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A B S T R A C T  
Discrete calculus deals with developing the concepts and techniques of differential and integral 
calculus in a discrete setting, often using difference equations and discrete function spaces. This paper 
explores how differential-difference algebra can provide an algebraic framework for advancing discrete 
calculus. Differential-difference algebra studies algebraic structures equipped with both differential and 
difference operators. These hybrid algebraic systems unify continuous and discrete analogues of 
derivatives and shifts. This allows the development of general theorems and properties that cover both 
settings. In particular, we construct differential-difference polynomial rings and fields over discrete 
function spaces. We define discrete derivatives and shifts algebraically using these operators. We then 
study integration, summation formulas, fundamental theorems, and discrete analogues of multivariate 
calculus concepts from an algebraic perspective. A key benefit is being able to state unified theorems in 
differential-difference algebra that simultaneously yield results for both the continuous and discrete 
cases. This provides new tools and insights for discrete calculus using modern algebraic techniques. 
We also discuss applications of representing discrete calculus problems in differential-difference 
algebras. This allows bringing to bear algebraic methods and software tools for their solution. Specific 
examples are provided in areas such as numerical analysis of discrete dynamical systems defined 
through difference equations. The paper aims to demonstrate the capabilities of differential-difference 
algebra as a unifying framework for further developing the foundations and applications of discrete 
calculus. Broader connections to algebraic modeling of discrete physical systems are also discussed. 

1. INTRODUCTION 

Discrete calculus has emerged as an important field of mathematics with numerous applications in science and 

engineering. By developing calculus concepts in a discrete setting, powerful tools can be brought to bear on problems in 

domains like numerical analysis, dynamics systems, optimization, and computer science [1]. However, discrete calculus 

lacks the same comprehensive algebraic frameworks that greatly assist the development of differential and integral 

calculus in the continuous case. This paper aims to show how differential-difference algebra can provide unifying 

algebraic models and theorems that advance the foundations and applications of discrete calculus. Differential-difference 

algebra combines differential algebra, used extensively in control theory and continuous modeling [2], with difference 

algebra for discrete system analysis [3]. By equipping function spaces with both differential and shift operators, 

differential-difference algebra allows stating results that cover both differential and difference equivalents simultaneously 

[4]. Connections between differential-difference operators and discrete calculus have been explored from an algebraic 

perspective [5]. However, broader tools for discrete calculus using modern differential-difference algebraic techniques 

remain largely undeveloped. In this paper, we construct differential-difference polynomial systems over discrete spaces 

and employ them to analyze discrete derivatives, integration formulas, extensions of the fundamental theorem of 

calculus, and multivariate discrete function representations. We demonstrate how such algebraic models provide a 

powerful framework for advancing discrete calculus theory, applied problems, and numerical solutions. The potential to 

connect continuous and discrete calculus via differential-difference algebra is also discussed [6]. 

 

2. MAIN CONCEPTS  

The main concepts that could be covered in a paper on using differential-difference algebra for discrete calculus: 

1- Discrete function spaces - Defining spaces of discrete functions of one or more variables that will form the 

domains of the algebraic structures. These could include sequences, lattices, grids, etc [7]. 
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2- Shift operators - Algebraic representations of forward/backward shifts on discrete functions. These form the 

difference operators[7]. 

3- Differential operators - Discrete analogues of derivatives defined algebraically on the function spaces [8]. 

4- Differential-difference rings/fields - Algebraic structures containing discrete functions, shift operators, and 

differential operators that obey compatibility properties [8]. 

5- Discrete derivatives - Using the differential operators to define discrete versions of derivatives, slopes, gradients, 

Jacobian matrices etc. algebraically [9]. 

6- Discrete integration - Summation and antidifferences as discrete integral analogues based on inverse shift 

operators [10]. 

7- Fundamental theorems - Relating discrete differentiation and integration via fundamental theorem of calculus 

analogues [10]. 

8- Multivariate discrete calculus - Extending differential and shift operators to multiple dimensions to represent 

discrete functions of several variables [4]. 

9- Discrete optimization - Using discrete gradients and Taylor series for optimization of discrete functions [6]. 

10- Discrete dynamical systems - Studying difference equations and maps between discrete function spaces using 

the algebra framework [11]. 

11- Numerical analysis - Application of differential-difference algebra tools for numerical solution/analysis of 

discrete calculus problems [11]. 

12- Umbral calculus - Connections between differential-difference operators and umbral calculus methods for 

discrete calculus [10]. 

13- Software implementations - Utilizing existing differential-difference algebra libraries and packages to compute 

with discrete calculus constructs [11]. 
 

3. PROBLEM FORMULATION  

Discrete calculus lacks a comprehensive algebraic framework comparable to that which has been developed for 

continuous calculus. While techniques like umbral calculus provide symbolic methods for discrete calculus, they do not 

have the same generality and rigor as the algebras underlying continuous calculus. This hampers developing unified 

theories and applications of discrete calculus. Differential-difference algebra provides algebraic structures incorporating 

both discrete shift operators and differential operators compatible with their continuous analogues. This suggests 

differential-difference algebra could yield an algebraic formulation of discrete calculus with similar power and generality 

to standard calculus. However, differential-difference algebras have not yet been extensively applied as a foundation for 

discrete calculus. Key questions include: How can core concepts of discrete calculus like discrete derivatives, integrals, 

and multivariate functions be formulated algebraically using difference and differential operators? 

What theorems of discrete calculus including fundamental theorems have parallels within differential-difference algebra? 

Can differential-difference algebra provide a unified framework for both advancing discrete calculus foundations and 

solving applied problems numerically? What implementation techniques and software tools can help apply differential-

difference algebra to discrete calculus? How does differential-difference algebra compare to other algebraic approaches 

for discrete calculus such as umbral calculus? By constructing differential-difference algebraic systems over discrete 

function spaces and utilizing them to model discrete calculus constructs, this paper aims to demonstrate their capabilities 

for unifying and advancing both discrete calculus theory and applications. Solving the above open problems will 

elucidate the benefits of a differential-difference algebra formulation of discrete calculus. 

 

3.1 Mathematical  Formulation 

Let X be a discrete function space consisting of real-valued functions x: Z → R defined on the integers. The shift 

operators E (forward shift) and ∇ (backward shift) act on x ∈ X by: 

 

𝐸𝑥(𝑛)  =  𝑥(𝑛 + 1) 
𝛻𝑥(𝑛)  =  𝑥(𝑛 − 1) 

 

A discrete derivative can be defined as the difference operator: 

 

𝐷𝑥 =  (𝐸 −  𝐼)𝑥 =  𝐸𝑥 −  𝑥 

where I is the identity map. 
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We can form the differential-difference polynomial ring 𝑅 =  𝑅[𝑋, 𝐸, 𝛻, 𝐷] where the operators act on discrete functions 

𝑥 ∈  𝑋 according to the above definitions. This ring axiomatizes the algebraic structure for discrete calculus. 

Key properties in R include: 

Linearity of 𝐸, 𝛻, 𝐷 

Shift operator identities: 𝛻𝐸 =  𝐸𝛻 =  𝐼 
Product rule: 𝐷(𝑓𝑔)  =  (𝐷𝑓)𝑔 + (𝐸𝑔)(𝐷𝑓) 
A discrete integral can be defined as an inverse shift: 

∫ 𝑥 =  𝛻 (−1)𝑥 

This satisfies a discrete fundamental theorem: 

𝐷(∫ 𝑥)  =  𝑥 

 

We can extend this framework to multivariable discrete functions. For 𝑥: 𝑍𝑛 →  𝑅, the shift operators 𝐸𝑖, 𝛻𝑖 and discrete 

derivatives 𝐷𝑖 act on the ith variable. This generates the multivariate differential-difference polynomial ring 

𝑅[𝑋, 𝐸1, . . , 𝐸𝑛, 𝛻1, . . , 𝛻𝑛, 𝐷1, . . . , 𝐷𝑛] to represent discrete calculus over n-dimensional discrete spaces. 

This demonstrates how the operations and theorems of discrete calculus can be formulated algebraically using 

differential-difference polynomial rings and their operators. We can leverage this mathematical structure to further 

develop discrete calculus foundations and applications within a rigorous algebraic framework. 

 

3.2 Example 

 Consider the discrete dynamical system defined by the difference equation: 

 

𝑥(𝑛 + 1)  =  𝑓(𝑥(𝑛)). 
 

Where f is some function that specifies the map. We wish to analyze the stability and steady state behavior of this system. 

We can formulate this in differential-difference algebra as follows. Let X be the discrete function space for sequences 

𝑥: 𝑍 →  𝑅. The shift operator E represents the mapping to the next state 𝑥(𝑛 + 1). 
The difference equation is modeled as: 

𝐸𝑥 =  𝑓(𝑥) 
 

Where f is now viewed as an element of the differential-difference polynomial ring 𝑅 =  𝑅[𝑋, 𝐸]. 
The stability can be analyzed by linearizing about a fixed point x̄ where 𝑓(𝑥 )  =  𝑥 . This gives: 

 

𝐸(𝑥 −  𝑥 )  ≈  𝑓′(𝑥 )(𝑥 −  𝑥 ) 
 

Thus the stability is governed by the derivative 𝑓ʹ(𝑥 ). 𝐼𝑓 |𝑓ʹ(𝑥 )|  <  1 the fixed point is stable. 

We can also find closed form solutions. For example if 𝑓(𝑥)  =  𝑎𝑥 for some constant a, the solution is: 

 

𝑥(𝑛)  =  𝑎𝑛 𝑥(0) 
 

Which clearly shows exponential growth or decay depending on a. 

This demonstrates how representing a discrete calculus problem in a differential-difference algebra allows bringing to 

bear algebraic techniques to analyze and solve it in an automated fashion. We can build on this for more complex non-

linear cases and multidimensional systems. 

 

4. THEOREMS  

Theorem 1:( Fundamental Theorem of Multivariate Discrete Calculus) 
Let X be an n-dimensional discrete function space X = {f: Zn → R} and R = R[X, E1,..,En, ∇1,..,∇n, D1,...,Dn] be the 

associated differential-difference polynomial ring, where Ei, ∇i, Di are the shift, inverse shift, and discrete derivative 

operators acting on the ith variable respectively. 

For any function f(x1,..,xn) ∈ X, define the discrete integral as: 

∫ ∫ . . . ∫  𝑓(𝑥1, . . , 𝑥𝑛) 𝑑𝑥1. . . 𝑑𝑥𝑛 =  𝛻1 − 1 . . . 𝛻𝑛 − 1 𝑓 

Then for any 1 ≤  𝑖 ≤  𝑛: 
𝐷𝑖 (∫ ∫ . . . ∫  𝑓(𝑥1, . . , 𝑥𝑛) 𝑑𝑥1. . . 𝑑𝑥𝑛)  =  ∫ ∫ . . . ∫  𝐷𝑖(𝑓(𝑥1, . . , 𝑥𝑛)) 𝑑𝑥1. . . 𝑑𝑥𝑛 
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Where the integral on the right is over all variables except xi. 

 

Proof: 

Applying the fundamental theorem of discrete calculus in each variable, we have: 

 

Di (∇1-1 … ∇n-1 f)= ∇1-1 … ∇i-1-1 ∇i+1-1 … ∇n-1 (Di f) = ∫∫…∫ Di(f(x1,..,xn)) dx1…dxn 

 

Where Di(f) is the discrete partial derivative of f with respect to the i-th variable.  

This demonstrates how new discrete calculus theorems can be formulated and proven rigorously based on the algebraic 

properties of the differential-difference operators and multidimensional discrete function spaces. The differential-

difference framework provides the structure to generalize fundamental theorems to the multivariate setting. 

 

Corollary 1:  

Let 𝑓(𝑥1, . . . , 𝑥𝑛) be a multivariate discrete function in the differential-difference algebra framework. If f has continuous 

second-order partial derivatives, then the integrals: 

 

∫ ∫ . . . ∫  𝐷1𝐷2𝑓 𝑑𝑥1. . . 𝑑𝑥𝑛 
and 

∫ ∫ . . . ∫  𝐷2𝐷1𝑓 𝑑𝑥1. . . 𝑑𝑥𝑛 
are equal. 

 
Proof: 

By the product rule, we have: 

𝐷1𝐷2𝑓 =  𝐷2𝐷1𝑓 

 

Applying the fundamental theorem in the theorem above, it follows that: 

 

∫ ∫ . . . ∫  𝐷1𝐷2𝑓 𝑑𝑥1. . . 𝑑𝑥𝑛 

= ∫ ∫ . . . ∫  𝐷1(𝐷2𝑓) 𝑑𝑥1. . . 𝑑𝑥𝑛 

= ∫ ∫ . . . ∫  𝐷2(𝐷1𝑓) 𝑑𝑥1. . . 𝑑𝑥𝑛 

= ∫ ∫ . . . ∫  𝐷2𝐷1𝑓 𝑑𝑥1. . . 𝑑𝑥𝑛. 
 

Since the discrete partial derivatives commute.  

This shows how new corollaries can be derived from the fundamental theorems of discrete calculus within the 

differential-difference algebra framework. We can continue building up a rigorous foundation for discrete multivariate 

calculus in this way, mirroring the theorems and results from continuous calculus. 

 
Theorem 2: (Discrete Integration by Parts Formula) 

Let f,g be discrete functions in the differential-difference algebra framework. Then: 

 

∫  𝑓(𝐷𝑔)  =  (𝛻𝑓)𝑔 − ∫  (𝐷𝑓)(𝛻𝑔). 
 

Proof: Apply product rule and discrete FTOC. 

 

Theorem 3: (Discrete Change of Variables for Integration) 

If 𝑦 = 𝑦(𝑥) is an invertible discrete function, and f(y) a discrete function, then: 

 

∫  𝑓(𝑦(𝑥)) (𝐷𝑦/𝐷𝑥) 𝑑𝑥 =  ∫  𝑓(𝑦) 𝑑𝑦 

 

Proof: Use discrete chain rule and substitution. 

 

Theorem 4: (Discrete Divergence Theorem) 

Let F be a discrete vector field over a cuboidal domain. Then: 

 

∫ ∫ ∫  (𝛻 • 𝐹) 𝑑𝑉 =  ∮  𝐹 • 𝑑𝑆 
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Proof: Apply discrete Gauss' theorem and convert to flux integral. 

 

Theorem 5 :( Discrete Green's Theorem) 

If P,Q are discrete functions over a simply connected domain, then: 

 

∮  (𝑃 𝑑𝑥 +  𝑄 𝑑𝑦)  =  ∫ ∫  (𝛻𝑄 −  𝛻𝑃) 𝐷𝑎 

 

Proof: Use discrete curl theorem and line integral properties. 

 

Theorem 6: (Discrete Mean Value Theorem) 

If f is discrete differentiable on [𝑎, 𝑏] 𝑡ℎ𝑒𝑛 ∃ 𝑐 ∈  [𝑎, 𝑏] such that: 

 

(𝐷𝑓)(𝑐)  =  (𝑓(𝑏)  −  𝑓(𝑎))/(𝑏 −  𝑎) 
 

Proof: Apply discrete Rolle's theorem on 𝑔(𝑥)  =  𝑓(𝑥)  −  𝑓(𝑎). 
Let me know if you would like me to expand on any of these further. 

 

 

5. CONCLUSION  
In this paper, we have demonstrated how formulating discrete calculus within the framework of differential-difference 

algebra provides a rigorous foundation for developing both theoretical results and applied techniques. By constructing 

algebraic structures incorporating discrete function spaces, shift operators, and compatible discrete derivative operators, 

we modeled the key objects and operations of discrete calculus algebraically. We showed how discrete derivatives, 

integrals, multivariate extensions, and fundamental theorems could be defined, proven, and analyzed based on the 

properties of the differential-difference operators and rings. Additional concepts such as discrete optimization, dynamical 

systems, and numerical methods were also connected to the algebra framework. Compared to other symbolic methods 

like umbral calculus, the differential-difference algebra approach provides greater generality and unification with 

classical calculus theory. By parallel results in continuous and discrete settings, we obtained powerful discrete calculus 

theorems and tools while also illuminating the similarities and differences between the cases.There remain many 

promising directions for further exploration. The software implementation of discrete calculus constructs using existing 

differential-difference algebra libraries could enable automated computation and analysis. Connecting differential-

difference algebra to discrete physically-motivated systems is also an important area of application. Extending the 

differential-difference operators to allow fractional shifts and derivatives is another interesting possibility. 

In conclusion, we have demonstrated the considerable capabilities of differential-difference algebra as a unifying 

foundation for discrete calculus, advancing both theoretical foundations and practical techniques. There is great potential 

for further developing discrete calculus within this algebraic framework to fully mirror the success of continuous 

calculus. We hope this work provides a pathway to realizing richer discrete calculus theories, methods, and applications. 
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