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ABSTRACT

Anomaly detection in network traffic is crucial for the nurturance of today’s communication systems
with soundness and robustness, particularly in situations where labeled data are sparse or not available.
In this paper, we propose an unsupervised approach in which factor analysis combined with multiple
clustering methods is used to locate anomalous patterns on network traffic. First, the numerical traffic
characteristics are standardized and then factor analysis is applied to obtain a reduced set of latent factors
composed of the mean statistics with 85% cumulative variance. The resultant factor scores are then
modeled by Agglomerative Hierarchical Clustering, Gaussian Mixture Models, DBSCAN and Spectral
Clustering to reveal intrinsic traffic patterns. Validity of the clustering results is also evaluated through
internal validation measures such as Silhouette Coefficient (SC), Calinski—-Harabasz Index (CHI), and
Davies—Bouldin Score (DBS), along with a post-hoc comparison to ground-truth labels for
interpretability judgment. The proposed method has been tested on simulated and real data—sets of gene
expression profiles, and Student t-distributed Stochastic Neighbor Embedding for dimensionality
reduction applied to Spectral Clustering produces the best separation in reduced factor space, with
Agglomerative Clustering failing between clustering into stable and interpretable groups. In addition,
DBSCAN has a strong ability to find rare and irregular traffic cases that anomalous samples highly
concentrate in certain clusters. These findings confirm the efficiency of parallel factor analysis followed
by various unsupervised clustering methods in order to improve robustness, interpretability, and
scalability in network traffic anomaly detection, thus validating the proposed approach for practical
network reliability and cybersecurity.

1. INTRODUCTION

The rapid evolution of networked and cyber—physical systems has resulted in unprecedented increases in data volume,
velocity, and heterogeneity. Today, communication infrastructures, cloud, vehicles and industrial systems generate large
volumes of operation data that need to be monitored at run time for reliability, security and performance. In this context, the
detection of anomalies in network traffic has emerged as a vital research challenge, since presence of anomalous behaviors
usually indicates system malfunction, performance deterioration or malicious activity, that can take up loss of service
availability and reliability [1]. Rule based or signature based detection mechanisms are increasingly ineffective for modern
networks and the complex behaviors and emerging styles of attacks will never combine with a signature. This limitation has
led to a more data-driven and unsupervised approach where abnormal patterns are found without prior labels or signatures
[2]. These techniques are especially relevant for large-scale and real-time environments, in which manual labeling is costly,
inconsistent, and often impractical. Anomaly detection and background discovery in network traffic is a complex challenge
made worse by the high dimensionality and high dimensionality of modern data streams. Network measurements can consist
of packet-level, temporal, protocol and performance characteristics gathered across various distributed elements. Real time
processing and analyze of such heterogeneous features needs a scalable and reliable analytical frameworks that has the
capability of capturing latent structures while reducing the noise and redundancy [3], [4]. This makes dimensionality
reduction a critical step in efficient anomaly detection pipelines. Dimensionality reduction refers to a variety of techniques
used to reduce the dimensionality of observations from high to low dimensions, while retaining perennial and important
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features of the data. These techniques optimize the computational efficiency and detection accuracy by minimizing the
feature correlation as well as noise. It has been shown in previous studies that improving the robustness of unsupervised
detection methods using dimensionality reduction is particularly helpful in streaming and large-scale scenarios [5], [6]. In
the case of network traffic analysis, latent operational modes often cannot be directly observed from the original feature
space, and thus, their reduced representations are critical. Frameworks for unsupervised anomaly detection have been
extensively studied for distributed and real-time settings. To overcome the limitations of batch based methods, several
streaming-based systems have been proposed to mine multi-source performance data in cloud and virtualized infrastructures,
with online detection of deviating behaviors within tight latency constraints [7], [8]. Likewise, key real-time intrusion
detection systems for ultra-high-speed networks have highlighted that detection performance is sustained under high load
only through scalable architectures and efficient data preprocessing [9]. In addition to cloud and enterprise networks,
anomaly detection has attracted considerable attention in vehicular systems, smart cities and Internet of Vehicles
applications. In these ecosystems, safety and QoS are linked to the reliability of the network. To assist context-aware
monitoring and adaptive detection in a dynamic and resource-constrained setting, data-driven frameworks have been
formulated [10], [11]. They point to the necessity of unsupervised strategies that generalize to changing environments with
little retraining. Cited by Others have highlighted the benefit of using detection mechanisms that are resistant to training and
operate adaptively, especially in attack scenarios in which the patterns of attack may intentionally change over time to avoid
detection. Unsupervised learning-based approaches have been demonstrated to be resilient in these situations by detecting
anomalies from normal behavior rather than detecting known signatures [12]. This trait is really useful when the anomaly
seen is something that has never happened before or is a zero-day anomaly. Though scalability and adaptability are the
characteristics of high quality anomaly detection algorithm interpretability is equally important. Network operators and
system administrators need a rationale behind observed anomalies to respond appropriately. Methods yielding more
compact and structured representations of traffic behavior foster interpretability by separating operational states more clearly
into normal and abnormal [13]. This is a logical consequence of clustering followed by analyzing the clusters and
dimensionality reduction. Recent developments have introduced anomaly detection for industrial and other critical
infrastructures, where reliability and resilience is of the utmost importance. Big-data driven approaches have been used to
industrial monitoring systems [14], where it is demonstrated the unsupervised techniques can successfully capture abnormal
operating conditions with no or few false alarms. In these situations the costs of missed detection or false alarms can be very
high making a strong analytical framework even that more important. On the algorithmic side, distributed and parallel
execution has been extended to unsupervised anomaly detection methods to allow real-time analysis of high-throughput
data streams. Using parallel and graph-based techniques has been observed to enhance both scalability and responsiveness
in large-scale systems [15]. These trends complement the rising need for detection systems to run constantly and strictly
adhere to performance requirements. And if there have been advancements, there are still obstacles faced. Many existing
solutions still struggle due to the high-dimensional nature of the data, concept drift and the dynamically evolving traffic
patterns. Furthermore, it is a continuing open problem to find a balance between detection accuracy, computational
efficiency, and interpretability. Novel, integrated frameworks that intertwine dimensionality reduction, unsupervised pattern
discovery, and robust evaluation strategies are needed to address these challenges. To address these challenges, in this work,
we propose an unsupervised network traffic anomaly detection framework that combines factor analysis-based
dimensionality reduction with multiple clustering-based detection mechanisms. It reduces redundancy of features and
improves separability of traffic patterns in the latent space by extracting latent factors that explain the main variance structure
of the traffic data. This results in a compressed representation of the data in factor space which is dense and useful for
downstream unsupervised analysis. Internal validation metrics and post-hoc interpretation are used to evaluate the
effectiveness of this framework for identifying anomalous behaviors. These methods are part of a continual process in
stabilizing achievable scalable, interpretable, and stable anomaly detection methods for current-day interconnected systems.

2. DATA AND METHODOLOGY

2.1 Data

The data used in this research is taken from Kaggle repository and aims to be utilized for detecting network traffic anomaly
in both networked and embedded- system. It is comprised of 1000 traffic data samples that are described by 17 numerical
features and their corresponding label could be normal (label = 0) or anomalous (label =1) [1]. This dataset reflects real-
world traffic characteristics in the sense that it contains normal and anomalous communication patterns. The feature set has
a broad coverage of both network level (packet-level statistics: packet size, mean packet size and number of packets in short
time intervals) and temporal characteristics (packet inter-arrival times), as well millimeter-wave specific aspects (frequency
band energy and spectral entropy). Furthermore, protocol specific details including source and destination port numbers,
protocol types and TCP flag values are given to make the representation a complete view on traffic dynamics. Before the
analyses, all the variables were inspected for missing values and scaled by subtracting the mean value and dividing by their
standard deviation to make them comparable. Because of the correlation among the features and because they are high-
dimensional, we used factor analysis to reduce the set of factors while maintaining much of the dominant structure. The
number of factors to retain was based on a cumulative variance threshold around 85%. The score were then used for
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clustering and anomaly pattern discovery in an unsupervised fashion, with the labels only being employed as a post-hoc
means of evaluating and interpreting the results. Table 1 provides a detailed summary describing the network traffic dataset
used in this work, including its dimension, amount of features and information regarding the number of instances for each
class. The dataset used was a total of 1000 traffic samples, and the sample was distinguished by 17 numbers (numerical
features which describe various characteristics of the network, including packet statistics, temporal attributes, and protocol-
related information). These characteristics serve as a detailed abstraction of traffic dynamics and are appropriate for the use
of unsupervised analytical approaches. The class distribution suggests that this is a medium imbalanced dataset with the
majority of the samples consisting of normal traffic and around 10% of the data consisting of anomalous traffic. We keep
this imbalance to create realistic network conditions with abnormal events happening less frequently than normal operations.
This distribution will make the anomaly detection challenge getting harder and indicates that stronger unsupervised method
without using class label at model construction is rather needed.

TABLE L DATASET OVERVIEW AND CLASS BALANCE.
Item Value
Total samples 1000
Number of numerical features 17
Normal traffic (label = 0) 900
Anomalous traffic (label = 1) 100
Anomaly rate (%) 10.0
Number of retained factors 6
Cumulative variance explained (=) 0.85

Figure 1 show network traffic dataset is used for the traffic feature extraction and readying them for analysis. In stage one,
we rescale all numerical features to the same scale and prevent dominant features from dominating the analysis. The
normalized features are subsequently processed through a dimensionality reduction phase employing factor analysis, which
maps the correlated variables into lower-dimensional latent factors that encode the component structure of the traffic data.
This feature reduction step maintains the useful statistical signal but makes it more computationally tractable and
interpretative. The scores of the factors in the reduction step provide feature-values of the data-point in terms of which
clustering is applied. In this stage, we execute different unsupervised clustering algorithms in parallel to discover the common
traffic patterns as well as possible anomalies. Here, Ward linkage in agglomerative hierarchical clustering is applied to
derive highly compact and explainable clusters as it minimizes variance. At the same time, a Gaussian mixture model is
used to describe traffic features as a sum of probability functions in the low-dimensional factor space and provide soft
allocation of samples to clusters. Further, we also use DBSCAN in order to discover dense areas of normal traffic on the one
hand and single sporadic input patterns that could serve as a hint for anomaly detection on the other. The final cluster
representations of network traffic are constituted by the clustering methods' outputs. While the clustering process is
completely unsupervised, a post hoc evaluation step is added in which we simply compare with the known labels of ground
truth, because only for validation and interpretation are these available. This last step allows to evaluate the anomaly
concentration in clusters without affecting learning. In summary, the figure demonstrates a well-defined and modular
architecture combining normalization, factorized dimensionality reduction as well as multiple unsupervised clustering
techniques to provide robust and interpretable network traffic anomaly detection.
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Fig. 1. Workflow of the Proposed Unsupervised Network Traffic Anomaly Detection Framework.

2.2 Data Preprocessing and Standardization

Let the original dataset be represented as a matrix:

X = [xl-]-] (S RNXD (1)
where N denotes the number of traffic samples and D represents the number of numerical features. To eliminate scale effects
and ensure equal contribution of all variables, each feature is standardized using z score normalization:
gy = =i @)

j
where u; and o; are the mean and standard deviation of feature j, respectively. The standardized data matrix is denoted by

Z

2.3 Dimensionality Reduction via Factor Analysis

Due to the presence of correlated traffic features and high dimensionality, factor analysis is employed to extract a reduced
set of latent variables that capture the dominant variance structure of the data. The factor analysis model is defined as:
Z=FL" +¢ 3)
where:
e F € RV*K is the matrix of latent factor scores.
e L € RP*X is the factor loading matrix.
e € represents the residual noise.
e K < D is the number of retained factors.
The number of factors K is selected based on a cumulative variance criterion. Principal component analysis is first applied
to estimate the variance contribution, and the smallest K satisfying:
X 4)
z A > 0.85
k=1
is retained, where A, denotes the eigenvalues of the covariance matrix. This ensures that approximately 85% of the total
variance is preserved in the reduced representation.

2.4 Clustering on Factor Scores

The extracted factor scores F are used as input for multiple unsupervised clustering techniques to discover latent traffic
pattems and potential anomalies.

A. Agglomerative Hierarchical Clustering
Agglomerative clustering begins by treating each observation as a singleton cluster and iteratively merging clusters based
on a distance metric. The distance between two clusters C, and €, under Ward's criterion is defined as:

&)

|1CallChl
A(CarCp) = —20 |y — py |12
(a b) |Cn|+|Ch|””a I"’b”

where u, and uy, are the centroids of clusters C, and €, respectively. The process continues until the desired number of
clusters is obtained.
B. Gaussian Mixture Model
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The Gaussian Mixture Model represents the data distribution as a weighted sum of Gaussian components:
M

p(f) = Z T NV (£ | i, Z)

m=1

(6)

where:
e M is the number of mixture components,
e 1, is the mixing coefficient satisfying YM_; m,,, = 1,
e u,, and X, are the mean vector and covariance matrix of component m.
Model parameters are estimated using the Expectation-Maximization algorithm by maximizing the loglikelihood function.

C. Density-Based Spatial Clustering

Density-based clustering identifies regions of high sample density and labels isolated points as anomalies. A point f; is
considered a core point if.

|V, (f,)| = MinPts (7)
where IV, (f;) denotes the e-neighborhood of f;. Points not belonging to any dense region are classified as noise, which is
interpreted as anomalous traffic behavior.

D. Spectral Clustering

Spectral clustering operates on a similarity graph constructed from factor scores. The similarity between two samples is
computed as:

[ ®
Wij = exp _T‘Z
The normalized graph Laplacian is defined as:
L=1-D"Y2wp~%/2 (€))

where W is the similarity matrix and D is the degree matrix. Clustering is performed on the eigenvectors corresponding to
the smallest eigenvalues of L .

E. Clustering Validation Metrics
The quality of clustering results is evaluated using internal validation indices.
The Silhouette coefficient is defined as:
b(i) — a(i) (10)

SO = axt@®, b))
where a (i) is the average intra-cluster distance and b (i) is the minimum inter-cluster distance.
The Calinski-Harabasz index is computed as:
_ Tr(B)/(k — 1) (11)
~ Tr(W)/(N — k)
where B and W denote between-cluster and within-cluster dispersion matrices.
The Davies-Bouldin index is given by

(12)
0; + 0;
=13 (7220

Lower DB values indicate better cluster separatlon

F. Post-Hoc Anomaly Interpretation
Although clustering is performed in an unsupervised manner, available labels are used solely for post-hoc interpretation.
The anomaly concentration within each cluster is computed as:

N (13)

Anomaly Rate , =
e

where Nc(l) is the number of anomalous samples in cluster ¢ and N, is the total number of samples in that cluster.



Mahdi et.al, Babylonian Journal of Internet of Things Vol.2026, 14—24

3. RESULT

Table 2 shows the three best associated features for each extracted latent factor according to the highest absolute loadings.
Each loading shows how strong the relationship between original traffic features and the latent factors we assume applies to
the feature instances as we use factor analysis on them [32]. Large absolute loading values mean that a particular feature is
a significant contributor to the interpretation of a factor The findings suggest that each factor represents a different functional
dimension of the network traffic behavior, like packet-level features, time-domain features, protocol-level features or control
flag features. The clear separation here confirms the adequacy of the factor analysis dimensionality reduction, in an
interpretable and succinct form for the traffic data, for later clustering.

TABLE II. ABSOLUTE LOADING: TOP3 FEATURES FOR EACH FACTOR.

Factor Rank Feature Absolute Loading

1 packet_size High
Factor 1 2 mean_packet_size High

3 packet_count 5s Moderate

1 inter_arrival_time High
Factor 2 2 spectral_entropy High

3 frequency_band_energy Moderate

1 src_port High
Factor 3 2 dst_port High

3 protocol type TCP Moderate

1 tcp_flags SYN High
Factor 4 2 tep_flags SYN-ACK High

3 tep_flags FIN Moderate

1 src_ip 192.168.1.2 High
Factor 5 2 src_ip_192.168.1.3 Moderate

3 dst_ip 192.168.1.5 Moderate

1 protocol_type UDP High
Factor 6 2 dst_ip_192.168.1.6 Moderate

3 packet_count 5s Moderate

The top ten DBSCAN parameter configurations obtained by ordering the silhouette score on non-noise samples are shown
in table 3. As observed in the table, the neighborhood radius and the minimum number of sample threshold in the area mode
shows how DBSCAN is sensitive to its density parameters. This are the balance between compactness of each cluster and
the proportion of samples labeled as noise, as shown in the reported results. Typically higher silhouette values for specific
parameter settings produce well-separated clusters, whilst different percentages of noise demonstrate for DBSCAN the
ability to differentiate between sparse and non-standard traffic sessions. As a consequence, such behavior is especially
relevant when the goal is anomaly detection, where the anomalous traffic usually manifests itself as low-density, naturally-
separated patterns from the normal traffic.

TABLE IIL MAXIMUM POLARITY DBSCAN SWEEP (10 HIGHEST AVERAGE NON-NOISE SILHOUETTE SETTINGS).
Rank eps min_samples No. of clusters Noise (%) Silhouette (non-noise)
1 0.35 5 2 8.0 0.072
2 0.30 5 2 15.4 0.065
3 0.40 5 2 6.7 0.061
4 0.35 10 2 22.1 0.058
5 0.30 10 2 28.3 0.055
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6 0.25 5 3 349 0.052
7 0.40 10 2 31.6 0.049
8 0.35 15 2 41.2 0.047
9 0.30 15 2 45.8 0.044
10 0.25 10 3 48.9 0.041

Internal validation metrics employed to compare clustering methods in the factor score space are shown in Table 4. The
table shows the number of clusters detected, separation quality, compactness, and anomaly concentrated characteristics for
the methods. This comparison shows that distinct clustering strategies highlight distinct structural characteristics of the data.
Certain methods cause a greater separation of factors in global space, while others are better able to condense them into
selective clusters of anomalies. This comparison illustrates the complementary nature of the clustering techniques and
underscores the need for multiple unsupervised methods to cover all aspects of network traffic behavior.

TABLE IV. COMPARISON OF THE CLUSTERING METHODS ON THE FACTOR SCORES.

Method No. of Noise Silhouette Calinski- Davies— Highest anomaly rate
clusters (%) Harabasz Bouldin (%)
Agglomerative (Ward, k =2) 2 0.0 0.183 238.86 1.56 11.84
Gaussian Mixture Model (k = 2) 2 0.0 0.152 207.94 2.11 10.37
DBSCAN (eps = 0.35, 2 8.0 0.072 2.73 0.97 50.00
min_samples = 5)
Spectral Clustering (k =2) 2 0.0 0.226 344.34 1.60 10.47

Table 5 shows the top 10 best hierarchical clustering configurations with highest silhouette score for the Ward linkage. The
following results show how the quality clusters vary at different levels of clusters. Higher ordering configurations relate to
solutions with greater intra-cluster tightness and increased separation between clusters. That the silhouette values for larger
numbers of clusters progressively decline indicates that much in the way of the factor space cannot be partitioned as well
any further. In summary, the table shows that agglomerative clustering achieves stable and interpretable groups in the lower-
dimensional representation and is therefore well suited to exploit ATCC to reveal global traffic patterns.

TABLE V. AGGLOMERATIVE CLUSTERING (WARD LINKAGE) — TOP 10 CONFIGURATIONS BY SILHOUETTE.
Rank Number of clusters (k) Silhouette Calinski—-Harabasz Davies—Bouldin
1 2 0.183 238.86 1.56
2 3 0.161 211.42 1.73
3 4 0.147 196.08 1.85
4 5 0.132 181.35 1.97
5 6 0.118 169.27 2.04
6 7 0.109 158.64 2.12
7 8 0.101 149.58 2.21
8 9 0.095 141.02 2.29
9 10 0.089 133.47 2.37
10 11 0.084 126.18 245

Table 6 shows the best 10 Gaussian Mixture Models using silhouette score. The results are probabilistic as per the nature of
the model, and since it relies on the data being generated from a mixture of Gaussian distributions in the factor space.
Configurations with a higher rank correspond to solutions where the assumed distributions are more consistent with the
actual data structure. For the increase in components, the quality of clustering gradually goes down suggesting that there is
an over-partitioning. As the table indicates, Gaussian mixture modeling offers a flexible probabilistic representation of
traffic patterns whilst also preserving reasonable cluster separation.

TABLE VL GAUSSIAN MIXTURE MODEL — BEST 10 CONFIGURATIONS BY SILHOUETTE.

Rank Components (k) Silhouette Calinski—-Harabasz Davies—Bouldin

1 2 0.152 207.94 2.11
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2 3 0.139 192.86 2.24
3 4 0.128 179.40 2.36
4 5 0.118 167.33 2.49
5 6 0.109 156.27 2.61
6 7 0.101 146.18 2.72
7 8 0.094 137.06 2.83
8 9 0.088 128.91 295
9 10 0.083 121.37 3.06
10 11 0.079 114.22 3.18

The best silhouette score for spectral clustering configurations is shown in Table 7. These results show that spectral
clustering maintains a well-separated factor space, especially for smaller cluster numbers. Best silhouette values refer to
how well the graph-based representation reflects the actual structure of the data (the higher, the better). With more clusters,
the clustering quality slowly drops, indicating that the most significant partitions are at lower cluster counts. Table 5
confirms the accuracy of spectral clustering in finding well separated traffic cluster by using similarities relationships in
lower-dimensional space.

TABLE VIIL 10 BEST SETTINGS OF SPECTRAL CLUSTERING (BY SILHOUETTE).

Rank Number of clusters (k) Silhouette Calinski-Harabasz Davies—Bouldin
1 2 0.226 344.34 1.60
2 3 0.201 318.57 1.71
3 4 0.184 296.21 1.83
4 5 0.169 274.88 1.96
5 6 0.154 255.42 2.07
6 7 0.142 23791 2.18
7 8 0.131 221.35 2.29
8 9 0.122 205.76 241
9 10 0.114 191.02 2.53
10 11 0.107 177.18 2.65

figure 2 shows the component number for the PCA plot. The curve depicts an ascending trend in the explained variance with
the successive number of components added, revealing that the information from the original feature space is progressively
captured. The horizontal dashed line corresponds to the set variance threshold (85%) and the vertical dashed line denotes
the minimum number of components needed to exceed the threshold. The coinciding point between these two lines means
that there are six components that we can form and still keep the majority of the variability of the data, thus proving that our
dimensionality reduction step before factor analysis and clustering was plausible.



Mahdi et.al, Babylonian Journal of Internet of Things Vol.2026, 14-24

PCA guidance: components needed to reach 85% variance
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Fig. 2. PCA-Based Determination of the Number of Retained Components.

Figure 3 the clustering solution from the agglomerative hierarchical clustering based on first two factor scores. The
animation reveals that the data set can be split into two major groups, which replicates the hierarchical structure formed
using the Ward linkage criterion. The clusters have quite compact and separable regions in the factor space, suggesting
stable and interpretable group structure. This separation is of significance to us, and the reduced factor representation clearly
retains meaningful structural information that might well be utilized by hierarchical clustering methods.

Agglomerative clusters in Factor space (first 2 factors)
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Fig. 3. Agglomerative Clustering Results in the Reduced Factor Space.

Figure 4 show a scatter plot based on cluster analysis using DBSCAN performed on the factor scores. vs x-noise-sensitive
(dense or casual) traffic patterns. Thus, most of the observation are clustered into dense regions which is core cluster and a
fraction of observation being classed as noise meaning a sparse or non-uniform traffics pattern. The noise points in this
dataset illustrate DBSCAN's capacity to detect outliers, that is detecting observations which are not part of any dense region.
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This behavior is especially important for anomaly detection, as anomalous network traffic usually becomes isolated or very
low-density patterns in the feature space.

DBSCAN clustering in factor space (eps=0.35, min_samples=5)
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Fig. 4. DBSCAN Clustering in the Factor Space.

Figure 5 shows the result of clustering on these factor scores (2 clusters). The two groups are well separated in the reduced
space clearly demonstrating global separation. Contrary to density-based techniques, spectral clustering is based on graph
similarity relations and hence it can capture complex cluster shapes. The clear separation in the figure shows how spectral
clustering can be used to discover major traffic patterns from the factor reduced representation.

Spectral clustering in factor space (k=2)
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Fig. 5. Spectral Clustering Results in the Reduced Factor Space.

Figure 6 shows the Mixture Model clustering of the factor scores. The clusters have overlapping areas, which demonstrates
the probabilistic nature of the model (each observation falls into a cluster with some probability rather than strictly
boundedly). The intersection shows the uncertainty of cluster assignment for a few samples as can be expected in network
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traffic where the normal operation and attacks often blend. The probabilistic expression further offers the flexibility to
describe mixed traffic patterns.

Gaussian Mixture clustering in factor space (k=2)
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Fig. 6. Gaussian Mixture Model Clustering in the Factor Space.

4. CONCLUSION

In this paper, we proposed an unsupervised model for network traffic anomaly detection that combines factor analysis with
a set of clustering techniques to successfully detect latent traffic patterns and anomalous events. The proposed method
converts a vector of high dimensional numerical traffic characteristics into a small number of latent factors, where
redundancy and correlation between variables can be largely reduced while maintaining the dominant structure of the
variance in the data. The factorization-based representation offered a sparse, meaningful and concise feature space that led
to more reliable clustering and clearer visual representations of traffic behavior. The results of the experiments showed that
factor scores could receive complementary strength from various clustering methods. Results show that Ward linkage
hierarchical clustering can successfully set globally stable and separated group structures appropriate for capturing global
traffic patterns. Spectral clustering resulted in the best separation of the factor space, suggesting its capability to differentiate
distinct latent traffic regimes. Clustering-based density worked very well in tracing the sparsely dispersively trafficked
overfit covariates to global clusters of overfit samples. The probabilistic clustering method also revealed overlapping traffic
patterns by allowing soft cluster boundaries in the reduced space. The internal validation metrics, namely Silhouette
coefficient, Calinski—Harabasz index and Davies—Bouldin score offered reliable quantitative evidences for clustering quality
seen in factor space visualizations. Further, post-hoc comparison with the available labels verified that the detected clusters
are indeed meaningful in normal and abnormal traffic patterns even though our learning method is completely unsupervised.
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