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ABSTRACT  

 
The integration of Industry 4.0 technologies has paved the way for rapid advancements in smart, 
energy-efficient buildings. This research focuses on optimizing energy consumption in IoT-enabled 
infrastructures through the application of data-driven modeling techniques. A comparative analysis is 
conducted using several machine learning and deep learning models, including Random Forest (RF), 
Gradient Boosting (GB), Deep Neural Networks (DNN), and Artificial Neural Networks (ANN). 
These models are trained and validated using real-world datasets, with appropriate preprocessing 
methods applied to enhance data quality. Evaluation metrics such as Mean Absolute Error (MAE), 
Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Scatter Index (SI) 
are used to measure performance. The findings suggest that RF and GB models strike a practical 
balance between accuracy and computational efficiency, while DNN delivers the highest predictive 
accuracy but demands significantly more processing power. 
 

 

1. INTRODUCTION  

Integrated cutting-edge technologies like IoT, AI, and Big Data have transformed industries around the world in recent 
years thanks to Industry 4.0[1]. Buildings that are energy-efficient and smart are becoming increasingly important in a 
world that demands sustainable and intelligent infrastructure. IoT-enabled smart buildings are using AI-driven deep 
learning methodologies to optimize energy consumption and improve operational efficiency. Data analytics, predictive 
algorithms, and automation will enable us to coexist in harmony with energy sustainability and technological 
advancement in the future. AI-driven deep learning, IoT, and smart buildings are explored as synergies within Industry 
4.0, illustrating their combined potential to redefine energy efficiency and environmental responsibility in industrial and 
residential environments. Many industries, including energy management, have become more innovative due to artificial 
intelligence (AI) [2]. Global urbanization and climate change have made it increasingly important for urban areas and 
buildings to optimize energy efficiency [3]. In smart buildings, AI-driven technologies can reduce energy consumption, 
operating expenses, and environmental impact by using cutting-edge sensors and automation [4]. Artificial intelligence-
driven innovations extend not only to individual buildings but also to the development of smart urban areas that integrate 
digital technologies for energy efficiency and sustainability [5]. As this trend continues to grow, it is essential to 
understand how artificial intelligence and digital transformation can revolutionize energy efficiency practices [6]. This 
literature review investigates how smart buildings and metropolises are being transformed by AI-driven innovation. This 
paper examines the implications for urban development in the future of integrating AI and digital technologies into 
energy management systems, along with the advantages and challenges of integrating AI and digital technologies into 
energy management systems. As a result of the review, policymakers, urban planners, and technology providers will have 
greater insight into how AI-powered solutions can enhance the efficiency of the energy grid. Based on academic and 
industrial sources, it examines how artificial intelligence is impacting energy management. With the help of artificial 
intelligence and digital transformation, smart meters, building sensors, and weather data are being analyzed to improve 
energy management [7]; as a result of these technologies, predictive maintenance, real-time monitoring, and automated 
energy adjustments can be achieved to maintain comfort and functionality while optimizing energy use [8]. Integration 
ensures more efficient energy use and reduces waste, improving the overall efficiency of buildings' energy systems [9], 
[10]. Buildings and urban areas can benefit from this transformation as they will become more energy-efficient, 
sustainable, and adaptable to the demands of modern life. An overview of the progress being made in energy efficiency 
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through AI will be presented in the first half of the article, followed by a discussion of the drivers driving demand for 
better energy management systems. Smart buildings are being revolutionized by Artificial Intelligence (AI), particularly 
by optimizing energy usage and increasing operational efficiency [11], [12]. Using Artificial Intelligence (AI) to predict 
maintenance, adjust control, predict loads, create demand response strategies, and analyze occupancy and behaviour is 
revolutionizing energy management in modern buildings [13]. The use of AI in smart HVAC systems, energy-saving 
algorithms, and occupancy monitoring can significantly reduce energy costs and improve building performance. 

2. RELATED WORK  

There are significant gaps in the literature despite the use of artificial intelligence and the Internet of Things (IoT) in 

optimizing energy systems. Despite offering valuable insights, [14] and [15] indicate areas that need more investigation. 

A useful method for detecting faults in wind farms is to use AI-assisted inspections, as discussed in this article. It focuses 

primarily on human-AI interactions, neglecting the wider human factors in AI adoption. The effectiveness of AI in 

maintenance settings can be affected by a variety of factors, including user interfaces, training protocols, and cognitive 

load [16]. Furthermore, integrating human expertise with AI-driven decision-making tools across different sectors could 

offer deeper insights into improving predictive maintenance. Author [14] discusses the impact of artificial intelligence on 

renewable energy, including predictive maintenance and energy optimization [6]. When managing intermittent energy 

sources such as wind and solar, it is still unclear whether different AI methods are more effective than those when 

managing more stable energy sources. Integrated grid technologies and emerging AI technologies need to be explored 

further to overcome these challenges[17]. 

The author [15] focuses on how artificial intelligence and neural networks can be used to forecast solar energy. However, 

the authors' recommendations on forecasting techniques and standardized datasets are still far from being implemented. 

In the study, benchmarking and standardized evaluation methods are emphasized, but no detailed strategies are provided 

for integrating them into practice. There is a need to develop frameworks for standardizing datasets and evaluation 

metrics, making sure that these standards are applied consistently across different forecasting models and applications in 

the future. In the same way as traditional machine learning approaches, deep learning approaches rely heavily on data in 
order to optimize their hyperparameters. In the same way as traditional machine learning approaches, deep learning 

approaches rely heavily on data in order to optimize their hyperparameters.  

Author [18], used LSTM to develop a prediction model for renewable energy production. South Korea's renewable 

energy supply was estimated using a hybrid model combining LSTMs and variation autoencoders [19]. Wind energy 

utilization was predicted by the author through the use of a nonlinear mapping system [20]. Researchers in [21] evaluated 

the performance of LSTMs, RNNs, and GRUs in energy utilization forecasting. LSTM-RNNs, such as the one used in 

this study, are capable of improving individual neural networks' prediction ability [22]. There are several areas where the 

authors [23] have shown considerable promise to promote sustainability. Artificial intelligence and deep learning are 

discussed in this article, emphasizing their contribution to the Sustainable Development Goals. AI and DL are discussed 

in this article, emphasizing their contribution to the Sustainable Development Goals[24]. The article discusses recent 

developments in AI and DL, emphasizing how these technologies contribute to the Sustainable Development Goals. In 

spite of these rapid developments, strict regulations are required to ensure that these technologies are ethical, safe, and 

transparent. With the help of artificial intelligence and deep learning, renewable energy systems remain stable. Moreover, 

they may aid in improving waste management and predicting the performance of solar power plants. In the field of 

environmental health, AI and DL are useful for predicting illness, enhancing exposure modelling, and analyzing complex 

geographical data. Although these developments have been made, a number of issues still need to be addressed. Data 

scalability, high dimension, ethics, privacy, and understanding and utilizing AI and DL models transparently are some of 
the critical issues that must be addressed. As part of the implementation of these technologies, it will be necessary to 

address the following important issues. As technology advances, engineering and construction businesses are being 

impacted by big data. In response to this confluence, two paradigms have emerged: Intelligent Construction 4.0 and 

Sustainable Construction 5.0 [25]. Building processes are made more efficient and sustainable by using big data, 

sophisticated computational models, and IoT technologies. In 4.0 and 5.0, construction is integrating and becoming more 

intelligent by relying heavily on data-driven decision-making and automation. 

3. METHODOLOGY 

In India, efforts are being made to increase the efficiency of buildings. As part of the National Mission for Enhanced 

Energy Efficiency, the Government approved a policy in 2009. The Energy Conservation Building Code (ECBC) has 

been adopted by the Ministry of Power and Bureau of Energy Efficiency (BEE), and a minimum building standard was 
established in 2007 [26]. A mandatory ECBC will be implemented in upcoming years by the Ministry of Urban 

Development and the Bureau of Economic Empowerment. Furthermore, the Ministry of Environment and Forests 

undertakes environmental projects in addition to environmental impact assessments. Environmental impact assessments 
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are just one of the environmental projects undertaken by the Ministry of Environment and Forests. GRIHAs (integrated 

habitat assessments) are the responsibility of the Ministry of New and Renewable Energy. A three-star building will 

receive Rs. 2.5 lakhs, a four-star building will receive Rs. 5.0 lakhs and municipal corporations may receive Rs. 50 lakhs 

for a five-star building. 

3.1.  Energy Conservation Building Code (ECBC) 

Energy conservation building code (ECBC) is a standardization guide prepared by India's Ministry of Power. The ECBC 
provides energy efficiency guidelines for buildings as one of its key functions. Buildings with ECBC are estimated to 

consume 40 to 60% less energy than those without. In addition to buildings with more than 500kW of load, ECBC 

applies to complexes of buildings as well. In general, buildings or complexes with an area of more than 1000 m2 belong 

to this category [26], [27]. 

3.2.  Data sizes 

We collected energy consumption data from two weeks [28] to 4-year energy [29], [30]. If you process a small dataset, 

you might not get a representative sample, and if you process a large dataset, you may have to spend a lot of time 

calculating results. In 56% of the studies, datasets were 1 month or longer. In 9%, they were shorter than 1 month, and in 

31%, they were longer.. 

3.3.  Data preprocessing 

In order to avoid problems with inaccurate or inconsistent data, it is essential to preprocess data before using it [30]. As 

part of preprocessing, data may be cleaned, integrated, transformed, and/or reduced. Data cleaners correct (complete, 
modify, replace, and/or remove) information that is incomplete, inaccurate, irrelevant, or noisy. Sensor data is typically 

noisy and incomplete, for instance [31]. Integrating data from multiple sources involves combining them. The outdoor 

weather conditions and hourly electricity consumption data for training and testing, for instance, come from different 

sources. An algorithm for learning transforms data into the format it needs. It is possible to normalize, smooth, aggregate, 

disaggregate, and/or generalize data. Reducing the dataset can make a machine learning algorithm more efficient and 

improve its performance by removing non-discriminating features. Data reduction can also be achieved using kernel 

component analysis (KPCA) instead of principal component analysis (PCA). For instance,[32] used PCA and KPCA to 

reduce the data's dimensionality and compared SVM presentation with PCA, SVM performance with KPCA, and SVM 

performance without any data reduction. C-means clustering was also compared with fuzzy C-means (FCM), fuzzy 

SVM, and FCM-SVM. 

3.4.  Machine Learning Algorithm 

Analyzing input data and making predictions from it is the purpose of a machine learning algorithm. It is generally the 

case that these algorithms make more accurate predictions as new data is fed into them. While there are some variations 

in how to categorize machine learning algorithms, they can generally be categorized by their purposes and how they are 

taught. 
XGBoost Machine Learning: The purpose of this section is to illustrate how a decision forest can be used to generate an 

appropriate decision tree. Forest-based trees (FBT) are extended and refined in the presented method [33]. Combination 

set generation has been refined, allowing multiple building blocks to be included in the decision forest. The data 

properties were refined to consider them parallel to the previously trained trees' dependencies on the base trees. As 

opposed to its previous version, which focused on ensembles with independent base models (such as random forests and 

extra trees), the present method addresses ensembles with dependent base models. The method needs to be adjusted in 

order to take into account the relationship between the source decision forest and the original training set instead of 

focusing solely on its internal structure. Further, the user can adjust the maximum tree depth to achieve an optimal 

balance between prediction performance and tree complexity. 

 

This observation has (𝑥, 𝑦) being an m-dimensional vector of m features, 𝑦 ∈ [0, 𝐶] being a target variable, and 𝐶 being 

the number of classes. A decision forest 𝑓 is built by aggregating the K base tree outputs for a given feature vector 𝑥 

using g, which generates class probability vectors on the basis of 𝐾 base trees {𝑇1 , … . , 𝑇𝑘}. A trained decision forest can 

be used to infer new instances by following the steps below: 

𝑓𝑥 = 𝑔({ℎ𝑖[𝑥]……ℎ𝑘(𝑥)})                                                                                     (1) 

A forest's type determines 𝑔 functionality. A random forest would calculate G using the average of a base tree's 

probabilities, while an XGBoost would compute G by maximizing the base tree's logarithms. As an input, 𝐹 is used to 

generate a new tree 𝑇 with the following approximate predictive performance: 

∀𝑥, 𝑡𝑥 ≈ 𝑓𝑥                                                                                             (2) 
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By making decision trees interpretable without compromising their predictive performance, this method expands the 

toolbox of machine learning practitioners. According to their main premises, both decision trees and decision forests are 

finite conjunctive rules. A new [33] is updated to be compatible with GBDT, allowing users to control prediction 

performance and complexity better. 

Random Forest: Random Forests (RF) are ensemble classifiers made up of many DTs, just like forests are made up of 

many trees [26]. When deep DTs are trained, they are often overfit to the training data, causing a high variation in the 

classification outcome. Due to their sensitivity to training data, they make mistakes in testing. Training datasets are 

divided into different parts and used to train different DTs of an RF. Every DT of a forest must pass down a new sample's 
input vector for classification. The classification results are then determined by each DT taking into account a different 

part of the input vector. For discrete classifications, the classification is chosen based on which tree has the most votes 

(for numeric classifications, the average of all trees is used). RF algorithms take into account the outcomes from many 

different DTs, reducing the variance caused by considering a single DT per dataset. This figure illustrates how the RF 

algorithm works. 

3.5.  The Generalized Linear Model 

As a result of combining the systematic and random components of our model, we have finally produced a generalized 

linear model. The characteristics of this are as follows:  

• Section 1.1 describes dependent variables 𝑧 whose distributions have the parameter 𝜃 

• An independent variable 𝑥1, . . . , 𝑥𝑚 and a predicted variable 𝑌 = ∑ 𝛽𝑖𝑥𝑖 (see Section 1.2) 

• An 𝜃 = 𝑓(𝑌) linking function connecting the 𝑧 parameters with the linear model's 𝑌 parameters 

𝜃 =  𝑌 corresponds to 𝜃, 𝜎2, and when 𝜃 =  𝑌 corresponds to normal errors in a linear model 

The various exponential distribution types will be described in Section 3, along with other examples of these models. As 

the next step, we will use iterative weighted least squares to solve the maximum likelihood equations for the parameters 

of the generalized linear models. 

3.6.  Artificial Neural Network (ANN) 

As a test dataset (RT), ANN is used to detect the fitness of each particle based on an accurate classification of records. 
Test records can be selected randomly from the entire dataset; however, in this study, only high-ranking records are 

considered. This dataset now includes a 'ranking' column to help identify high-ranking records. Rank is incremented if 

this record is included in the dataset received. To determine the accuracy of classification, RTs determine how many 

records are used. An adaptive neural network is proposed as a tool for learning. A proposed PSO's evaluation process 

includes both past and future experiences with the proposed PSO. To improve its accuracy, the proposed ANN can be 

retrained as new datasets are created. Data is initially used to train the proposed ANN. Smart devices, like computers and 

smartphones, are used to conduct training. Once the ANN has been trained and its internal weights have been determined, 

it enters the running mode, which is where it makes decisions based on the sensors' readings and its weights. The new 

dataset is preprocessed and summarized when it appears. Once that is complete, adaptive ANN training will begin 

again. In Figure 1, we show the proposed structure for an adaptive ANN. The input layer and output layer sizes are 

adaptive, meaning they can be adjusted based on the data available. A fully interconnected ANN is proposed. Initially 

hidden layer units are connected to input layer units. Each unit in the first concealed layer has a connection to the next 

one, and so on. An ANN with sigmoid units is proposed. Construction of the sigmoid unit takes place. An input set is 

calculated linearly by the sigmoid unit's first part. A threshold is then stratified according to the computed value. With the 

help of the backpropagation algorithm, the proposed ANN was trained to remove the affluent diversity of nonlinear 

decisions. 

 
Fig. 1. Adaptive neural networks: a proposed structure. 
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Our reliance on backpropagation algorithms is due to their excellent results in many real-world applications. As part of 

the algorithm, the output value is compared with the target value and the squared error is reduced. An altered weight 

updating rule has been incorporated into the proposed ANN's backpropagation algorithm. Equation (3) shows how it is 

affected by momentum, another term: 

∆𝑤𝑖𝑗(𝑛) = 𝜂𝜎𝑗𝑥𝑖𝑗 + 𝛼Δ𝑤𝑖𝑗(𝑛 − 1)                                                                    (3) 

When 𝑛 is the loop iteration in the backpropagation algorithm, ∆𝑤𝑖𝑗(𝑛) is the calculated value to update the weight value, 

𝜂 , is a constant positive learning rate, 𝜎𝑗 is the error term of unit 𝑗, and represents the momentum that is constant between 

zero and one. When a momentum term is used, the wind will keep winding in the same direction as before. A local 

minima can also be dealt with using this method. Local minima are also remedied using another method. A proposal for 

an ANN is developed in multiple versions. The same dataset is used for both training and testing, but at the beginning of 

the process, random weights are applied. In the classification process, high-performing versions are selected. 

3.7. Support Vector Machine 

SVMs with support optimization are used when there are multiple data classes. Malicious and benign classes exist in our 

case. A training set 𝑥𝑡 ∈ 𝑅𝑛 has two classes 𝑖 = 1, … . . , 𝑙; 𝑥𝑖 , 𝑦 ∈ 𝑅𝑙, and 𝑦𝑙 ∈ {1, −1}, each representing an active local 

node. Equation (4) illustrates how SVM solves optimization problems [34]. 

min
𝑤,𝑏,𝜉

 
1

2
𝑤𝑇𝑤 + 𝑐 ∑ 𝜉𝑖

𝑙

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 
𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏 ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1, … . , 𝑙

                                                                   (4) 

Equation (4) indicates that 𝜙(𝑥𝑖) is mapped into a higher-dimensional space by 𝐶 > 0 and is a regularization parameter. 

Because the weights may have a high dimensionality, we solve the equation (2) [34]. 

min
𝛼

 
1

2
𝛼𝑇𝑄𝛼 − 𝑒𝑇𝛼

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜
𝑦𝑇𝛼 = 0

0 ≤ 𝛼𝑖𝐶, 𝑖 = 1, … . , 𝑙

                                                                    (5) 

A semidefinite vector 𝑒 = [1, ⋯ ,1]𝑇, an 𝑙 by 𝑙  positive matrix 𝑄, and a kernel function 𝑄𝑖,𝑗 ≡ 𝑦𝑖𝑦𝑗𝐾(𝑥𝑖, 𝑥𝑗)) are used in 

Equation (5). This section discusses our use of the kernel function. Equation (5) is solved first, then Equation (6) is 

solved to find the optimal value for 𝑤 

𝑤 = ∑ 𝑦𝑖𝛼𝑖𝜙(𝑥𝑖)

𝑙

𝑖=1

                                                                             (6) 

3.8. Deep neural networks (DNNs) 

As with IoT communication networks, DNN inference networks have multiple layers. The IoT nodes represent the 

shallow layers of the entire DNN, extracting the information that enables data transmission and, therefore, can be viewed 

as DNNs. Based on the information sent from the IoT nodes, the base stations and cloud represent the deep layers of the 

DNN, which infer. The compression function 𝐶𝑖(. ) and the inference function 𝑇(. ) can be learned simultaneously using 

machine learning. In a DNN, layers are designed with and include the number of neurons in each layer. Following that, 

the DNN is taught its model parameters based on the compression and inference functions.  

An example of a fully connected layer would be a function 𝜎(𝑊𝑋𝑖𝑛
+ 𝑏), where 𝑥𝑖𝑛 indicates the input of this layer, 𝑏 

indicates its previous layer, and 𝜎(·) indicates the activation function, such as a sigmoid. If it is a fat matrix, the output 

will have a smaller dimension than the input, so the layer represents a compression; if it is a zero-dimensional matrix, it 

will create a high-dimensional vector by projecting a low-dimensional one. Composing multiple functions to represent 

each layer of the DNN is the first step in generating the compression and inference functions after the model parameters 

have been trained, as discussed in Section III.C. 

3.9. Evaluation settings 

A common statistical measure of the RF model's predictive performance in this study is the MAE, RMSE, and MAPE. As 

a normalization measure, the SI is calculated by combining the MAE, RMSE, and MAPE factors. These statistical 

measures are represented mathematically in equations (3) and (6) based on actual and predicted data. To evaluate the data 

mining tool WEKA, we used open-source software. We set the parameters of the RF model as follows. In accordance 

with the data mining tool's recommendation, batch sizes were set at 100. Prediction models are trained using the entire 

training dataset. 
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𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦 − 𝑦′

𝑦
|

𝑛

𝑖=1

                                                                                     (7) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦 − 𝑦′)2

𝑛

𝑖=1

                                                                               (8) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦′|

𝑛

𝑖=1

                                                                                 (9) 

𝑆𝐼 =
1

𝑚
∑ (

𝑃𝑖 − 𝑃𝑚𝑖𝑛,𝑖

𝑃𝑚𝑎𝑥,𝑖 − 𝑃𝑚𝑖𝑛,𝑖

)

𝑚

𝑖=1

                                                                         (10) 

𝑦′ and 𝑦 represent predicted and actual data for hourly energy consumption; n characterizes the size of the data; m 

represents the number of performance measures; and Pi = 𝑖𝑡ℎperformance. 

4. RESULTS AND DISCUSSION  

A comparison of six machine learning models is presented in Figure 2 using five performance metrics: SI, MAPE, 

RMSE, MAE, and execution time. In spite of its high accuracy and low error rate, DNN has a very long execution time. 

Contrary to this, GB and RF are highly efficient and accurate. In comparison to ANN, SVM and GENLIN are less 

accurate and take longer to run, while SVM provides a moderate balance between accuracy and computational cost. 

 
Fig. 2. An evaluation of machine learning models based on performance metrics and execution time. 

 

As shown in Figure 3, a comparison between predicted and true values is shown across 31 samples using the Support 

Vector Machine (SVM) model. A blue line represents predicted values, while a yellow line represents true values. 

According to the SVM model, in most cases, the predicted and actual values align closely. In some instances, however, 

the model will underestimate or overestimate the actual value, particularly around samples 15, 17, and 30. Despite SVM's 

ability to track the overall pattern, it has difficulty predicting sudden fluctuations or peaks in data. 

 
Fig. 3. Comparing the predicted value with the true value (using SVM). 
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Based on 31 samples, figure 4 shows the comparison between predicted and true values with Gradient Boosting (GB). A 

close correlation exists between predicted and true values, capturing both trends and sharp fluctuations as accurately as 

possible. With minimal deviations, the GB model provides accurate and reliable predictions. 

 
Fig. 4. GB will be used to compare the true values with predicted values. 

 

An example of using the Generalized Linear Model (GENLIN) across 31 samples is shown in Figure 5. Generally, the 

predicted values tend to follow the true values, but there are some noticeable deviations, particularly around samples 19 

and 26, where the model significantly underestimates the actual values. As a result, GENLIN is less efficient in scenarios 

with high variability since it suffers from difficulties predicting sudden fluctuations or outliers. 

 
Fig. 5. Comparing predicted and actual values (with GENLIN). 

 

Based on 31 samples, figure 6 compares predicted and true values based on the Deep Neural Network (DNN) model. 

Predicted values are close to true values, shown in yellow, indicating an accurate model. In addition to capturing overall 

trends, the DNN captures sharp variations like peaks around samples 2, 7, and 18. As a result of these close alignments 

across most of the samples, the DNN model was able to learn and replicate complex patterns in the data, providing highly 
accurate predictions. 

 
Fig. 6. In this example, we compare the predicted and actual values (using DNN). 
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As shown in Figure 7, 31 samples were used to compare the predicted and true values using Artificial Neural Networks 

(ANN) to optimize with Genetic Algorithms (GA). Blue indicates predicted values that are close to yellow values, 

demonstrating good predictive accuracy. A significant peak around samples 1, 3, 17, and 30 can be identified by the 

model, which effectively captures both the general trend and sharp fluctuations in the data. Based on this alignment, it 

appears that ANNs combined with GAs can learn complex patterns and make reliable predictions across a wide range of 

variables. 

 
Fig. 7. A comparison of the true value and the predicted value using ANN and GA. 

 

5. CONCLUSION  

The advancement of smart buildings under Industry 4.0 can be significantly enhanced by leveraging deep learning 

techniques to optimize energy efficiency. A comparative evaluation of various models revealed that Deep Neural 

Networks (DNNs) deliver the highest accuracy in forecasting energy consumption. However, their substantial 

computational requirements may limit their applicability in scenarios requiring rapid processing. In contrast, models like 

Gradient Boosting (GB) and Random Forest (RF) strike an effective balance between prediction accuracy and execution 

speed, making them more practical for real-time applications. Additionally, combining Genetic Algorithms (GA) with 

Artificial Neural Networks (ANN) has shown considerable potential, especially in handling complex and nonlinear 

energy consumption patterns. The integration of IoT and intelligent modeling approaches offers a path toward more 

sustainable and responsive building management. Moving forward, the development of hybrid modeling strategies, the 

use of more diverse datasets, and the inclusion of ethical considerations in algorithm design will be essential for creating 
smart, energy-conscious urban environments. 
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