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A B S T R A C T  
 

As more devices are connected to the Internet through the Internet of Things (IoT), there are huge 

security challenges. One of the major problems is Distributed Denial of Service (DoS) and Distributed 

Denial of Service (DDoS) attacks. These attacks floods networks with useless traffic, disrupting IoT 

services. There is a need for better security measures to handle this. Intrusion Detection Systems (IDS) 

is used to find suspicious activities, but many of them can't keep up with new types of attacks in real 

time. This study focuses on creating an efficient real time hybrid framework that uses the Kth Nearest 

Neighbor (KNN) algorithm and dense neural networks. This proposed framework aims to identify and 

categorize DoS/DDoS attacks in real time through the utilization of a simulation model and MQTT-

IoT-IDS2020 dataset and compared with existing frameworks, our proposed framework excels in 

accuracy, precision, and recall. 

 

1. INTRODUCTION 

The internet, once primarily a tool for academic research, has now become an essential service, comparable in 
significance to utilities like electricity, water, and gas. Wherever there's something valuable, there's also the presence of 
crime aiming to exploit that value through illicit use of technology or preventing others from accessing that resource. 
Because the internet is interconnected globally, it's susceptible to attacks from anywhere, making cybersecurity a critical 
concern. A significant number of cyber-attacks, encompassing DoS and DDoS attacks, are primarily executed by 
automated systems (Bots or Botnets) directed by human operators, utilizing multiple devices with access to internet [1].  

Securing the Internet of Things (IoT) against potential cyberattacks is a highly intricate undertaking. Nevertheless, it 
proves to be somewhat manageable when examined in a structured manner. Each layer in this structure presents its 
unique challenges and vulnerabilities that need to be identified in order to ensure protection against a range of attacks. A 
network vulnerability is essentially a weakness within the network infrastructure that could potentially allow an intruder 
to determine the extent of their intrusion into the network's cybersecurity. This vulnerability is particularly perilous, as it 
could lead to an attack if it goes unnoticed or unaddressed. [2]. 

Intrusion detection serves a dual purpose by not only identifying successful intrusions but also monitoring attempts to 
breach security, supplying crucial information for timely countermeasures. The Intrusion Detection System (IDS) has 
emerged to examine key aspects of computer systems and networks, aiming to identify abnormal behaviors against 
system policies or signs of aggression within the network. Based on the monitored environment, IDS is categorized into 
two groups: Network-based IDS (NIDS) which examines network packets within specific network segments or devices to 
pinpoint any suspicious activity, while Host-based IDS (HIDS) monitors the behavior of hosts, including system calls to 
efficiently detect intrusions. Understanding the current technology of these systems is the initial step in designing an 
effective detection system for DoS/ DDoS attacks [3]. 

In recent years, machine learning is developing with incredible speed. Machine learning techniques have found extensive 
applications across different fields, including pattern recognition, natural language processing, and computational 
learning. Through these methods, computers acquire the capability to function without explicit programming, generating 
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algorithms that learn from data and autonomously make data-driven decisions or predictions. A variety of machine 
learning approaches, such as supervised learning, unsupervised learning, and reinforcement learning (RL), have been 
widely adopted to improve network security components like authentication, access control, antijamming offloading, and 
malware detection. [4]. 

In 2006, Hinton introduced a novel training approach known as layer-wise-greedy-learning, signifying the inception of 
deep learning methods. The fundamental concept behind layer-wise-greedy-learning is that unsupervised learning is 
conducted during network pre-training prior to the subsequent layer-by-layer training, some of the researchers that 
adopted this method are [5, 6 ,7] The widespread adoption of unsupervised learning is attributed to the pre-training 
process, where non-random initial values are assigned to the network. This pre-training step enhances the efficiency and 
effectiveness of the unsupervised learning approach. As a result, the training process can reach a more favorable local 
minimum, leading to a faster convergence rate. 

[5] pointed out that Network Intrusion Detection Systems (NIDS) serve as classifiers, distinguishing between 
unauthorized or abnormal traffic and authorized or regular traffic. Several researchers, including [8],[9] have employed 
machine learning approaches to effectively categorize attack traffic, achieving high test accuracy. They utilized 
supervised methods such as k-nearest neighbors and random forest. Techniques like support vector machines (SVMs), 
naive Bayes, K-nearest neighbor (K-NN), neural networks (NNs), deep NNs (DNNs), and random forest are applied in 
supervised learning to label network traffic for constructing classification or regression models. On the other hand, 
unsupervised learning, which doesn't rely on labeled data, explores the similarities among unlabeled data to cluster them 
into different groups [10]. 

2. PROBLEM STATEMENT  

Over the past decade, there has been substantial growth in the area of Internet of Things (IoT), representing a network of 
diverse interconnected devices over the internet. However, IoT networks exhibit vulnerabilities in terms of security, 
which malicious attackers exploits to compromise these devices. Security threats to IoT encompass various types, 
including replay attacks, brute force attacks, eavesdropping attacks, and Denial of Service (DoS) and Distributed Denial 
of Service (DDoS) attacks. 

DoS/DDoS attacks are recognized as the common threats that significantly affect the security of IoT (Internet of Things) 
devices. The main goal of such attacks is to incapacitate targeted systems, making them unavailable to authorized users 
by deploying harmful malware. DoS seeks to disrupt services provided by IoT applications by overwhelming network 
resources with unnecessary traffic. On the other hand, DDoS occurs when the host server is overwhelmed with an 
extensive volume of unwarranted requests from geographically scattered zombie devices. 

To counteract such threats, Intrusion Detection Systems (IDS) play a crucial role. IDS is a monitoring system designed to 
identify suspicious activities and generate alerts upon detection. These activities, referred to as intrusions, intend to gain 
unauthorized access to a computer system. IDS can be categorized into Network-based IDS (NIDS), which connects to 
one or more network segments, scrutinizing network traffic for malicious activities, and Host-based IDS (HIDS), which 
is linked to a specific computer device, monitoring malicious activities occurring within the system. 

However, there are several researches based on network intrusion detection system that used different approaches such as 
machine learning algorithms, deep neural networks, ensemble methods and hybrid methods to classify multiple types of 
DoS/DDoS attacks but majority of the current solutions struggle to identify new forms of these attacks. This is due to 
some IDS are trained offline which are designed to identify and analyze attacks after they've occurred, offline intrusion 
detection system lacks the ability to actively prevent or mitigate ongoing attacks in real-time, which is a crucial aspect of 
modern cybersecurity, they rely heavily on historical data for pattern recognition. If the attackers alter their methods or 
the system's characteristics change, the IDS might not be as accurate. This means they cannot detect and respond to real-
time or ongoing attacks, leaving systems vulnerable until the data is analyzed. Real-time attack detection allows for 
immediate identification of malicious activities as they occur which can help minimize the impact of an ongoing attack. 

Conversely to this extend, this work aims to design an improved hybrid network intrusion detection and classification 
system using Kth Nearest Neighbor (KNN) algorithm and dense neural networks, which will detect DoS/DDoS attacks in 
real time and classify them. 

3. PROPOSED METHODOLOGY  

The first phase of proposed approach involves obtaining network traffic data. After acquiring the data, it is preprocessed 
to obtain the refined data. The final step involves training and testing the hybrid model using the preprocessed data to 
assess its performance in detecting patterns of DoS and DDoS attacks. Detailed explanations of each of these steps are 
provided in the subsequent subsections. 

A. Data Acquisition 
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The initial step of the proposed methodology involves data acquisition, aiming to gather both regular and attack-related 
network traffic. Generating a substantial amount of normal and attack traffic in real-time necessitates significant network 
resources and diverse captures of network activity, making it a demanding task. Setting up a large-scale network also 
consumes considerable time and financial resources. However, to bypass this exhaustive procedure is by leveraging 
publicly accessible network traffic datasets. To guarantee the dataset's quality, our analysis concentrated on specific 
criteria: 

 The dataset should incorporate real-time network traffic. 

 It should be extensive and flexible. 

 It must include recent occurrences of Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks. 

 The dataset should cover various attack methodologies. 

Based on these criteria, for this particular study, we opted for the MQTT-IoT-IDS2020 dataset. This dataset stands out 
due to its larger sample size compared to other network traffic datasets.  

B. Pre-processing of the Dataset 

This section discusses the techniques applied to ready the dataset for machine learning tasks, involving actions like data 
cleansing, normalization, and addressing class imbalances. Preparing data is pivotal to ensure machine learning models 
are prepared for use. Initially, the process involves merging separate files into a cohesive flow network at the Pandas 
script level. Pandas, a Python library aimed at dataset analysis and manipulation, is utilized for this task. Importing the 
data file into a Pandas data frame generates a CSV file that encompasses both binary and multi-class label attributes. 

Data Cleansing involves removing duplicates by using the drop_duplicates() method in pandas to remove duplicate rows 
from the dataset. And also handling missing values by using the dropna() to remove rows with missing values. Data 
Normalization also involves the use StandardScaler from sklearn.preprocessing library to scale features so that they have 
a mean of  and a standard deviation of 1. 

Data cleansing and normalization have a significant impact on the overall performance of the model. Data cleansing 
removes errors and inconsistencies, improving the accuracy. Normalization scales and standardizes features, reducing 
overfitting and improving generalization. Cleaned and normalized data can help algorithms converge faster during 
training, leading to quicker development of the model. 

To counter the class imbalance, Synthetic Minority Oversampling Technique (SMOTE) is used. This approach tackles 
scarcity of certain class instances by generating synthetic data points. It does so by creating new instances within the 
minority class, interpolating between existing ones, as described by (Munshi, 2022). The choice of SMOTE parameters 
can significantly impact the performance of the final model. Two key parameters that should be carefully considered are 
the sampling strategy and the k_neighbors parameter. The sampling strategy parameter determines how much synthetic 
data is generated for the minority class. Setting this value too high may lead to overfitting and poor generalization on 
unseen data, while setting it too low may not effectively address the imbalance issue. On the other hand, the k_neighbors 
parameter specifies the number of nearest neighbors which was 5 in our case, used to generate synthetic samples. 
Choosing a smaller value may result in noisy and less diverse synthetic samples, whereas a larger value might introduce 
more noise by creating unrealistic samples. 

Evaluating the model's effectiveness involves dividing the dataset into training and testing sets, preserving a 70:30 ratio. 

C. Flowchart of the proposed algorithm 



 

 

63 Mu’azu et al, Babylonian Journal of Internet of Things Vol.2024, 60–69 

 

Fig.1. Flowchart of the proposed intrusion detection and classification algorithm 

 

D. Realtime Attack Detection Module 

In order to analyze the traffic patterns, similar to the approach outlined in [9] study, this research examines the training 
dataset D = {D₁, . . . , Dn}. Standardizing each data dimension is carried out using either mean and standard deviation or 
upper and lower bounds to address variations across different dimensions. For each point P in the dataset D, the algorithm 
identifies the k-nearest neighbors (KNN) among the other training points, specifically the distance to the kth nearest 
neighbor s(Di), where i = 1, . . . , n. Training concludes by selecting the (1 − α)th percentile sk(P(D)) of {sk(D₁), . . . , 
sk(Dn)}, where P = round[(1 − α)N], to detect statistical deviation at a significance level α, e.g., 0.05. 

During the test phase, as observations arrive sequentially, the proposed Intrusion Detection System (IDS) computes the 
KNN distance sk(Dt) concerning the training points in D. The instantaneous attack evidence ∆t is calculated as follows: 

                                                 ∆𝑡 =  𝑑[𝑙𝑜𝑔 𝑠𝑘 (𝐷𝑡)  −  𝑙𝑜𝑔 𝑠𝑘 (𝐷(𝑃))]                     (1)     

where d is the number of data dimensions. This specific form of ∆t ensures its asymptotic optimality in the mini-max 
sense.  The specific form of ∆t in Equation (1) is designed to ensure asymptotic optimality in the mini-max sense. This 
means that, as the number of observations increases and under certain assumptions, the algorithm's performance will 
approach the best possible performance regardless of the attack strategy used. The logarithmic transformation in Equation 
(1) helps stabilize and normalize the KNN distance sk(Dt). By taking the difference between log(sk(Dt)) and 
log(sk(D(P))), where D(P) represents a point in the training dataset D, ∆t captures the deviation of sk(Dt) from its 
expected value based on historical data. There might be other formulations that could potentially improve detection 
accuracy, depending on specific requirements or characteristics of the dataset. However, it's important to note that this 
specific formulation has been chosen for its asymptotic optimality properties and is likely to perform well under a wide 
range of scenarios. The decision statistic Mt is given by: 

                                      𝑀𝑡 =  𝑚𝑎𝑥 {𝑀𝑡 − 1 +  ∆𝑡, 0}, 𝑀0 =  0                  (2)          

Equation (2) triggers an alarm the first time Mt exceeds a threshold at a time T, given by: 

                                                              𝑇 =  𝑚𝑖𝑛 {𝑡: 𝑀𝑡 ≥  ℎ𝑑}                                    (3) 

The threshold hd in Equation (3) plays a crucial role in balancing detection delay and false alarm rate. The selection of hd 
depends on system requirements and trade-offs between these two factors. 
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Determining an appropriate threshold hd typically involves empirical evaluation or optimization techniques using 
historical data or simulated attack scenarios. One common approach is to use performance metrics such as receiver 
operating characteristic (ROC) curves or area under ROC curves (AUC), which measure both detection delay and false 
alarm rate across different values of hd. Varying hd can have implications for system performance: 

 A higher threshold hd will reduce false alarms but might increase average detection delay because attacks need 
to cross a higher threshold before triggering an alarm. 

 Conversely, a lower threshold hd will decrease average detection delay but might lead to more false alarms due 
to increased sensitivity. 

 Finding an optimal balance depends on factors such as cost implications associated with false alarms versus 
missed detections, desired response time for attacks, available computational resources, etc. 

Similarly, the choices of k (number of nearest neighbors) and α (significance level) determine a trade-off between 
robustness to nominal outliers (i.e., noise) and sensitivity to attacks. Smaller k and larger α enhance sensitivity to attacks, 
causing a quicker rise in Mt and faster detection, but they are less robust to statistical outliers, making them more prone 
to false alarms. Notably, the significance level α plays a peripheral role in the proposed IDS, not influencing attack 
decisions for each observation, unlike anomaly detection methods based on significance tests. α is initially set to a typical 
value such as 0.05, and then hd is chosen to meet a false alarm rate. The instantaneous attack evidence computed at each 
time t using (1) accumulates over time with (2) to make an attack decision. Therefore, determining hd requires careful 
consideration based on system-specific requirements and trade-offs between detection delays and false alarm rates. 

The offline synchronization ensures that even during periods of connectivity loss or system downtime, data regarding 
potential threats is captured and stored. This resilience helps in maintaining a continuous analysis capability, reducing 
vulnerability to gaps in monitoring. By combining real-time detection with offline analysis, the system can refine its 
understanding of attack patterns. In essence, the combination of real-time detection and offline synchronization creates a 
more robust and adaptable security system, capable of continuous monitoring and learning, thereby fortifying the overall 
defense against potential threats. 

Proposed Packet processing algorithm and Real-Time Attack Detection Algorithm 

Packet processing algorithm 

    Input: a dataset X = [0...n-1] of packets 

    Output: an array of packets without duplicates 

    hashTable = new HashTable() 

    assign threshold for packet count = N 

      for each packet in X do 

         hashValue = hash(packet) 

         reverseHashValue = hash(reverse(packet))    

           if not (hashTable.contains(hashValue) or hashTable.contains(reverseHashValue)) then 

             hashTable.insert(hashValue, packet) 

             InitializeWeightsAndBiases() 

             ComputeLabel(packet) 

          end if 

       end for 

   results = new array() 

      for each entry in hashTable do 

        results.append(entry.value) 

        Backpropagate() 

     end for 
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Real-Time Attack Detection Algorithm 

  Input: 

  - Training dataset X = {x1, x2, ..., xm} 

  - Number of layers L 

  - Real-time input data: x_realtime 

  Initialize: s = 0, t = 0 

    for n = 1 to N do  

      Partition training set into Dn M1 and DnM2 

      Determine Ln(α) 

     While Mt < hd do                                                     

       t = t + 1   

       Get new data { Dnt } and compute{ Dnt }        

       Mnt = max { Mnt + Dnt  , 0 }                                

       Mt = ∑Nn=1 Mnt 

         if    Mt >= hd then                                        

           DeclareAttack(T = t)   

         end if 

     end while 

    Offline Attack Classification Algorithm  

    for l ∈ [1, L] do: 

      Initialize parameters: 

    - Weight matrix: Wl = 0 

    - Bias vector: bl = 0 

    - Weight matrix for decoding: Wl = 0 

    - Bias vector for decoding: bl = 0 

    Encoding layer: 

    - Calculate encoding or hidden representation using equation (1):  

        hn = fθ(xn) = σ(Wxn + b) 

        hl = S (Wlxl1 + bl) 

    Decoding layer: 

    while not loss == stopping criteria do: 

        - Compute yi using equation (2): 

            yi = gθ(hn) = σ(Whn + b) 

        - Compute the loss function: binary cross-entropy 

        - Update layer parameters θ = {W, b} 

       end while 

    end for 
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Classifier: 

- Dense neural network with Soft-max activation at the output layer 

- Initialize (Wl+1, bl+1) at the supervised layer 

- Calculate the labels for each sample xn of the training dataset X 

- Apply batch normalization and dropout for speeding up the calculation 

- Perform back-propagation in a supervised manner to tune parameters of all layers, loss function categorical cross-
entropy 

 - Output the predicted attack class and detection status (e.g., normal or attack). 

Output: 

- Class labels for training data 

- Attack class and detection for real-time input data 

4. EXPERIMENTAL RESULTS  

i. Training and validation accuracy  

Similar to many other works conducted by using machine learning techniques for the same dataset, both binary and 
multiclass classification are used in this study. As stated above, binary classification is used in the detection model for 
predicting two outcomes. In this case, it is expected to predict whether the flow belongs to “Attack” or “Benign” class.  

ii. Confusion Matrix for Binary Classification 

Figure 2. shows the confusion matrix for binary classification. In binary classification, label 0 is considered as a 
malicious attack and label 1 as legitimate packet. Figure 2 shows the confusion matrix of the model obtained from the 
3000 packets in the dataset, 50 attack flows are incorrectly reported as legitimate flows and 110 legitimate flows are 
falsely announced as a malicious attack, however, 1460 attack packets and 138 legitimate packets are correctly classified. 

 

Fig.2.  Confusion matrix of binary classified data 

The confusion matrix in Figure 2., we can analyze the misclassifications as follows: 

1. False Negatives (Misclassified Malicious Attacks): Number of misclassified attack flows is 50, these are instances 
where actual malicious attacks were incorrectly classified as legitimate flows. Characteristics contributing to these errors 
could include: 

 Similar features or patterns between some attack flows and legitimate flows, making it difficult for the model to 
distinguish them. 

 Unusual or stealthy attack techniques that deviate from typical patterns, causing them to be misinterpreted as 
legitimate. 

2. False Positives (Misclassified Legitimate Packets): The number of falsely announced legitimate flows is 110, these are 
instances where actual legitimate packets were incorrectly classified as malicious attacks. Characteristics contributing to 
these errors could include: 

 Anomalies in normal network traffic that resemble patterns seen in some types of attacks, confusing the model's 
classification process. 
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 Incomplete understanding of the differences between benign traffic and certain types of low-level attacks by the 
model. 

To improve classification accuracy and reduce misclassifications, feature engineering can focus on extracting more 
discriminative features that differentiate between different classes more effectively and also by experimenting with 
alternative machine learning algorithms/approaches might provide better results for this particular dataset.  

iii. ROC graph 

ROC: ROC, or Receiver Operating Characteristics, is a curve that plots the true positive rate against the false positive rate 
of a model. The area under the curve (AUC) serves as a metric for assessing the performance of a classification model. 
AUC offers a comprehensive measure of performance across all possible classification thresholds. A threshold is a point 
along the graph line. ROC curves enable the comparison of multiple models. Models with curves closer to the top-left 
corner (having higher true positive rates and lower false positive rates) are generally considered better. 

 

Fig.3.   ROC curve 

In figure 3 we can see that the proposed, did better than its counterpart, Efficient Deep Learning Model for Intrusion 
Classification and Prediction (EDLMICP) algorithm by covering more area therefore having better AUC since the more 
AUC, the better performance. It is interesting to note that our proposed EHARTIDC in comparison with the EDLMICP 
algorithm, the True positive rate values are mostly above 90%. The maximum TPR value obtained is 96.7%, this proves 
that the false positives and false negatives are minimized. 

Comparing True Positive Rate (TPR) and False Positive Rate (FPR) across different subsets of the dataset, like various 
types of DoS/DDoS attacks such as bruteforce, flood, malformed, slowite, reveals how well the model detects specific 
attack categories. TPR, indicating the correct identification of attacks, may vary based on attack characteristics. Some 
attacks may be easier to detect, resulting in higher TPR, while others, especially stealthy ones, may lead to lower TPR. 
Conversely, FPR, representing benign traffic misclassified as attacks, may also fluctuate based on the similarity between 
benign traffic and attack patterns within each subset.  

iv. Accuracy 

The binary training is performed across 10 epochs set which is evaluated as the most optimum count for accuracy. Figure 
4 below shows the accuracy of training and validation throughout the epochs. 

 

Fig.4.  Accuracy of the model 
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For Binary Classification: 

 Accuracy =   x 100 =   = 95% 

TPR =   =    =  

TNR =     =  

FPR =     =  

FNR =       =      

Recall =    =    = 0.976 

The overall precision surpasses that of analogous experiments carried out by [11], wherein the outcomes suggest that the 
suggested MQTT features exhibited effective differentiation between normal and attack traffic, leading to elevated 
detection rates and minimal false positives. Nevertheless, the MLP classifier attained only an 84% classification accuracy 
for the seven-class dataset when utilizing all the features. 

5. CONCLUSIONS  

The proposed model for real-time intrusion detection in IoT networks offers adaptability to changing network conditions 
and emerging attack types. It achieves this through real-time monitoring and analysis of network traffic patterns, dynamic 
threshold adjustment mechanisms, offline analysis and learning capabilities, a hybrid approach combining KNN 
algorithm and dense neural networks, and a feedback loop for continuous learning from detected attacks. These features 
collectively enable the model to promptly detect anomalies, adjust to evolving threats, and continuously improve its 
detection accuracy in dynamic IoT environments. 

This research mainly assessed how well the proposed model performed when used to detect intrusion detection in IOT 
networks. The study centered on the widely adopted hybrid method, which has proven its capability in effectively 
addressing binary issues within the MQTT-IoT-IDS2020 dataset. The selected models specifically tackled binary 
challenges, exhibiting significant effectiveness in distinguishing between 'benign' and 'attack' instances, including various 
attack types such as MQTT_BF, Bruteforce, Dos, Flood, Malformed, Slowrite, and Sparta. 

The strategies employed in the study demonstrated effectiveness in handling class imbalance present in the MQTT-IoT-
IDS2020 dataset. The utilization of SMOTE for synthetic sample generation and the adjustment of class weights played a 
crucial role in achieving this balance, ultimately enhancing the model's performance. The study results underscored the 
importance of finely tuning hyperparameters to optimize model effectiveness. In dealing with a vast hyperparameter 
space, hyperparameter tuning proved to be a highly beneficial approach. Additionally, the detailed insights provided by 
the confusion matrices aided in understanding the areas where the models excelled or required improvement. 

The proposed binary classification model showcased impressive outcomes, with AUC scores reaching up to 95.7, 
indicating an excellent ability to distinguish between classes. Furthermore, it demonstrated commendable accuracy, 
precision, and recall scores across both 'benign' and 'attack' categories, suggesting a balanced and efficient performance. 

The proposed model for real-time intrusion detection in IoT networks requires computational resources for tasks such as 
KNN algorithm inference, dense neural network processing, and real-time monitoring of network traffic. In resource-
constrained IoT environments, optimizations such as model trimming and distributed processing may be necessary to 
meet these requirements. Careful consideration of trade-offs between model complexity, detection accuracy, and resource 
constraints is essential for practical deployment in large-scale IoT networks. 

While the study yielded largely positive results, it also highlighted areas that could benefit from further enhancement. 
Future endeavors should explore more sophisticated oversampling techniques or alternative methods for addressing class 
imbalance. Moreover, given the model's success in predicting certain attack types, a more in-depth investigation into the 
significance of these classifications could provide valuable insights 
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