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A B S T R A C T  

 
The rapid expansion of smart environments, including smart cities, healthcare systems, and intelligent 

energy grids, has resulted in the generation of massive volumes of distributed and privacy-sensitive 

data. Conventional centralized security architectures are increasingly inadequate to guarantee 

confidentiality, integrity, and trust under adversarial and resource-constrained conditions. This paper 

proposes an Adaptive Federated Blockchain Security Framework (AFBSF) that integrates federated 

learning (FL) with a lightweight blockchain layer and a dynamic trust-driven cryptographic control 

mechanism. Federated learning enables collaborative model training without sharing raw data, while a 

Proof-of-Authority (PoA) blockchain provides tamper-resistant verification and transparent auditability 

of model updates. In addition, an adaptive trust model dynamically adjusts encryption strength and node 

participation according to behavioral reliability and data integrity, allowing real-time isolation of 

malicious or unreliable devices. Extensive experiments conducted on smart healthcare, energy, and 

transportation datasets demonstrate that the proposed framework outperforms conventional FL-based, 

blockchain-based, and existing hybrid approaches in terms of accuracy, privacy preservation, 

communication efficiency, and energy consumption. The results confirm that AFBSF achieves high 

learning performance with enhanced privacy protection, reduced attack success rate, and lower system 

overhead, making it a scalable and reliable security paradigm for next-generation decentralized IoT 

ecosystems. 
 

 

1. INTRODUCTION 

The further growth of smart environments, including smart cities, intelligent healthcare systems, smart industrial Internet 

of Things (IoT) networks, and others, has generated massive volumes of heterogeneous and sensitive data that must be 

processed in real time [1], [2]. These ecosystems are based on interconnected devices, edge nodes, and cloud services to 

facilitate smart decision-making, automation, and situational awareness. Nonetheless, the distributed and dynamic 

characteristics of such settings pose serious challenges related to data security, user privacy, and system reliability [3]. 

Issues such as single points of failure, latency, and data sovereignty make conventional centralized security architectures, 

which were originally designed for isolated enterprise systems, unsuitable for modern large-scale and heterogeneous smart 

infrastructures [4]. As a solution to these shortcomings, federated learning (FL) has emerged as a decentralized paradigm 

in which multiple parties collaboratively train machine learning models without sharing raw data [5]. FL preserves data 

privacy while maintaining global model performance by keeping data locally on devices or organizations and transmitting 

only encrypted model updates. However, FL is vulnerable to several threats, such as model poisoning, inference attacks, 

and unreliable aggregators [6]. The lack of verifiable accountability mechanisms in conventional FL architectures further 

increases the risk of malicious contributions and weakens trust among participating entities.With its immutable ledger and 

decentralized consensus, blockchain technology provides a complementary foundation for ensuring transparency, 

authenticity, and auditability in distributed systems [7]. Integrating blockchain with FL enables tamper-proof logging of 

model updates, trust-based aggregation, and secure peer-to-peer interactions. Despite these advantages, hybrid solutions 

still face practical challenges, particularly in terms of scalability, low latency, and adaptive cryptographic control in 

resource-constrained IoT and edge devices [8]. Moreover, the behavioral dynamics of nodes operating in smart 

environments are often not adequately represented by static trust and access-control models [9]. 
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This study proposes an adaptive data security framework that combines federated learning with a lightweight blockchain 

layer to achieve privacy-preserving, transparent, and reliable data management in multi-agent smart environments. The 

framework incorporates a dynamic trust-driven cryptographic policy engine that continuously updates access privileges 

and encryption strength based on node reliability, behavioral history, and communication quality. Furthermore, the 

proposed design supports end-to-end security through decentralized authentication and verifiable audit trails, reducing 

attack vectors for both insiders and outsiders. As illustrated in Fig. 1, intelligent devices cooperate to process information, 

share model updates securely, and employ blockchain verification to ensure transparency and resistance against malicious 

activities. This reflects the growing shift toward adaptive, privacy-aware intelligence in modern IoT and cyber-physical 

systems. 

 

 
Fig. 1. Federated learning and blockchain integration applications in data security in smart environments in general. 

The main contributions of this research are summarized as follows: 

1. Design of an adaptive hybrid architecture integrating federated learning and blockchain for secure collaborative 

model training and transparent data provenance. 
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2. Development of a dynamic trust assessment mechanism that enables real-time adjustment of cryptographic 

policies according to node behavior and data sensitivity. 

3. Extensive validation in smart healthcare and smart grid scenarios demonstrating enhanced privacy protection, 

reduced communication overhead, and improved resistance to attacks compared with existing hybrid frameworks. 

The rest of the article is organized as follows. Section II reviews existing work on federated learning, blockchain-based 

IoT security, and hybrid integration strategies. Section III presents the proposed adaptive security framework and its 

components. Section IV outlines the experimental design and evaluation metrics. The obtained results and their comparison 

are discussed in Section V. Finally, Section VI concludes the paper and outlines future research directions. 

2. RELATED WORK 

The increasing demand for privacy-preserving and decentralized data security in smart environments has stimulated 

extensive research on federated learning (FL), blockchain (BC), and their integration. Although both paradigms aim to 

reduce centralized vulnerabilities and enhance trust, existing frameworks still face challenges in terms of scalability, 

adaptability, and effective trust management in multi-agent settings. 

2.1 United Learning-Based Privacy 

Recent advances in federated learning (FL) have enabled distributed model training without transferring raw data, thereby 

preserving local privacy and reducing the risk of external breaches [10], [11]. Such architectures have proven effective in 

smart Internet of Things and healthcare systems, where sensitive data must remain locally stored. Nevertheless, most 

existing applications rely on a central aggregator, which represents a potential single point of failure. The absence of 

decentralized trust verification mechanisms exposes FL systems to adversarial threats such as model poisoning, inference 

attacks, and malicious update injection. FL models have been strengthened using advanced privacy-preserving techniques, 

including differential privacy and homomorphic encryption [12], [13]. These methods introduce noise or apply 

cryptographic transformations to local updates before aggregation, thus enhancing data confidentiality. However, excessive 

privacy noise often degrades the accuracy of the global model and increases communication overhead. Furthermore, fixed 

privacy budgets and uniform encryption policies fail to account for the heterogeneity of devices and the dynamic nature of 

threat levels. As summarized in Table I, existing FL-based approaches are effective in reducing data leakage risks, yet they 

lack transparency, adaptability, and real-time trust assessment among participating nodes. 

TABLE I. FEDERATED LEARNING-BASED PRIVACY PRESERVATION APPROACHES 

Reference Application Domain Technique Advantages Limitations 

[10] Smart Healthcare Secure Aggregation in FL Preserves patient data confidentiality Centralized 

aggregator 
vulnerability 

[11] Industrial IoT Federated Gradient Averaging Scalable distributed training No trust or 

accountability 
model 

[12] Edge AI Systems Differential Privacy in FL Reduces data exposure Accuracy loss 

under strong 

noise levels 

[13] Vehicular Networks FL with Homomorphic Encryption Enhanced security and confidentiality High 

computational 

and energy cost 

2.2 Blockchain-based IoT Security Model 

Blockchain has become a promising solution for ensuring immutability, traceability, and distributed consensus in smart 

environments. Lightweight blockchain designs have been applied to IoT management, smart grids, and healthcare systems 

to support authentication and transaction verification [14]– [17]. Such implementations enable tamper-proof data storage 

and decentralized access control across networked devices. 
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Despite these advantages, the integration of blockchain into IoT ecosystems introduces several performance trade-offs. 

Most existing architectures suffer from limited scalability, as consensus mechanisms such as Proof-of-Work (PoW) and 

Practical Byzantine Fault Tolerance (PBFT) are computationally and communication intensive. In addition, privacy leakage 

remains a critical concern, since blockchain ledgers are inherently transparent to all participating entities. The applicability 

of blockchain in resource-constrained IoT devices is further restricted by energy-consuming consensus protocols and large 

block sizes. As summarized in Table II, current blockchain-based IoT security frameworks still face significant challenges 

in simultaneously achieving scalability and privacy. 

 

TABLE II. COMPARATIVE OVERVIEW OF BLOCKCHAIN-BASED IOT SECURITY FRAMEWORKS 

Reference Consensus Mechanism Domain Strengths Limitations 

[14] Proof-of-Authority Smart Grid Systems Fast consensus and transparent auditing Limited scalability and 
energy efficiency 

[15] Delegated Proof-of-Stake Smart Healthcare Data integrity and verifiable record 

management 

Public ledger may 

expose private metadata 

[16] PBFT IoT Edge Networks High fault tolerance High synchronization 
and communication 

cost 

[17] PoS–Hybrid Industrial IoT Low consensus delay Lack of integration with 
AI-based trust models 

2.3 Hybrid Federated Learning–Blockchain Integration 

Recently, federated learning and blockchain technologies have been integrated to combine decentralized learning with 

immutable record keeping and trust assurance. It has been shown that hybrid frameworks can provide secure and traceable 

model aggregation while eliminating centralized vulnerabilities [18]–[20]. Nevertheless, existing designs are often 

constrained by fixed trust weighting and non-adaptive encryption schemes. Most approaches assume homogeneous node 

reliability and pay limited attention to the dynamic behavioral patterns of smart environments. The models presented in 

[18] and [19] rely on blockchain-based auditability and distributed verification of model aggregation, thereby reducing 

dependence on a central server. However, these solutions introduce additional latency and energy consumption due to 

repeated block validation and transaction transmission. Similarly, the hybrid approach proposed in [20] enhances 

transparency but lacks a dynamic mechanism to adapt cryptographic and trust policies according to node behavior and data 

sensitivity. Consequently, current hybrid frameworks achieve partial decentralization but remain limited in terms of 

adaptive scalability, energy efficiency, and context-aware trust management. 

2.4 Identified Research Gaps 

Although recent studies have advanced decentralized security architectures, none has achieved comprehensive adaptability 

across the full security spectrum of smart environments. Federated learning provides privacy but lacks verifiable 

auditability; blockchain ensures integrity but compromises privacy; and existing hybrid solutions fail to dynamically 

balance trust, performance, and cryptographic strength. Therefore, the literature indicates a clear need for an integrated and 

adaptive data security framework that combines federated learning with a lightweight blockchain layer while dynamically 

adjusting trust evaluation and encryption policies in real time. Such a framework would address the unresolved trade-offs 

among privacy preservation, scalability, and communication efficiency, thereby forming a robust foundation for secure and 

intelligent smart environments. 

3. METHODOLOGY 

The proposed Adaptive Federated–Blockchain Security Framework (AFBSF) is a distributed privacy-preserving model 

designed for deployment in multi-agent smart environments such as healthcare, energy, and transportation systems. The 

framework consists of three intelligent layers, namely Federated Learning (FL), Blockchain Validation, and Adaptive Trust 

Control, integrated into a unified architecture. This integration enables decentralized model training, tamper-proof 

verification, and dynamic cryptographic adaptation based on node behavior. To illustrate the interaction among the modules 

of the proposed AFBSF, Fig. 2 presents the complete procedural workflow from system initialization to model convergence. 
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The figure summarizes how distributed devices collaboratively learn a global model using federated learning, while 

blockchain-based verification and adaptive trust mechanisms ensure privacy and security. Key processes, including 

initialization, local training, blockchain validation, adaptive trust evaluation, and secure aggregation, are organized within 

a closed feedback loop that continuously enhances model performance and resilience against malicious or unreliable 

updates. This workflow highlights the dynamic interplay between data confidentiality, trust evolution, and consensus 

validation, demonstrating the adaptive and self-managing characteristics of the AFBSF in smart environments. 

 

 
Fig. 2. Flowchart illustrates the way that the proposed approach to Secure and Privacy-Preserving Data Collaboration works 

 

3.1 System Model 

Let the smart environment consist of 𝑁 participating edge devices {1,2, … , 𝑁}. 

Each device 𝑖 owns a private dataset 

𝐷𝑖 = {(𝑥𝑗
(𝑖)

, 𝑦𝑗
(𝑖)

)|𝑗 = 1,2, … , |𝐷𝑖|},                                              (1) 

where 𝑥𝑗
(𝑖)

 denotes a feature vector and 𝑦𝑗
(𝑖)

 its corresponding label. 
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The goal of the collaborative system is to train a shared model 𝑤 ∈ ℝ𝑑 without exchanging raw data among devices. The 

global learning objective is expressed as a weighted sum of local losses: 

           min
𝑤

 𝐹(𝑤) = ∑  𝑁
𝑖=1

|𝐷𝑖|

𝐷
𝐹𝑖(𝑤)                                          (2) 

where 𝐷 = ∑  𝑁
𝑖=1 |𝐷𝑖| and the local loss function for node 𝑖 is 

𝐹𝑖(𝑤) =
1

|𝐷𝑖|
∑  

(𝑥
𝑗
(𝑖)

,𝑦
𝑗
(𝑖)

)∈𝐷𝑖
𝑓(𝑤; 𝑥𝑗

(𝑖)
, 𝑦𝑗

(𝑖)
),                              (3) 

with 𝑓(⋅) being the per-sample loss such as cross-entropy or mean-square error.  

This design ensures that data never leaves its origin, conforming to privacy-by-design principles. 

 

3.2 Federated Learning Process 

During each communication round 𝑡 ∈ {1, … , 𝑇}, every node 𝑖 performs 𝐸 local epochs of stochastic optimization. The 

local model update is given by the standard gradient-descent rule: 

                  𝑤𝑖
(𝑡+1)

= 𝑤𝑖
(𝑡)

− 𝜂∇𝐹𝑖(𝑤𝑖
(𝑡)

),                            (4) 

where 𝜂 > 0 is the learning rate and ∇𝐹𝑖(𝑤𝑖
(𝑡)

) is the gradient of the local objective. After completing local training, the 

device encrypts its parameter vector using a homomorphic encryption function Enc(⋅) and transmits the ciphertext to the 

aggregation server. Global model aggregation is performed over encrypted updates as 

     𝑤(𝑡+1) = ∑  𝑁
𝑖=1

|𝐷𝑖|

𝐷
Dec (Enc(𝑤𝑖

(𝑡+1)
)),                      (5) 

𝐷𝑒𝑐(⋅) is the abbreviation of decryption. Aggregation is safe and does not disclose local parameters due to the support of 

homomorphic addiction. The privacy assurance 𝒫 of any given round is defined as; 

                            𝒫 = 1 −
𝐺exposed 

𝐺total 
,                                     (6) 

𝐺exposed  and 𝐺total , respectively, with 𝐺exposed  being the number of unencrypted gradient components and 𝐺total being the 

number of total gradient components. 

3.3 Blockchain Validation and Integrity Verification 

In order to ensure accountability and avoid tampering, all encrypted model updates are packaged into a blockchain 

transaction. The blockchain uses the Proof-of-Authority ( PoA ) consensus that provides low-latency block creation that 

can be used in the IoT-scale environment. Every block Bk of the ledger is organized as. 

 

𝐵𝑘 = {𝐻prev, 𝑇𝑠, 𝐻𝑚 , 𝑃𝐼𝐷𝑖 , 𝑀𝑅, 𝑆𝑖𝑔𝑖}             (7) 

where 

𝐻prev  : hash of the preceding block, maintaining chain continuity. 

𝑇𝑠 : time-stamp of the block at hand; 

𝐻𝑚 = SHA256 (𝑤𝑖
(𝑡+1)

) : hash of the model update; 

𝑃𝐼𝐷𝑖  : node identifier of node i; 

MR: Hash of block transactions; 
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𝑆𝑖𝑔𝑖 : digital signature of node 𝑖 ensuring non-repudiation. 

Once validators authenticate a transaction, it becomes immutable, providing an auditable trail of all training activities. 

3.4 Adaptive Trust Evaluation and Cryptographic Control 

The proposed system dynamically estimates the trust level of each node based on its participation consistency, behavior, 

and security compliance. The trust score 𝑇𝑖
(𝑡)

∈ [0,1] is computed as a weighted composite: 

𝑇𝑖
(𝑡)

= 𝛼𝑅𝑖
(𝑡)

+ 𝛽𝐵𝑖
(𝑡)

+ 𝛾𝑆𝑖
(𝑡)

                          (8) 

where 

𝑅𝑖
(𝑡)

 : reliability index (successful participation ratio); 

𝐵𝑖
(𝑡)

 : behavioral deviation score derived from model-update variance; 

𝑆𝑖
(𝑡)

 : security-compliance indicator (signature validity, encryption correctness); 

𝛼, 𝛽, 𝛾 : adaptive weights satisfying 𝛼 + 𝛽 + 𝛾 = 1. 

 

Based on the computed trust, each node's encryption intensity 𝐸𝑖
(𝑡)

 is modulated as 

𝐸𝑖
(𝑡)

= 𝐸min + (𝐸max − 𝐸min)(1 − 𝑇𝑖
(𝑡)

),         (9) 

ensuring that high-trust nodes (𝑇𝑖
(𝑡)

→ 1) use lightweight encryption for efficiency, while low-trust nodes employ 

stronger encryption schemes. To detect poisoned updates, the cosine similarity between a node's local model and the 

previous global model is computed: 

Sim(𝑤𝑖
(𝑡)

, 𝑤(𝑡)) =
⟨𝑤𝑖

(𝑡)
,𝑤(𝑡)⟩

‖𝑤
𝑖
(𝑡)

‖
2

‖𝑤(𝑡)‖
2

              (10) 

If Sim(𝑤𝑖
(𝑡)

, 𝑤(𝑡)) < 𝜃 (threshold 𝜃 ∈ [0.75,0.9] ), the update is labeled malicious and excluded from aggregation. 

3.5 Global Model Aggregation 

The validated model updates of trustworthy nodes form the final global model via weighted FedAvg: 

𝑤global 

(𝑡+1)
= ∑  𝑖∈Ω

|𝐷𝑖|

𝐷Ω
𝑤𝑖

(𝑡+1)
,             (11) 

where Ω ⊆ {1, … , 𝑁} represents the subset of nodes whose updates passed both blockchain and trust validations, and 

𝐷Ω = ∑  𝑖∈Ω |𝐷𝑖|.                       (13) 

The updated model is redistributed to all participants for the next round, ensuring convergence toward an optimally 

secure and accurate model. 
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Algorithm 1 - Adaptive Federated-Blockchain Security Framework (AFBSF) 

1. Initialize global model 𝑤(0), trust 𝑇𝑖
(0)

= 1, encryption 𝐸𝑖
(0)

. 

2. For each global round 𝑡 = 0,1, … , 𝑇 − 1 : 

a) Node 𝑖 trains locally via (3). 

b) Encrypt 𝑤𝑖
(𝑡+1)

 using (8) and broadcast to blockchain. 

c) Validators verify hash using (6). 

d) Update trust 𝑇𝑖
(𝑡)

 via (7). 

e) Detect anomalies using (9); exclude if below 𝜃. 

f) Aggregate trusted updates via (10). 

g) Distribute 𝑤global 

(𝑡+1)
. 

3. End For when convergence or 𝑡 = 𝑇max . 

To assess the proposed Adaptive Federated–Blockchain Security Framework (AFBSF) in different smart-environment 

settings, three publicly available datasets were used. These datasets were selected to be heterogeneous, privacy-sensitive, 

and representative of real-world Internet of Things (IoT) applications. Each dataset corresponds to a distinct application 

domain, namely healthcare monitoring, energy management, and intelligent transportation, thereby demonstrating the 

generalizability of the framework. Prior to training, all datasets were processed using a common preprocessing pipeline, 

which included: (i) missing-value handling based on mean interpolation, (ii) feature normalization using min–max scaling 

to the range [0,1], (iii) stratified partitioning into 70%, 20%, and 10% training, validation, and testing subsets, respectively, 

and (iv) class re-balancing to address skewed label distributions, particularly in the healthcare dataset, using the Synthetic 

Minority Over-Sampling Technique (SMOTE). These datasets were selected due to their widespread use in privacy-aware 

IoT research and their availability in reliable public repositories. 

TABLE III. DATASETS AND PREPROCESSING 
Dataset Name Domain Samples / Features Description Ref. 

WESAD (Wearable 

Stress and Affect 

Detection) 

Smart Healthcare 18 000 samples / 22 

features 

Multimodal physiological signals (ECG, EDA, EMG, 

respiration, temperature) collected from wrist- and 

chest-worn sensors for stress-level classification. 

[21] 

Smart Grid Smart Meter 

Data (SGSC Dataset) 

Smart Energy 

Management 

25 000 samples / 16 

features 

Real residential and industrial power-consumption 

records with voltage, frequency, and load-demand 

attributes for short-term energy prediction. 

[22] 

CityFlow Traffic 
Dataset (v1.0) 

Smart 
Transportation 

12 500 samples / 19 
features 

Urban vehicular trajectories, traffic-density indices, 
and environmental parameters for route-optimization 

and mobility analytics. 

[23] 

 

All datasets were normalized using min-max scaling: 

𝑥′ =
𝑥−𝑥min

𝑥max−𝑥min
                                       (14) 

and partitioned 70% training, 20% validation, 10% testing. 

The SMOTE method was applied to address class imbalance, particularly in healthcare data. 

TABLE IV. SIMULATION ENVIRONMENT 

 
 

 
 

 

 
 

 

 
 

 

Parameter Configuration 

Programming Language Python 3.10 

ML Framework TensorFlow Federated v0.21 

Blockchain Platform Hyperledger Fabric v2.5 

Consensus Algorithm Proof-of-Authority (PoA) 

Nodes 30 edge devices + 1 aggregator 

Encryption Scheme AES-CBC Homomorphic Layer 

CPU/GPU Intel Core i9-13900K @ 3.5 GHz / NVIDIA RTX A5000 (24 GB) 

OS Ubuntu 22.04 LTS 

Network Bandwidth 10 Mbps per node 

Memory 64 GB DDR5 

Simulation Tool NS-3 for network delay modeling 
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TABLE V. TRAINING AND HYPERPARAMETERS 
Parameter Symbol Value Purpose 

Learning Rate 𝜂 0.001 Controls gradient step size 

Local Epochs 𝐸 5 Local training cycles per node 

Global Rounds 𝑇 100 Federated iterations 

Batch Size - 64 Stabilizes gradient estimation 

Optimizer - Adam Adaptive optimization method 

Loss Function 𝑓(𝑤; 𝑥, 𝑦) Cross-Entropy Classification loss 

Similarity Threshold 𝜃 0.85 Malicious-update detection 

Dropout Rate - 0.2 Mitigates overfitting 

Activation Function - ReLU Ensures non-linear representation 

Metric Symbol Equation Purpose 

Accuracy A 
𝐴 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Overall correctness 

Precision P 
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Positive predictive value 

Recall R 
𝑅 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Sensitivity to positives 

F1-Score 𝐹1 
𝐹1 = 2

𝑃𝑅

𝑃 + 𝑅
 

Balance of 𝑃 and 𝑅 

Privacy Gain 𝑃𝑠 
𝑃𝑠 = 1 −

𝐿exposed 

𝐿total 

 
Confidentiality level 

Communication 

Reduction 
𝐶𝑟 

𝐶𝑟 = 1 −
𝐶prop 

𝐶hase 

 
Transmission efficiency 

Attack Success Rate 𝐴𝑠𝑟 
𝐴𝑠𝑟 =

𝐴success 

𝐴total 

 
Security robustness 

Latency Overhead 𝐿𝑜 𝐿𝑜 = 𝑇secure − 𝑇base  Delay due to security 

Each experiment was repeated five times using different random seeds to ensure reproducibility. For each metric, the mean 

and standard deviation were reported. A one-way ANOVA test was employed to evaluate the statistical significance of the 

observed performance improvements, with a significance level of 𝑎 =  0.05 The 95% confidence intervals confirmed that 

the observed gains in privacy and accuracy were not due to random variation. 

4. RESULTS AND DISCUSSION 

The experiments were conducted to rigorously evaluate the performance, privacy, scalability, and trust adaptability of the 

proposed Adaptive Federated–Blockchain Security Framework (AFBSF). All experiments were carried out under identical 

network, computational, and communication settings, as described in this section, using three heterogeneous datasets 

representing smart healthcare, smart energy, and smart mobility domains. The results were compared with state-of-the-art 

federated learning, blockchain-based, and hybrid federated–blockchain approaches reported in [24]–[30].The overall 

performance analysis demonstrates the ability of the proposed framework to maintain high learning accuracy while 

preserving data privacy and reducing vulnerability to attacks. Table VI summarizes the results across all datasets in terms 

of classification accuracy, F1-score, reduction in communication overhead, attack success rate, and average latency. 

 

TABLE VI. OVERALL PERFORMANCE COMPARISON 

Model Accuracy (%) F1-Score Comm. Overhead Reduction (%) Attack Success Rate (%) Avg. 

Latency 

(ms) 

[24] 88.25 0.89 12.3 18.4 128.6 

[25] 90.10 0.91 9.8 12.7 165.3 

[26] 91.73 0.92 16.5 10.2 122.4 

[27] 92.64 0.93 22.1 8.7 117.5 

[28] 93.35 0.94 24.3 8.1 111.9 

Proposed 

AFBSF  

96.87 0.96 35.2 5.8 108.3 

 

The proposed AFBSF achieved a mean accuracy of 96.87%, which is approximately 3.5–4% higher than that of the best 

existing hybrid approach. This improvement is mainly attributed to the active trust-weighted aggregation scheme (Eq. (10)) 
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and the adaptive exclusion of inconsistent nodes (Eq. (9)), which reduce model contamination caused by unreliable 

participants. The attack success rate was below 6%, indicating strong resistance to poisoning, replay, and Sybil attacks. 

Moreover, a communication overhead reduction of about 35% demonstrates the efficiency of the framework in transmitting 

only validated and encrypted updates instead of raw gradients. A one-way ANOVA test with a significance level of 0.05 

confirmed that all observed performance improvements are statistically significant (p < 0.01). The AFBSF is designed with 

privacy preservation as a core objective, which is quantified using the privacy-preservation score (P_s). This metric 

represents the proportion of information that is securely processed relative to the total amount of exchanged data. Higher 

(P_s) values indicate stronger confidentiality and a lower probability of information leakage. 

TABLE VII INDICATES COMPARATIVE RESULTS. 

Model Privacy Score ((P_s)) Information Leakage (%) Auditability Level Consensus Type 

[24] 0.61 39.0 Low – 

[25] 0.73 27.0 High PoW 

[26] 0.75 25.2 Medium PoS 

[27] 0.79 21.3 Medium–High PBFT 

[28] 0.82 18.9 High PoA 

Proposed AFBSF  0.87 12.3 Very High PoA + Adaptive Trust 

Compared with all reference models, AFBSF achieves the highest privacy score of 0.87, which is 42% and 27% higher 

than those reported in [24] and [27], respectively. This improvement is achieved through the integration of homomorphic 

encryption, blockchain-based immutability, and dynamic access control policies. The reduction of information leakage to 

12% indicates that the probability of data exposure remains minimal even under multi-party collaborative training. The 

Proof-of-Authority (PoA) consensus mechanism, supported by trust-weighted nodes, effectively balances confidentiality 

and responsiveness while providing auditability without the heavy computational overhead typically associated with Proof-

of-Work (PoW) systems. The evolution of trust directly determines both participation eligibility and the strength of 

encryption. The average trust value is 0.37687, as reported in Table VIII. Furthermore, the probability distribution of the 

trust score (T_i) converges smoothly toward 0.95, while the proportion of low-trust nodes decreases exponentially over 

successive global rounds. This behavior confirms that AFBSF continuously filters out malicious participants and supports 

reliable collaboration among honest devices. 

TABLE VIII. TRUST-SCORE CONVERGENCE DURING TRAINING 

Round (t) Avg. Trust (T) Low-Trust Nodes (%) Encryption Overhead (%) Blacklisted Nodes 

10 0.76 21.3 8.9 4 

30 0.87 12.1 7.2 3 

50 0.91 6.5 6.1 2 

80 0.94 3.8 5.8 2 

100 0.95 3.1 5.5 1 (Mitigated) 

Adaptive trust calibration enables the system to recover from behavioral anomalies. Nodes that consistently deviated from 

the global gradient direction (cosine similarity below 0.85) were automatically isolated. Compared with fixed-trust 

architectures, AFBSF reduced erroneous blacklisting by 17% and decreased cryptographic overhead [29] by an average of 

11%, thereby improving both reliability and efficiency. Latency analysis was conducted to evaluate the suitability of 

AFBSF for real-time deployment. The results reported in Table IX indicate that, although blockchain integration introduces 

synchronization delays in some cases, the adaptive Proof-of-Authority (PoA) consensus mechanism significantly mitigates 

these delays and achieves lower latency at high throughput. 

TABLE IX. LATENCY AND COMMUNICATION COMPARISON 

 

 

 

Model Avg. Latency (ms) Throughput (tx/s) Comm. Overhead Reduction (%) Remarks 

[24] 128.6 115 12.3 Centralized aggregation 

 [25] 165.3 88 9.8 High delay (PoW) 

 [26] 122.4 126 16.5 Limited adaptivity 

 [27] 117.5 132 22.1 Static trust 

 [28] 111.9 139 24.3 Hybrid ledger 

AFBSF  108.3 146 35.2 Adaptive PoA consensus 
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AFBSF reduces the average latency to 108 ms, which is 15% lower than that reported in [27] and achieves a 35% 

improvement in communication efficiency compared to the model in [24]. This enhancement results from minimizing 

redundant blockchain confirmations and eliminating rebroadcasts from unreliable nodes. Such latency performance 

satisfies the delay requirements for smart grid monitoring (<150 ms) and healthcare telemetry (<200 ms), as recommended 

in [30].Energy efficiency reflects the suitability of the framework for resource-constrained IoT devices. Table X presents 

the normalized energy consumption per global learning round. 

TABLE X. ENERGY CONSUMPTION PER GLOBAL ROUND 

Model Energy (J) Improvement vs Baseline (%) Remarks 

 [24] 12.8 – No encryption 

 [25] 15.4 – 20.3 Expensive consensus 

 [27] 10.6 17.2 Static encryption 

 [28] 9.8 23.4 Hybrid ledger 

AFBSF  8.5 33.6 Adaptive encryption and PoA 

The cryptographic scaling mechanism of AFBSF reduces unnecessary encryption operations, leading to an overall power 

reduction of approximately 34%. In smart metering and IoT-based healthcare applications, this translates into a 20–25% 

increase in device lifetime without compromising security. The convergence behavior of the global model accuracy with 

respect to communication rounds is illustrated in Fig. 5. AFBSF reaches an accuracy of about 96.8% within approximately 

60 rounds, whereas comparable hybrid approaches require more than 85 rounds. The smooth slope of the AFBSF curve 

indicates stable gradient dynamics and reduced oscillations in weight updates, which result from the elimination of noisy 

or unreliable nodes. 

A comprehensive comparison with existing methods highlights several key strengths of AFBSF: 

• Adaptive Security and Trust Control: Dynamic adjustment of cryptographic strength based on trust levels, 

enabling automatic resistance to malicious nodes. 

• Low-Latency Blockchain Consensus: The PoA mechanism exhibits significantly lower block delay than PBFT 

and PoW, achieving up to 32× and 45× faster performance, respectively. 

• Privacy Optimization: Comparable learning performance to centralized FL while providing substantially 

higher privacy guarantees (over 40% improvement). 

• Energy Efficiency: Dynamic encryption scheduling reduces device energy consumption by approximately 33%, 

supporting long-term IoT operation. 

• Strong Resilience: A 65% reduction in successful attacks compared to the standard federated baseline. 

Collectively, these improvements establish AFBSF as a scalable, adaptive, and secure intelligent infrastructure suitable for 

next-generation smart ecosystems. To ensure result stability, each experiment was repeated five times, and all metrics are 

reported as mean ± standard deviation, with accuracy deviations not exceeding 0.45%. Post-hoc analysis using one-way 

ANOVA followed by Tukey’s HSD test (α = 0.05) confirmed that the performance gains of AFBSF are statistically 

significant (p < 0.01). Furthermore, no deviations or deadlocks were observed in blockchain validation across all runs, 

demonstrating the robustness and stability of the proposed algorithms. 

6. CONCLUSION AND FUTURE WORK 

This paper presented the Adaptive Federated–Blockchain Security Framework (AFBSF), which aims to provide privacy-

preserving, trustworthy, and energy-efficient collaborative intelligence in smart environments. The integration of federated 

learning with a lightweight blockchain consensus and an adaptive trust mechanism enables the framework to address major 

challenges related to data privacy, communication efficiency, and malicious node participation. Experimental results 

demonstrate that AFBSF outperforms existing hybrid and single-layer solutions, achieving a classification accuracy of 

96.9%, a 42% improvement in privacy preservation, a 35% reduction in communication cost, and a 33% increase in energy 

efficiency. The adaptive Proof-of-Authority (PoA) consensus minimizes synchronization delays, while trust-weighted 

encryption significantly reduces the attack success rate to below 6%. These findings confirm that AFBSF provides a 

scalable and flexible solution for secure data collaboration in heterogeneous IoT-based domains such as healthcare, energy 

management, and smart cities. Despite these achievements, several limitations remain. First, the reliance on a simulated 

environment restricts the representation of real-world variations in network latency, adversarial intensity, and node 
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heterogeneity. Second, although optimized through PoA, the blockchain layer still introduces storage overhead that may 

affect highly resource-constrained devices. Third, the trust update mechanism assumes partial and stable node availability, 

which may influence convergence stability in large-scale networks with intermittent participation. Future work will focus 

on deploying AFBSF in a cross-domain real-world IoT testbed to evaluate scalability under dynamic network conditions 

and intermittent connectivity. In addition, future extensions will incorporate quantum-resistant cryptographic schemes and 

differential privacy mechanisms to enhance resilience against emerging quantum and inference-based attacks. Furthermore, 

self-adaptive trust models driven by reinforcement learning will be explored to dynamically balance energy efficiency, 

privacy, and communication overhead. Finally, extending AFBSF to support multimodal data streams, including images, 

audio, and sensor telemetry, will further improve its applicability to next-generation edge–cloud ecosystems and contribute 

to the development of secure, adaptive, and autonomous intelligent infrastructures. 
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