activity Recognition or HAR, including improved accuracy, flexibility and real-time operation. In order to overcome the 
drawback of the conventional methods of HAR, this work introduced a compound deep learning architecture using CNNs 
and RNNs. Subsequently, the proposed framework was able to demonstrate competitive results on five benchmark datasets 
due to the integration of CNNs in extracting spatial features and RNNs in capturing temporal dependencies. What was 
revealed by the study: the proposed system surpass the effectiveness of basic machine learning, identifying various activities 
with an accuracy of over 95%. A particular success was achieved in identifying basic movements like walking and sitting 
down, while the system was also able to identify a variety of more complicated ones, including climbing and switching 
between actions. The potential of HAR applications using AI is well-understood from the way the identified approach 
successfully captures delicate patterns in sensor data. The study also discussed logistical quandaries of implementing AI 
HAR systems during wearable devices operation. Efficient computation and real-time implementation were maintained 
through factors such as model pruning and Quantization. The light nature of the architecture enables it to be easily integrated 
into wearables, providing the necessary architecture for use in healthcare, wellness, and gerontology. However, the 
framework was not without its problems and these included noise, identical activity patterns, and arbitrary locations of the 
sensors. These limitations are a clear call to future work in order to improve the algorithm’s robustness and scalability. As 
future work, more sophisticated functions might be considered, such as adaptive algorithms, integration of multiple 
modalities of data, transfer learning, etc., and the way how the proposed framework might work in the real-world scenarios. 
All in all, the main theme of this research is to further discuss how AI is helpful in developing HAR to have better and more 
intelligent wearable systems. Presenting current issues, AI HAR frameworks will be able to enhance the human quality of 
life, efficiency and security in different spheres by using developing technologies. 
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