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ABSTRACT

The rapid expansion of smart environments, including smart cities, healthcare systems, and intelligent
energy grids, has resulted in the generation of massive volumes of distributed and privacy-sensitive
data. Conventional centralized security architectures are increasingly inadequate to guarantee
confidentiality, integrity, and trust under adversarial and resource-constrained conditions. This paper
proposes an Adaptive Federated Blockchain Security Framework (AFBSF) that integrates federated
learning (FL) with a lightweight blockchain layer and a dynamic trust-driven cryptographic control
mechanism. Federated learning enables collaborative model training without sharing raw data, while a
Proof-of-Authority (PoA) blockchain provides tamper-resistant verification and transparent auditability
of model updates. In addition, an adaptive trust model dynamically adjusts encryption strength and node
participation according to behavioral reliability and data integrity, allowing real-time isolation of
malicious or unreliable devices. Extensive experiments conducted on smart healthcare, energy, and
transportation datasets demonstrate that the proposed framework outperforms conventional FL-based,
blockchain-based, and existing hybrid approaches in terms of accuracy, privacy preservation,
communication efficiency, and energy consumption. The results confirm that AFBSF achieves high
learning performance with enhanced privacy protection, reduced attack success rate, and lower system
overhead, making it a scalable and reliable security paradigm for next-generation decentralized IoT
ecosystems.

1. INTRODUCTION

The further growth of smart environments, including smart cities, intelligent healthcare systems, smart industrial Internet
of Things (IoT) networks, and others, has generated massive volumes of heterogeneous and sensitive data that must be
processed in real time [1], [2]. These ecosystems are based on interconnected devices, edge nodes, and cloud services to
facilitate smart decision-making, automation, and situational awareness. Nonetheless, the distributed and dynamic
characteristics of such settings pose serious challenges related to data security, user privacy, and system reliability [3].
Issues such as single points of failure, latency, and data sovereignty make conventional centralized security architectures,
which were originally designed for isolated enterprise systems, unsuitable for modern large-scale and heterogeneous smart
infrastructures [4]. As a solution to these shortcomings, federated learning (FL) has emerged as a decentralized paradigm
in which multiple parties collaboratively train machine learning models without sharing raw data [5]. FL preserves data
privacy while maintaining global model performance by keeping data locally on devices or organizations and transmitting
only encrypted model updates. However, FL is vulnerable to several threats, such as model poisoning, inference attacks,
and unreliable aggregators [6]. The lack of verifiable accountability mechanisms in conventional FL architectures further
increases the risk of malicious contributions and weakens trust among participating entities. With its immutable ledger and
decentralized consensus, blockchain technology provides a complementary foundation for ensuring transparency,
authenticity, and auditability in distributed systems [7]. Integrating blockchain with FL enables tamper-proof logging of
model updates, trust-based aggregation, and secure peer-to-peer interactions. Despite these advantages, hybrid solutions
still face practical challenges, particularly in terms of scalability, low latency, and adaptive cryptographic control in
resource-constrained IoT and edge devices [8]. Moreover, the behavioral dynamics of nodes operating in smart
environments are often not adequately represented by static trust and access-control models [9].
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This study proposes an adaptive data security framework that combines federated learning with a lightweight blockchain
layer to achieve privacy-preserving, transparent, and reliable data management in multi-agent smart environments. The
framework incorporates a dynamic trust-driven cryptographic policy engine that continuously updates access privileges
and encryption strength based on node reliability, behavioral history, and communication quality. Furthermore, the
proposed design supports end-to-end security through decentralized authentication and verifiable audit trails, reducing
attack vectors for both insiders and outsiders. As illustrated in Fig. 1, intelligent devices cooperate to process information,
share model updates securely, and employ blockchain verification to ensure transparency and resistance against malicious
activities. This reflects the growing shift toward adaptive, privacy-aware intelligence in modern IoT and cyber-physical
systems.
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Fig. 1. Federated learning and blockchain integration applications in data security in smart environments in general.

The main contributions of this research are summarized as follows:

1. Design of an adaptive hybrid architecture integrating federated learning and blockchain for secure collaborative
model training and transparent data provenance.
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2. Development of a dynamic trust assessment mechanism that enables real-time adjustment of cryptographic
policies according to node behavior and data sensitivity.

3. Extensive validation in smart healthcare and smart grid scenarios demonstrating enhanced privacy protection,
reduced communication overhead, and improved resistance to attacks compared with existing hybrid frameworks.

The rest of the article is organized as follows. Section II reviews existing work on federated learning, blockchain-based
[oT security, and hybrid integration strategies. Section III presents the proposed adaptive security framework and its
components. Section IV outlines the experimental design and evaluation metrics. The obtained results and their comparison
are discussed in Section V. Finally, Section VI concludes the paper and outlines future research directions.

2. RELATED WORK

The increasing demand for privacy-preserving and decentralized data security in smart environments has stimulated
extensive research on federated learning (FL), blockchain (BC), and their integration. Although both paradigms aim to
reduce centralized vulnerabilities and enhance trust, existing frameworks still face challenges in terms of scalability,
adaptability, and effective trust management in multi-agent settings.

2.1 United Learning-Based Privacy

Recent advances in federated learning (FL) have enabled distributed model training without transferring raw data, thereby
preserving local privacy and reducing the risk of external breaches [10], [11]. Such architectures have proven effective in
smart Internet of Things and healthcare systems, where sensitive data must remain locally stored. Nevertheless, most
existing applications rely on a central aggregator, which represents a potential single point of failure. The absence of
decentralized trust verification mechanisms exposes FL systems to adversarial threats such as model poisoning, inference
attacks, and malicious update injection. FL. models have been strengthened using advanced privacy-preserving techniques,
including differential privacy and homomorphic encryption [12], [13]. These methods introduce noise or apply
cryptographic transformations to local updates before aggregation, thus enhancing data confidentiality. However, excessive
privacy noise often degrades the accuracy of the global model and increases communication overhead. Furthermore, fixed
privacy budgets and uniform encryption policies fail to account for the heterogeneity of devices and the dynamic nature of
threat levels. As summarized in Table I, existing FL-based approaches are effective in reducing data leakage risks, yet they
lack transparency, adaptability, and real-time trust assessment among participating nodes.

TABLE I. FEDERATED LEARNING-BASED PRIVACY PRESERVATION APPROACHES

Reference | Application Domain Technique Advantages Limitations
[10] Smart Healthcare Secure Aggregation in FL Preserves patient data confidentiality | Centralized

aggregator

vulnerability

[11] Industrial IoT Federated Gradient Averaging Scalable distributed training No trust or

accountability

model

[12] Edge Al Systems Differential Privacy in FL Reduces data exposure Accuracy  loss

under strong

noise levels

[13] Vehicular Networks FL with Homomorphic Encryption | Enhanced security and confidentiality | High

computational

and energy cost

2.2 Blockchain-based IoT Security Model

Blockchain has become a promising solution for ensuring immutability, traceability, and distributed consensus in smart
environments. Lightweight blockchain designs have been applied to loT management, smart grids, and healthcare systems
to support authentication and transaction verification [14]— [17]. Such implementations enable tamper-proof data storage
and decentralized access control across networked devices.
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Despite these advantages, the integration of blockchain into IoT ecosystems introduces several performance trade-offs.
Most existing architectures suffer from limited scalability, as consensus mechanisms such as Proof-of-Work (PoW) and
Practical Byzantine Fault Tolerance (PBFT) are computationally and communication intensive. In addition, privacy leakage
remains a critical concern, since blockchain ledgers are inherently transparent to all participating entities. The applicability
of blockchain in resource-constrained IoT devices is further restricted by energy-consuming consensus protocols and large
block sizes. As summarized in Table II, current blockchain-based IoT security frameworks still face significant challenges
in simultaneously achieving scalability and privacy.

TABLE II. COMPARATIVE OVERVIEW OF BLOCKCHAIN-BASED IOT SECURITY FRAMEWORKS

Reference | Consensus Mechanism Domain Strengths Limitations

[14] Proof-of-Authority Smart Grid Systems | Fast consensus and transparent auditing | Limited scalability and
energy efficiency

[15] Delegated Proof-of-Stake Smart Healthcare Data integrity and verifiable record | Public ledger may

management expose private metadata

[16] PBFT IoT Edge Networks | High fault tolerance High synchronization
and communication
cost

[17] PoS—Hybrid Industrial [oT Low consensus delay Lack of integration with
Al-based trust models

2.3 Hybrid Federated Learning—Blockchain Integration

Recently, federated learning and blockchain technologies have been integrated to combine decentralized learning with
immutable record keeping and trust assurance. It has been shown that hybrid frameworks can provide secure and traceable
model aggregation while eliminating centralized vulnerabilities [18]—-[20]. Nevertheless, existing designs are often
constrained by fixed trust weighting and non-adaptive encryption schemes. Most approaches assume homogeneous node
reliability and pay limited attention to the dynamic behavioral patterns of smart environments. The models presented in
[18] and [19] rely on blockchain-based auditability and distributed verification of model aggregation, thereby reducing
dependence on a central server. However, these solutions introduce additional latency and energy consumption due to
repeated block validation and transaction transmission. Similarly, the hybrid approach proposed in [20] enhances
transparency but lacks a dynamic mechanism to adapt cryptographic and trust policies according to node behavior and data
sensitivity. Consequently, current hybrid frameworks achieve partial decentralization but remain limited in terms of
adaptive scalability, energy efficiency, and context-aware trust management.

2.4 Identified Research Gaps

Although recent studies have advanced decentralized security architectures, none has achieved comprehensive adaptability
across the full security spectrum of smart environments. Federated learning provides privacy but lacks verifiable
auditability; blockchain ensures integrity but compromises privacy; and existing hybrid solutions fail to dynamically
balance trust, performance, and cryptographic strength. Therefore, the literature indicates a clear need for an integrated and
adaptive data security framework that combines federated learning with a lightweight blockchain layer while dynamically
adjusting trust evaluation and encryption policies in real time. Such a framework would address the unresolved trade-offs
among privacy preservation, scalability, and communication efficiency, thereby forming a robust foundation for secure and
intelligent smart environments.

3. METHODOLOGY

The proposed Adaptive Federated—Blockchain Security Framework (AFBSF) is a distributed privacy-preserving model
designed for deployment in multi-agent smart environments such as healthcare, energy, and transportation systems. The
framework consists of three intelligent layers, namely Federated Learning (FL), Blockchain Validation, and Adaptive Trust
Control, integrated into a unified architecture. This integration enables decentralized model training, tamper-proof
verification, and dynamic cryptographic adaptation based on node behavior. To illustrate the interaction among the modules
of the proposed AFBSF, Fig. 2 presents the complete procedural workflow from system initialization to model convergence.
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The figure summarizes how distributed devices collaboratively learn a global model using federated learning, while
blockchain-based verification and adaptive trust mechanisms ensure privacy and security. Key processes, including
initialization, local training, blockchain validation, adaptive trust evaluation, and secure aggregation, are organized within
a closed feedback loop that continuously enhances model performance and resilience against malicious or unreliable
updates. This workflow highlights the dynamic interplay between data confidentiality, trust evolution, and consensus
validation, demonstrating the adaptive and self-managing characteristics of the AFBSF in smart environments.
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Fig. 2. Flowchart illustrates the way that the proposed approach to Secure and Privacy-Preserving Data Collaboration works

3.1 System Model

Let the smart environment consist of N participating edge devices {1,2, ..., N}.
Each device i owns a private dataset

D, = {(x]§i>,y].(i))|j =12, .., 1D}, M

where x].(i) denotes a feature vector and yj(i) its corresponding label.
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The goal of the collaborative system is to train a shared model w € R without exchanging raw data among devices. The
global learning objective is expressed as a weighted sum of local losses:

. D
minF(w) = %L, 55 FR(w) 2
where D = Y'Y . |D;| and the local loss function for node i is
1 L
R = 20, 0)en, f(43%77]7) 3)

with f(-) being the per-sample loss such as cross-entropy or mean-square error.
This design ensures that data never leaves its origin, conforming to privacy-by-design principles.

3.2 Federated Learning Process

During each communication round t € {1, ..., T}, every node i performs E local epochs of stochastic optimization. The
local model update is given by the standard gradient-descent rule:

1
Wi(t+ ) = Wi(t) — nVFi(WL.(t) ), 4)

where 1 > 0 is the learning rate and VFi(Wi(t)) is the gradient of the local objective. After completing local training, the
device encrypts its parameter vector using a homomorphic encryption function Enc(-) and transmits the ciphertext to the
aggregation server. Global model aggregation is performed over encrypted updates as

w(tD = yN |%"'Dec (Enc(wi(tﬂ))). &)

Dec(+) is the abbreviation of decryption. Aggregation is safe and does not disclose local parameters due to the support of
homomorphic addiction. The privacy assurance P of any given round is defined as;

P=1-— Gexposed’ (6)

Giotal

Gexposed A Gy » TESPecCtively, with Geyppeeq being the number of unencrypted gradient components and G, being the
number of total gradient components.

3.3 Blockchain Validation and Integrity Verification
In order to ensure accountability and avoid tampering, all encrypted model updates are packaged into a blockchain

transaction. The blockchain uses the Proof-of-Authority ( PoA ) consensus that provides low-latency block creation that
can be used in the IoT-scale environment. Every block Bk of the ledger is organized as.

By = {Hyrev, Ts, Hm, PID;, MR, Sig;} (7)
where
H,.e, : hash of the preceding block, maintaining chain continuity.
T : time-stamp of the block at hand;
H,, = SHA256 (WL.(Hl)) : hash of the model update;
PID; : node identifier of node i;

MR: Hash of block transactions;
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Sig; : digital signature of node i ensuring non-repudiation.
Once validators authenticate a transaction, it becomes immutable, providing an auditable trail of all training activities.

3.4 Adaptive Trust Evaluation and Cryptographic Control
The proposed system dynamically estimates the trust level of each node based on its participation consistency, behavior,
and security compliance. The trust score Ti(t) € [0,1] is computed as a weighted composite:

Ti(t) _ aRi(t) + [)’Bi(t) + ySi(t) ®)
where
RL.(t) : reliability index (successful participation ratio);

Bi(t) : behavioral deviation score derived from model-update variance;

Si(t) : security-compliance indicator (signature validity, encryption correctness);
a, B,y : adaptive weights satisfyinga + f +y = 1.

Based on the computed trust, each node's encryption intensity E i(t) is modulated as
t t
E" = Emin + (Emax = Emn)(1=T7),  9)

ensuring that high-trust nodes (Ti(t) - 1) use lightweight encryption for efficiency, while low-trust nodes employ
stronger encryption schemes. To detect poisoned updates, the cosine similarity between a node's local model and the
previous global model is computed:

w(Ow®)

: ® 1)) —
S =
1m(W w ) ||ngt)||2||W(t)||2

i

(10)

If Sim(wi(t), W(t)) < 0 (threshold 6 € [0.75,0.9] ), the update is labeled malicious and excluded from aggregation.

3.5 Global Model Aggregation
The validated model updates of trustworthy nodes form the final global model via weighted FedAvg:

(t+1) _ [Dil . (t+1)
Wolobal = i€ iwi ) (11)

where (1 C {1, ..., N} represents the subset of nodes whose updates passed both blockchain and trust validations, and
Dq = Yiea IDil. (13)

The updated model is redistributed to all participants for the next round, ensuring convergence toward an optimally
secure and accurate model.
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Algorithm 1 - Adaptive Federated-Blockchain Security Framework (AFBSF)

1.
2.

b) Encrypt Wl-(H

¢) Validators verify hash using (6).
d) Update trust Ti(t) via (7).
e) Detect anomalies using (9); exclude if below 6.

f) Aggregate trusted updates via (10).
(t+1)
global *

g) Distribute w

Initialize global model w(®), trust Ti(o) = 1, encryption Ei(o).

For each global round t = 0,1, ..., T — 1:

a) Node i trains locally via (3).
1)

End For when convergence or t = T,y -

using (8) and broadcast to blockchain.

To assess the proposed Adaptive Federated—Blockchain Security Framework (AFBSF) in different smart-environment
settings, three publicly available datasets were used. These datasets were selected to be heterogeneous, privacy-sensitive,
and representative of real-world Internet of Things (IoT) applications. Each dataset corresponds to a distinct application
domain, namely healthcare monitoring, energy management, and intelligent transportation, thereby demonstrating the
generalizability of the framework. Prior to training, all datasets were processed using a common preprocessing pipeline,
which included: (i) missing-value handling based on mean interpolation, (ii) feature normalization using min—max scaling
to the range [0, 1], (iii) stratified partitioning into 70%, 20%, and 10% training, validation, and testing subsets, respectively,
and (iv) class re-balancing to address skewed label distributions, particularly in the healthcare dataset, using the Synthetic
Minority Over-Sampling Technique (SMOTE). These datasets were selected due to their widespread use in privacy-aware

IoT research and their availability in reliable public repositories.

TABLE III. DATASETS AND PREPROCESSING

Dataset Name Domain Samples / Features Description Ref.
WESAD (Wearable Smart Healthcare | 18 000 samples /22 | Multimodal physiological signals (ECG, EDA, EMG, | [21]
Stress and Affect features respiration, temperature) collected from wrist- and
Detection) chest-worn sensors for stress-level classification.
Smart Grid Smart Meter | Smart Energy 25000 samples/ 16 | Real residential and industrial power-consumption | [22]
Data (SGSC Dataset) Management features records with voltage, frequency, and load-demand
attributes for short-term energy prediction.
CityFlow Traffic Smart 12 500 samples / 19 | Urban vehicular trajectories, traffic-density indices, | [23]
Dataset (v1.0) Transportation features and environmental parameters for route-optimization
and mobility analytics.

All datasets were normalized using min-max scaling:

!

X =

X—Xmin

(14)

Xmax~Xmin

and partitioned 70% training, 20% validation, 10% testing.
The SMOTE method was applied to address class imbalance, particularly in healthcare data.

TABLE IV. SIMULATION ENVIRONMENT

Parameter Configuration

Programming Language | Python 3.10

ML Framework TensorFlow Federated v0.21
Blockchain Platform Hyperledger Fabric v2.5
Consensus Algorithm Proof-of-Authority (PoA)
Nodes 30 edge devices + 1 aggregator
Encryption Scheme AES-CBC Homomorphic Layer
CPU/GPU Intel Core 19-13900K @ 3.5 GHz / NVIDIA RTX A5000 (24 GB)
oS Ubuntu 22.04 LTS

Network Bandwidth 10 Mbps per node

Memory 64 GB DDRS5

Simulation Tool

NS-3 for network delay modeling
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TABLE V. TRAINING AND HYPERPARAMETERS

Parameter Symbol Value Purpose
Learning Rate n 0.001 Controls gradient step size
Local Epochs E 5 Local training cycles per node
Global Rounds T 100 Federated iterations
Batch Size - 64 Stabilizes gradient estimation
Optimizer - Adam Adaptive optimization method
Loss Function fw;x,y) Cross-Entropy Classification loss
Similarity Threshold | 6 0.85 Malicious-update detection
Dropout Rate - 0.2 Mitigates overfitting
Activation Function - ReLU Ensures non-linear representation

Metric Symbol Equation Purpose
Accuracy A A= TP +TN Overall correctness
TP+ TN+FP+FN
Precision P P= TP Positive predictive value
_TP+FP
Recall R . rpe Sensitivity to positives
" TP+FN
F1-Score F F = PR Balance of P and R
" "P+R
Privacy Gain P, p—1_ Lexposed Confidentiality level
S
total
Communication C, Corop Transmission efficiency
Reduction Cr=1- Cone
Attack Success Rate | Aj, A = Aguceess Security robustness
ul Atmal
Latency Overhead L, L, = Tooonre — Thase Delay due to security

Each experiment was repeated five times using different random seeds to ensure reproducibility. For each metric, the mean
and standard deviation were reported. A one-way ANOVA test was employed to evaluate the statistical significance of the
observed performance improvements, with a significance level of a = 0.05 The 95% confidence intervals confirmed that
the observed gains in privacy and accuracy were not due to random variation.

4. RESULTS AND DISCUSSION

The experiments were conducted to rigorously evaluate the performance, privacy, scalability, and trust adaptability of the
proposed Adaptive Federated—Blockchain Security Framework (AFBSF). All experiments were carried out under identical
network, computational, and communication settings, as described in this section, using three heterogeneous datasets
representing smart healthcare, smart energy, and smart mobility domains. The results were compared with state-of-the-art
federated learning, blockchain-based, and hybrid federated—blockchain approaches reported in [24]-[30].The overall
performance analysis demonstrates the ability of the proposed framework to maintain high learning accuracy while
preserving data privacy and reducing vulnerability to attacks. Table VI summarizes the results across all datasets in terms
of classification accuracy, F1-score, reduction in communication overhead, attack success rate, and average latency.

TABLE VI. OVERALL PERFORMANCE COMPARISON

Model Accuracy (%) | F1-Score | Comm. Overhead Reduction (%) | Attack Success Rate (%) Avg.
Latency

(ms)

[24] 88.25 0.89 12.3 18.4 128.6

[25] 90.10 0.91 9.8 12.7 165.3

[26] 91.73 0.92 16.5 10.2 1224

[27] 92.64 0.93 22.1 8.7 117.5

[28] 93.35 0.94 243 8.1 111.9

Proposed 96.87 0.96 35.2 5.8 108.3
AFBSF

The proposed AFBSF achieved a mean accuracy of 96.87%, which is approximately 3.5—4% higher than that of the best
existing hybrid approach. This improvement is mainly attributed to the active trust-weighted aggregation scheme (Eq. (10))
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and the adaptive exclusion of inconsistent nodes (Eq. (9)), which reduce model contamination caused by unreliable
participants. The attack success rate was below 6%, indicating strong resistance to poisoning, replay, and Sybil attacks.
Moreover, a communication overhead reduction of about 35% demonstrates the efficiency of the framework in transmitting
only validated and encrypted updates instead of raw gradients. A one-way ANOVA test with a significance level of 0.05
confirmed that all observed performance improvements are statistically significant (p < 0.01). The AFBSF is designed with
privacy preservation as a core objective, which is quantified using the privacy-preservation score (P_s). This metric
represents the proportion of information that is securely processed relative to the total amount of exchanged data. Higher
(P_s) values indicate stronger confidentiality and a lower probability of information leakage.

TABLE VII INDICATES COMPARATIVE RESULTS.

Model Privacy Score ((P_s)) | Information Leakage (%) | Auditability Level Consensus Type
[24] 0.61 39.0 Low -
[25] 0.73 27.0 High PoW
[26] 0.75 25.2 Medium PoS
[27] 0.79 21.3 Medium—High PBFT
[28] 0.82 18.9 High PoA
Proposed AFBSF 0.87 12.3 Very High PoA + Adaptive Trust

Compared with all reference models, AFBSF achieves the highest privacy score of 0.87, which is 42% and 27% higher
than those reported in [24] and [27], respectively. This improvement is achieved through the integration of homomorphic
encryption, blockchain-based immutability, and dynamic access control policies. The reduction of information leakage to
12% indicates that the probability of data exposure remains minimal even under multi-party collaborative training. The
Proof-of-Authority (PoA) consensus mechanism, supported by trust-weighted nodes, effectively balances confidentiality
and responsiveness while providing auditability without the heavy computational overhead typically associated with Proof-
of-Work (PoW) systems. The evolution of trust directly determines both participation eligibility and the strength of
encryption. The average trust value is 0.37687, as reported in Table VIII. Furthermore, the probability distribution of the
trust score (T _i) converges smoothly toward 0.95, while the proportion of low-trust nodes decreases exponentially over
successive global rounds. This behavior confirms that AFBSF continuously filters out malicious participants and supports
reliable collaboration among honest devices.

TABLE VIII. TRUST-SCORE CONVERGENCE DURING TRAINING

Round (t) | Avg. Trust (T) | Low-Trust Nodes (%) | Encryption Overhead (%) | Blacklisted Nodes
10 0.76 21.3 8.9 4
30 0.87 12.1 7.2 3
50 091 6.5 6.1 2
80 0.94 3.8 5.8 2
100 0.95 3.1 5.5 1 (Mitigated)

Adaptive trust calibration enables the system to recover from behavioral anomalies. Nodes that consistently deviated from
the global gradient direction (cosine similarity below 0.85) were automatically isolated. Compared with fixed-trust
architectures, AFBSF reduced erroneous blacklisting by 17% and decreased cryptographic overhead [29] by an average of
11%, thereby improving both reliability and efficiency. Latency analysis was conducted to evaluate the suitability of
AFBSF for real-time deployment. The results reported in Table IX indicate that, although blockchain integration introduces
synchronization delays in some cases, the adaptive Proof-of-Authority (PoA) consensus mechanism significantly mitigates
these delays and achieves lower latency at high throughput.

TABLE IX. LATENCY AND COMMUNICATION COMPARISON

Model | Avg. Latency (ms) | Throughput (tx/s) | Comm. Overhead Reduction (%) | Remarks

[24] 128.6 115 12.3 Centralized aggregation
[25] 165.3 88 9.8 High delay (PoW)

[26] 122.4 126 16.5 Limited adaptivity

[27] 117.5 132 22.1 Static trust

[28] 111.9 139 24.3 Hybrid ledger
AFBSF 108.3 146 35.2 Adaptive PoA consensus
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AFBSF reduces the average latency to 108 ms, which is 15% lower than that reported in [27] and achieves a 35%
improvement in communication efficiency compared to the model in [24]. This enhancement results from minimizing
redundant blockchain confirmations and eliminating rebroadcasts from unreliable nodes. Such latency performance
satisfies the delay requirements for smart grid monitoring (<150 ms) and healthcare telemetry (<200 ms), as recommended
in [30].Energy efficiency reflects the suitability of the framework for resource-constrained IoT devices. Table X presents
the normalized energy consumption per global learning round.

TABLE X. ENERGY CONSUMPTION PER GLOBAL ROUND

Model Energy (J) | Improvement vs Baseline (%) | Remarks
[24] 12.8 - No encryption
[25] 15.4 —20.3 Expensive consensus
[27] 10.6 17.2 Static encryption
[28] 9.8 23.4 Hybrid ledger
AFBSF 8.5 33.6 Adaptive encryption and PoA

The cryptographic scaling mechanism of AFBSF reduces unnecessary encryption operations, leading to an overall power
reduction of approximately 34%. In smart metering and IoT-based healthcare applications, this translates into a 20-25%
increase in device lifetime without compromising security. The convergence behavior of the global model accuracy with
respect to communication rounds is illustrated in Fig. 5. AFBSF reaches an accuracy of about 96.8% within approximately
60 rounds, whereas comparable hybrid approaches require more than 85 rounds. The smooth slope of the AFBSF curve
indicates stable gradient dynamics and reduced oscillations in weight updates, which result from the elimination of noisy
or unreliable nodes.

A comprehensive comparison with existing methods highlights several key strengths of AFBSF:

e Adaptive Security and Trust Control: Dynamic adjustment of cryptographic strength based on trust levels,
enabling automatic resistance to malicious nodes.

e Low-Latency Blockchain Consensus: The PoA mechanism exhibits significantly lower block delay than PBFT
and PoW, achieving up to 32x and 45x faster performance, respectively.

e Privacy Optimization: Comparable learning performance to centralized FL while providing substantially
higher privacy guarantees (over 40% improvement).

e Energy Efficiency: Dynamic encryption scheduling reduces device energy consumption by approximately 33%,
supporting long-term IoT operation.

e Strong Resilience: A 65% reduction in successful attacks compared to the standard federated baseline.

Collectively, these improvements establish AFBSF as a scalable, adaptive, and secure intelligent infrastructure suitable for
next-generation smart ecosystems. To ensure result stability, each experiment was repeated five times, and all metrics are
reported as mean + standard deviation, with accuracy deviations not exceeding 0.45%. Post-hoc analysis using one-way
ANOVA followed by Tukey’s HSD test (oo = 0.05) confirmed that the performance gains of AFBSF are statistically
significant (p < 0.01). Furthermore, no deviations or deadlocks were observed in blockchain validation across all runs,
demonstrating the robustness and stability of the proposed algorithms.

6. CONCLUSION AND FUTURE WORK

This paper presented the Adaptive Federated—Blockchain Security Framework (AFBSF), which aims to provide privacy-
preserving, trustworthy, and energy-efficient collaborative intelligence in smart environments. The integration of federated
learning with a lightweight blockchain consensus and an adaptive trust mechanism enables the framework to address major
challenges related to data privacy, communication efficiency, and malicious node participation. Experimental results
demonstrate that AFBSF outperforms existing hybrid and single-layer solutions, achieving a classification accuracy of
96.9%, a 42% improvement in privacy preservation, a 35% reduction in communication cost, and a 33% increase in energy
efficiency. The adaptive Proof-of-Authority (PoA) consensus minimizes synchronization delays, while trust-weighted
encryption significantly reduces the attack success rate to below 6%. These findings confirm that AFBSF provides a
scalable and flexible solution for secure data collaboration in heterogeneous loT-based domains such as healthcare, energy
management, and smart cities. Despite these achievements, several limitations remain. First, the reliance on a simulated
environment restricts the representation of real-world variations in network latency, adversarial intensity, and node
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heterogeneity. Second, although optimized through PoA, the blockchain layer still introduces storage overhead that may
affect highly resource-constrained devices. Third, the trust update mechanism assumes partial and stable node availability,
which may influence convergence stability in large-scale networks with intermittent participation. Future work will focus
on deploying AFBSF in a cross-domain real-world IoT testbed to evaluate scalability under dynamic network conditions
and intermittent connectivity. In addition, future extensions will incorporate quantum-resistant cryptographic schemes and
differential privacy mechanisms to enhance resilience against emerging quantum and inference-based attacks. Furthermore,
self-adaptive trust models driven by reinforcement learning will be explored to dynamically balance energy efficiency,
privacy, and communication overhead. Finally, extending AFBSF to support multimodal data streams, including images,
audio, and sensor telemetry, will further improve its applicability to next-generation edge—cloud ecosystems and contribute
to the development of secure, adaptive, and autonomous intelligent infrastructures.
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