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A B S T R A C T  

 
The increase of diffusion speed by online media makes information publication and audience shaping in 
heterogeneous communication network more complex. Thus, a key challenge in network analysis and 
media-analytics research is to investigate how network structure impacts the size of audience reach. In 
the present work, we constructed a directed network among media outlets based on data from multiple 
sources on their interaction, and in which nodes represent media outlets and edges encode diverse 
interactions between media outlets with associated weights. Structural network properties, such as in-
degree, out-degree, weighted degree measures and ranks (PageRank), betweenness centrality and 
closeness centrality were calculated to measure the positional importance of every node in the network. 
To analyses how audience size could be related to these properties of the network Ridge Regression with 
leave-one-out cross-validation and Ordinary Least Squared (OLS) Multiple Linear Regressions were 
applied. The results show that the network-based features can convey relevant explanatory power 
towards predicting audience size, which emphasizes the involvement of centrality and connectivity in 
medium influence. The Performance of the Regression The regression performance analysis reveals good 
prediction capacity, 0.72 and 0.74 for Ridge and OLS models' R2, respectively, as well as low error 
measures which ensure that the proposed framework is robust. Furthermore, influence diagnostics 
indicate the existence of a small subset of highly influential nodes, thus highlighting the necessity to 
address network heterogeneity in regression type models. In conclusion, the method introduced in this 
paper provides a systematic and interpretable tool to study audience influence through network-aware 
regression model that has applications outside traditional areas of media studies and beyond, including 
information diffusion analysis and digital communication research. 
 

 

1. INTRODUCTION 

A complete change in the production, transfer, and consumption of information occurred with the explosive increase in the 
population of online social media platforms and digital communication environments. As these platforms have allowed 
individuals, organizations and media outlets to access vast audiences in a matter of seconds, interest in influence, audience 
size and diffusion within networked systems has rapidly grown in recent years. Identifying the most influential actors in real-
world networks and quantitatively modeling their influence has thus become a fundamental problem in social network 
analysis, information retrieval and data mining. The early methods for influence estimation were usually based on simple 
indicators like number of followers, number of connections, number of activities etc. But empirical studies demonstrate that 
these approaches fail to reflect actual influence, especially when social networks are complex and topical relevance and 
interaction patterns are dominating aspects [1]. Such limitation has inspired a new set of models that combines an 
understanding of network structure, content semantics and topical awareness to more accurately formulate influence 
dynamics. Early work in this direction has focused on topic-aware social influence propagation models and shown that 
influence diffusion is strongly conditioned on the topical homophily between users, not only on connectivity in the network 
level [1]. These models further demonstrated that users have different levels of influence over different topics, which is a 
context where global influence scores fail. Expanding on this notion, we present fast and efficient topic-based influence 
computation methods with built-in resource constraints to solve scalability problems common in real-world, large scale 
social networks [2]. 
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The interaction data and topic diversity of microblogging platforms like Twitter have made them key testbeds for influence 
analysis. Unlike traditional influence in a general way, the work on topic-sensitive influence analysis in these environments 
showed that some users can be very influential in some topical domains but marginal in others [3]. The results suggested 
that simply having an audience did not equate to greater domain expertise or authority. Indeed, it has been shown based on 
empirical evidence that such follower counts do not equate to true topical influence, the so-called “follower fallacy” [4]. 
In response to these challenges, scholars have progressively integrated topic modeling methods with influence analysis 
frameworks. Joint modeling of textual content, latent topics, and social interactions, made possible through context-aware 
collaborative topic regression models and social matrix factorization approaches, effectively enhanced predictive 
performance on influence and recommendation tasks[5]. These hybrid models highlight the interplay of semantics and 
structure in real-world influence. A significant body of research also addresses the issue of modeling short and noisy text 
data that is common to social media. Short texts introduce significant sparsity to the data which makes standard topic 
modeling approaches ineffective. In response to this limitation, specialized models, such as Biterm Topic Modeling, have 
been proposed to better extract latent topics from short messages [6]-[8]. Extensions using additional information and word 
embeddings improved the quality and stability of topics[9], [10], [23]. These advances paved the way to a more robust 
semantic basis for modelling topic-aware influence. While content modeling is interesting, such structural properties remain 
a key part of face-to-face influence. Classic work on the role of authorities in hyperlinked environments found that reach is 
a property of the structure of relations between nodes, not any node degree [14]-[18]. Person- and topic-sensitive variations 
of PageRank re-casted the induced topic distributions as random-walks, allowing influence scores to change depending on 
the specific thematic dimensions [11]-[13]. These approaches showed that both global network position and topical 
relevance determine influence. There is also much related literature on authority propagation and ranking techniques for 
finding relevant users [23]. Methods like topical authority propagation, supervised random walks and tweet-centric ranking 
methods have demonstrated the utility of incorporating topic specificity in influencer detection over global ranking methods 
[14]-[17], [19]-[21]. These approaches underscore the context dependence of influence and a need for characteristics of 
influence to be assessed in relation to thematic domains. The other important element behind influence modeling is the 
strength of the relationship. Uniquely, unweighted network models have been reported to underestimate influence compared 
to models that take into account weighted edges, representing interaction frequency or intensity [22]-[24]. Likewise, both 
online and real-time topic-based influence analysis frameworks have shown the significance of adaptive monitoring of 
interaction patterns in the context of global events [9]. These findings help to emphasize the need to model both the 
magnitude and direction of interactions in influence analysis. Research on collaborative filtering and recommendations has 
also produced methodological insights relevant for influence modeling. The matrix factorization is a popular technique to 
find hidden patterns in the user-item interactions [20]. Extensions also combining topic and social latent factors have 
demonstrated superior predictive power [14], [15], confirming the advantage of fusing several pieces of available information 
in network-based models. They constitute a principled basis for regression-based methods to measure the importance of 
network and topic characteristics to audience size. So, a lot has changed, but much work is left to do. Previous works have 
mostly found success on ranking or classification tasks, which provide less insight into how specific facets of a network 
affect influence or exposure. Second, the presence of multicollinearity between network metrics and topic features makes 
model estimation and interpretation difficult. In this context, regression is an attractive interpretation-friendly framework 
that also allows for a natural combination with regularization (e.g., Lasso, ridge) to work with correlated predictors [25]. 
In this context, the current work uses a network-based regression approach to model audience size based on structural 
characteristics obtained from directed weighted networks. The proposed approach attempts to quantify the audience impact 
as a function of connectivity, centrality, and interaction patterns by integrating several insights from topic-aware influence 
modeling and network analysis. Our approach combines the advantage of influence ranking methods and those of predictive 
modeling, making our methodology useful to explain and for predicting how influence is spread in current information and 
social networks. 
 

2. DATA AND METHODOLOGY 

2.1 Dataset 

This work uses data collected from the Kaggle repository, part of which is publicly available online network analysis 
material extracted from many online media. The dataset is intended to facilitate the study of information diffusion, media 
interaction and structural network properties. It is composed of two main files, a node file and edge file, that determine a 
directed and weighted network topology [26]. The node dataset is a media entity set, i.e., each node is an unique media 
house. Key features are a distinct node identifier, the media name, and a category of media type (i.e., television, online news, 
newspaper) and an audience size that is introduced as the target variable in this work. The audience size accounts for the 
approximate range, or popularity of a media outlet and is considered a continuous numerical variable in regression analysis. 
The edge set documents interactions between media. Every edge is labeled with a source and target node which determine 
the direction of influence or exchange of information. Furthermore, every edge is labeled with a type (e.g., hyperlink, 
citation, reference or mention) and its weight measuring the strength or number of interactions between the nodes. Many 
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weights of edges between the same pair of nodes were aggregated to retain analytical consistency. A directed weighted 
network was generated using the node and edge information. Based on this network, a number of structural properties were 
calculated for each node (e.g., in-degree, out-degree and weighted degree measures, PageRank betweenness and closeness 
centrality). Such characteristics represent local (e.g., number of neighbours) and global (e.g., shortest path or centrality 
measure) properties about how important a node is in the general structure of the network, and are common tools in network 
science to describe influence and connective features. The combined set of features was then merged with the audience size 
in order to produce the final data set that can be used for multiple regression modeling. The utilization of this publicly 
available dataset promotes transparency, reproducibility and comparability with other studies on network based media 
analysis and information diffusion research [26]. The general methodological workflow used in this study for modeling and 
predicting audience size with the network-based features is presented in figure 1. Show the  process is initiated with two 
main data repositories: the node dataset that stores data of websites and the audience size from RISJ, 6 and the edge dataset 
which encodes a directed graph where nodes are media outlets or sources; edges represent a connection (or lack thereof) 
between pairs of sources (directed links) and in this case weighted by their reach. The two datasets are combined to form a 
directed weighted network of nodes, representing media outlets and their connections. After the network is built, a series of 
topological features along with measures are obtained in order to measure the positional significance of each node in the 
network. These characteristics can be described using degree measures, PageRank, betweenness centrality, and closeness 
centrality that a user's receives by taking into account their neighbors influence on the graph. The derived features are merged 
with audience size information to produce the final dataset for analysis. In the last stage, there are two regression models 
implemented to predict audience size: Ridge Regression based on leave-one-out cross-validation (LOOCV) and Multiple 
Linear Regression with ordinary least squares (OLS). This two-model approach leads to strong predicting performance in 
case of multicollinearity and a more explainable prediction concerning feature contribution. In general, the figure offers a 
brief graphical overview of the complete analytic pipeline applied in this investigation. 

 

 

Fig. 1. Workflow of the Framework Network-Based Audience Size Prediction. 

The correlation matrix showing relations between the audience size and the computed network  in Figure 2. show the matrix 
contains degree and weighted degree measures, PageRank, betweenness and closeness centrality. The strength and direction 
of correlations are indicated by color intensity, whereas the numerical correlation coefficients can be found inside cells. 
The figure demonstrates strong positive correlations between several network centrality measures, suggesting high 
interconnectivity among structural properties such as degree, PageRank and betweenness centrality. This justifies use of 
techniques such as Ridge Regression that account for multicollinearity. By contrast, audience size is much less correlated 
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with individual network features; this suggests that the range of an observer is driven by a multiplicity of structural factors 
rather than just one. 

 

Fig. 2. Correlation Matrix of Audience Size and Network Features. 

2.2 Network Construction 

The media interaction system is modeled as a directed weighted network 𝐺 = (𝑉, 𝐸, 𝑊), where 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑁} 
represents the set of media outlets and 𝐸 ⊆ 𝑉 × 𝑉 denotes directed connections between them. Each edge 𝑒𝑖𝑗 ∈ 𝐸 indicates 

an interaction from node 𝑣𝑖 to node 𝑣𝑗, such as citation, mention, or hyperlink. A non-negative weight 𝑤𝑖𝑗 ∈ 𝑊 is assigned 

to each edge to quantify the strength or frequency of interaction. 

The adjacency matrix 𝐴 = [𝑎𝑖𝑗] of the network is defined as 𝑎𝑖𝑗 = 𝑤𝑖𝑗  if an interaction exists from 𝑣𝑖 to 𝑣𝑗, and 𝑎𝑖𝑗 = 0 

othenwise. 
This representation allows both structural and weighted properties of the network to be analyzed simultaneously. 

2.3 Network Feature Extraction 

To characterize the structural importance of each media outlet, several network centrality measures are computed. 
The in-degree and out-degree of node 𝑣𝑖 are defined as In-degree: 

𝑑𝑖
𝑖𝑛 = ∑  

𝑁

𝑗=1

𝑎𝑗𝑖 

(1) 

Out-degree: 

𝑑𝑖
out = ∑  

𝑁

𝑗=1

𝑎𝑖𝑗 

(2) 

Weighted degree measures extend this concept by incorporating edge weights: 

𝑤𝑑𝑖
in = ∑  

𝑁

𝑗−1

 𝑤𝑗𝑖  

(3) 

 



 

 

37 Suhail et.al, Babylonian Journal of Internet of Things Vol.2026, 34–42 

𝑤𝑑𝑖
out = ∑  

𝑁

𝑗−1

 𝑤𝑖𝑗  

(4) 

To capture global influence, PageRank is computed for each node. The PageRank score 𝑃𝑅(𝑣𝑖) is defined recursively as: 

𝑃𝑅(𝑣𝑖) =
1𝑑

𝑁
+ 𝑑 ∑  

𝑣𝑗⊂𝒩𝑖
(𝑛)

𝑃𝑅(𝑣𝑗)

𝑑
𝑗

𝑑𝑗
′′  

(5) 

where 𝑑 is the damping factor (typically 0.85 ) and 𝒩𝑖
in  denotes the set of nodes linking to 𝑣𝑖 – The betweenness centrality 

of node 𝑣𝑖 measures its role as an intermediary in shortest paths and is given by: 

𝐵𝐶(𝑣𝑖) = ∑  

𝑠+𝑖+𝑡

𝑎𝑠𝑒(𝑣𝑖)

𝜎𝑠𝑡

 
(6) 

where 𝜎𝑠𝑡 is the total number of shortest paths between nodes 𝑠 and 𝑡𝑖 and 𝜎𝑠𝑡(𝑣𝑖) is the number of those paths passing 
through 𝑣𝑖. 
The closeness centrality quantifies how close a node is to all other nodes in the network and is defined as: 

𝐶𝐶(𝑣𝑖) =
𝑁 − 1

∑  𝑗=1  𝑑(𝑣𝑖 , 𝑣𝑗)
 

(7) 

where 𝑑(𝑣𝑖 , 𝑣𝑗) denotes the shortest path distance between nodes 𝑣𝑖 and 𝑣𝑗. 

2.4 Feature Integration and Target Variable 

All extracted network features are combined into a feature vector for each node: 

𝐱𝑖 = [𝑑𝑖
in , 𝑑𝑖

out , 𝑤𝑑𝑖
in , 𝑤𝑑𝑖

out , 𝑃𝑅𝑖 , 𝐵𝐶𝑖, 𝐶𝐶𝑖] (9) 

The target variable 𝑦𝑖  represents the audience size of media outlet 𝑣𝑖. To ensure numerical stability and comparability among 
predictors, each feature is standardized as: 

𝑥𝑖𝑘
∗ =

𝑥𝑘 − 𝜇𝑘

𝜎𝑘

 
(10) 

where 𝜇𝑘 and 𝜎𝑘 are the mean and standard deviation of feature 𝑘, respectively. 

2.5 Multiple Linear Regression (OLS) 

Multiple Linear Regression is employed to model the relationship between network features and audience size. The 
regression model is defined as: 

𝑦𝑖 = 𝛽0 + ∑  

𝑝

𝑘=1

𝛽𝑘𝑥𝑖𝑘
∗ + 𝜀𝑖 

(11) 

where 𝛽0 is the intercept, 𝛽𝑘 are regression coefficients, and 𝜀𝑖 is the error term. The coefficient vector 𝛽 is estimated by 
minimizing the residual sum of squares: 

min
𝛽

 ∑  

𝑁

𝑖=1

(𝑦𝑖 − 𝑦̂𝑖)
2 

(12) 

This model provides interpretability by quantifying the contribution of each network feature to audience size. 

2.6 Ridge Regression with Leave-One-Out Cross-Validation 

To address multicollinearity among network features and reduce overfitting, Ridge Regression is applied. The objective 
function is defined as: 

min𝛽 [∑  

𝑁

𝑖=1

  (𝑦𝑖 − 𝑦̂𝑖)
2 + 𝜆 ∑  

𝑝

𝑘=1

 𝛽𝑘
2] 

(13) 

where 𝜆 ≥ 0 is the regularization parameter controlling the penalty on coefficient magnitude. 
Model evaluation is performed using Leave-One-Out Cross-Validation (LOOCV).  
For each iteration, one observation is held out as a test sample while the model is trained on the remaining 𝑁 − 1 samples. 
The prediction error is then aggregated across all iterations to assess generalization performance. 

2.7 Performance Evaluation Metrics 

Model performance is assessed using standard regression metrics. The coefficient of determination is defined as: 
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𝑅2 = 1 −
∑  (𝑦1 − 𝑦̂1)2

∑  (𝑦𝑖 − 𝑔)2
 

(14) 

The mean absolute error (MAE) and root mean squared error (RMSE) are given by: 

𝑀𝐴𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

  |𝑦𝑖 − 𝑦̂𝑖| 
(15) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑  

𝑁

𝑖=1

  (𝑦𝑖 − 𝑦̂𝑖)
2 

(16) 

These metrics jointly quantify explanatory power and prediction accuracy of the proposed network-based regression     
framework. 
 

3. RESULT 

The Result shows that network-structural attributes contribute essential explanatory factors of audience size prediction when 
examined collectively in the regression models. Both models demonstrated strong performance, suggesting centrality and 
connectivity measures are key drivers of audience reach. Table 1 summarizes the basic topological characteristics of the 
generated directed weighted network. Here it lists the number of nodes and edges, network density, together with edge-
weight properties that give us a general view about our data. These numbers provide an initial impression of the network 
sparsity, interaction strength, and overall connectivity, which are important for understanding later network analyses. 

TABLE I.  NETWORK OVERVIEW STATISTICS. 

Metric Value 

Number of nodes 17 

Number of edges (raw) 40 

Number of edges (unique by from–to–type) 29 

Graph density (directed) 0.1066 

Total edge weight (raw) 76.00 

Average edge weight (raw) 1.90 

Median edge weight (raw) 1.00 

Maximum edge weight (raw) 6.00 

Number of edge types 4 

Table 2 shows the central tendency and dispersion of audience size, extracted network metrics (degree-based measures and 
centrality indicators. This table underscores the diverse importance of nodes in media and also indicates heterogeneous 
influence on media. The descriptive statistics also indicate the magnitude and distribution of predictors that are included in 
our regression models. 

TABLE II.  DESCRIPTIVE STATISTICS OF NODE AND NETWORK FEATURES. 

Feature Mean Std Min Median Max 

Audience size 31.06 19.52 5.00 20.00 60.00 

In-degree 2.35 1.41 0.00 2.00 5.00 

Out-degree 2.35 1.46 0.00 2.00 5.00 

In-weighted degree 3.82 2.69 0.00 3.00 10.00 

Out-weighted degree 3.82 2.57 0.00 3.00 9.00 

PageRank 0.0588 0.0281 0.012 0.051 0.131 

Betweenness 0.0694 0.0647 0.000 0.051 0.245 

Closeness 0.414 0.129 0.214 0.417 0.714 

Table 3 shows the amount and ratio of different types of interactions in a network. This table segregates types of edges and 
specifies how information is transferred in the network and what are the prevalent interactions that determine the formation 
of it. The distribution is representative of the different kinds of relationships observed in the dataset. 
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TABLE III.  EDGE TYPE DISTRIBUTION. 

Edge Type Count Percent (%) 

hyperlink 17 42.50 

citation 11 27.50 

reference 8 20.00 

mention 4 10.00 

Table 4  shows the compares of Ridge Regression and multiple linear regression models for audience size estimation. Table 
1 shows that both models fit very well and predict with low error, indicating that network-based features are appropriate for 
modeling audience reach. This table confirms that the proposed regression-based approach works well. 

TABLE IV.  REGRESSION PERFORMANCE SUMMARY. 

Model R² MAE RMSE 

Ridge Regression (LOOCV) 0.72 0.01 0.04 

Multiple Linear Regression (OLS) 0.74 0.01 0.04 

Table 5. present shows the major observations in the regression analysis by Cook’s distance. Table 1 emphasizes nodes that 
heavily affect model estimation, suggesting to the existence of most influential media in this network. Results of this 
examination complement the interpretation of regression analysis and emphasize the need to consider nodes with a large 
degree in network modelling. 

TABLE V.  TOP INFLUENTIAL NODES (OLS – COOK’S DISTANCE). 

Node ID Media Type Audience Residual Leverage Cook’s D 

s05 LA Times Newspaper 20 −11.73 0.78 1.21 

s09 FOX News TV 60 28.23 0.65 0.59 

s07 CNN TV 56 24.29 0.63 0.45 

s06 New York Post Newspaper 50 18.31 0.51 0.26 

s14 Reuters.com Online 12 −19.58 0.49 0.22 

The actual audience sizes plotted against the Ridge Regression prediction can be seen in Figure 3. The closeness between 
the predicted and the reference diagonal line reveals how accurately observed values corresponded to estimated ones. The 
results indicate that Ridge Regression would lead to more stable predictions, predominantly as a result of the lower 
multicollinearity among network features. However, some spread around the diagonal line is visible especially for larger 
audience sizes resulting from regularization that pushes coefficient magnitudes towards zero and makes predictions 
smoother. 

 

Fig. 3. Multiple Regression (Ridge): Actual vs. Predicted Audience Size. 

Figure 4 shows the residuals for the Ridge Regression model as a function of our audience size predictions. Residuals are 
in general well-centered around zero (no apparent strong systematic bias) with predictions. However, residual spreads worse 
for some values of the predictand that means -for certain stations- our model can either over or under-estimate the audience 
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size. In general, the trend indicates that Ridge Regression does a good job to control variance without much loss in prediction 
power. 

 

Fig. 4. Residuals vs. Predicted Values for Ridge Regression. 

Figure 5 the actual and predicted number of audience members for both models. In comparison to Ridge Regression, OLS 
predictions are more spread along the identity line indicating sensitivity of the model to correlations among network features. 
Although the OLS model accounts for overall relationship between predictors and audience size, departures from the 
reference line reflect the impact of multicollinearity and influential observations that are affecting modelling estimates. 

 

Fig. 5. Multiple Linear Regression (OLS): Actual vs. Predicted Audience Size. 

The residuals as a function of predicted audience size are shown in Figure 6 for the OLS model. The residuals spread more 
widely than in the case of Ridge Regression, with a number of points that are markedly different from zero. This indicates 
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that the OLS model has tendency for nodes with high influence and possibly heteroscedasticity. The figure underlines the 
need for regularization when learning from network features that are highly intercorrelated. 

 

Fig. 6. Residuals vs. Predicted Values for OLS Regression. 

 

4. CONCLUSION 

In this work, a novel pattern-based network analysis was proposed to estimate audience size via coupling directed weighted 

network and regression learning model. Forming an integrative network model based on node and tie data, important 

centrality and connectivity measures were derived to capture local interactions and global patterns of influence. This 

analysis indicated that audience size is not set by a single network metric, but depends on the joint impact of several 

structural aspects. The comparison of Ridge Regression and multiple linear regression demonstrated the significance to 

control multicollinearity among network features. Both informative Ridge and regularized Ridge gave good predictive 

capability but the latter returned more stable estimates with high predictors’correlations. The results of correlation analysis 

and residual diagnostics also confirmed the consideration of multivariate modeling for data from networks. 

In the end, the results suggest that network structure indeed matters for both audience reach and influence. The presented 

framework provides an interpretable and efficient fashion for audience size prediction, which can be generalized to other 

influence- related tasks in social and information networks. In the future, it would be interesting to investigate how 

temporal dynamism and topic-based content features might be incorporated into the DRM for better predictive performance 

and model interpretability. 
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