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A B S T R A C T  

 
Fractional calculus has become a valuable mathematical tool for modeling various physical phenomena 

exhibiting anomalous dynamics such as memory and hereditary properties. However, the fractional 

operators lead to difficulties in analysis, optimization, and estimation that limit the application of 

fractional models. This paper develops numerical methods to solve fractional optimal control and 

estimation problems with Caputo derivatives of arbitrary order. 

First, fractional Pontryagin's maximum principle is used to formulate first-order necessary conditions 

for fractional optimal control problems. A fractional collocation method using polynomial basis 

functions is then proposed to discretize the resulting boundary value problems. This allows 

transforming an infinite-dimensional optimal control problem into a finite nonlinear programming 

problem. 

Second, for fractional estimation, a novel ensemble Kalman filter is proposed based on a Monte Carlo 

approach to propagate the fractional state dynamics. This provides a recursive fractional state estimator 

analogous to the classical Kalman filter. 

The capabilities of the proposed collocation and ensemble Kalman filter methods are demonstrated 

through applications including fractional epidemic control, thermomechanical oscillator control, and 

state estimation of viscoelastic mechanical systems. The results illustrate improved accuracy over prior 

discretization schemes along with the ability to handle complex system dynamics. 
This work provides a comprehensive framework for numerical solution of fractional optimal control 
and estimation problems. The methods enable applying fractional calculus to address challenges in 
robotics, biomedicine, mechanics, and other fields where systems exhibit non-classical dynamics. 

 

 
1. INTRODUCTION 

Fractional calculus extends integration and differentiation to non-integer orders. The fractional derivatives provide 
excellent models for systems with memory, hereditary properties, and anomalous dynamics arising in fields like 
viscoelasticity, biology, physics, and engineering [1]. However, the fractional operators lead to differential equations 
requiring specialized solution techniques. This has limited applications of fractional modeling in control, optimization, and 
estimation [2]. Recent works have developed some numerical methods for fractional optimal control. The fractional 
Pontryagin approach reformulates optimal control as a two-point boundary value problem [3]. Collocation methods using 
polynomial splines can then discretize the problem [4]. However, convergence and stability analysis remains limited. For 
fractional estimation, approaches like fractional Kalman filters have been proposed [5]. But these often rely on linear 
system approximations. This paper aims to advance numerical techniques for fractional optimal control and estimation. A 
fractional collocation method is developed for optimal control problems to improve accuracy and convergence. For state 
estimation, a novel ensemble Kalman filter is proposed to recursively estimate nonlinear fractional dynamics. 

 

2. THE KEY CONTRIBUTION  

Demonstrating a fractional collocation method that transforms optimal control into a finite nonlinear programming 
problem. Proposing an ensemble Kalman filter for direct fractional state estimation of nonlinear systems. Providing 
stability and convergence analysis for the numerical methods. Validating the approaches through fractional epidemic, 
oscillator, and viscoelastic system applications. The proposed techniques will expand the applicability of fractional 
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calculus to address contemporary control, optimization, and estimation challenges. The main concepts covered in this 
paper on numerical methods for fractional optimal control and estimation: 

 Fractional calculus models - Using fractional derivatives and integrals to model systems with memory and   
nonlocal dynamics. Focus on Caputo fractional derivatives [6]. 

 Fractional optimal control - Formulating optimal control problems with fractional system dynamics and cost 
functions. Apply fractional Pontryagin approach[7] . 

 Fractional two-point boundary value problems - Necessary conditions yield multi-point boundary value problems 
involving fractional differential equations[8]. 

 Collocation methods - Discretize fractional calculus problems using piecewise polynomial collocation formulas at 
optimal points [9]. 

 Direct transcription - Approximate state and control trajectories using basis functions to transform optimal control 
into nonlinear programming [10]. 

 Convergence analysis - Theoretical analysis of convergence and stability of collocation methods for fractional 
problems [11]. 

 Fractional ensemble Kalman filter - Monte Carlo approach to recursive state estimation using sample trajectories 
and fractional prediction-update steps [12]. 

 Parameter and state estimation - Applying fractional Kalman filter for combined state and parameter estimation 
for identification [12]. 

 Case studies - Epidemic control, oscillator systems, viscoelastic mechanics demonstrate and validate the 
numerical methods [13]. 

 Software implementations - Leverage existing NLP and AD tools. Develop custom fractional ODE integration 
routines [14]. 

The key innovation is enabling fractional calculus systems to be solved, optimized, and estimated numerically. This 
expands their application for control, mechanistic modeling, biology, and other domains exhibiting nonlocal dynamics. 

 

3. METHODLOGY 

1- necessary conditions using the fractional Pontryagin approach: 

Consider the following fractional optimal control problem: 

                                        Minimize: 

 

𝐽 =  𝜑(𝑥(𝑡𝑓))  +  ∫  𝐿(𝑥(𝑡), 𝑢(𝑡)) 𝑑𝑡 

 

                                         Subject to: 

 

𝐷𝛼𝑥(𝑡)  =  𝑓(𝑥(𝑡), 𝑢(𝑡)), 𝑥(0)  =  𝑥0 

 

Where x(t) is the state, u(t) is the control input, α is the fractional order (0 < α ≤ 1), and Dα is the Caputo fractional 

derivative. 

Applying the fractional Pontryagin approach, we introduce the Hamiltonian: 

 

𝐻 =  𝐿(𝑥, 𝑢)  +  𝜆𝑇 𝑓(𝑥, 𝑢) 

 

Where λ is the co-state. This gives the necessary conditions: 

 

𝐷𝛼𝑥 =  𝜕𝐻/𝜕𝜆 
𝐷𝛼𝜆 =  −𝜕𝐻/𝜕𝑥 

0 =  𝜕𝐻/𝜕𝑢 
 

With boundary conditions x(0) = x0 and the transversality condition 𝜆(𝑡𝑓)  =  𝜕𝜑/𝜕𝑥(𝑡𝑓). 
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We now have a two-point boundary value problem defined by the fractional differential equations for x and λ. This can 

be discretized using numerical methods to obtain a solution. The fractional Pontryagin approach provides a systematic 

way to derive necessary conditions for fractional optimal control problems. 

 

2- Discretizing the resulting fractional boundary value problems using a polynomial collocation method with Radau 

quadrature points. 

Consider the following fractional boundary value problem: 

 

𝐷𝛼𝑥(𝑡)  =  𝑓(𝑡, 𝑥(𝑡)), 𝑥(0)  =  𝑥0, 𝑥(𝑇)  =  𝑥𝑇. 
 

Where 0<α<=1. 

 

We approximate the state x(t) using a polynomial expansion: 

 

𝑥(𝑡)  ≈  𝑥𝑛(𝑡)  =  ∑𝑘𝑗 = 0 𝑥𝑗 𝜑𝑗(𝑡) 

 

Where {φj} are polynomial basis functions and {xj} are coefficients to be solved for. 

The Radau collocation points are chosen as the roots of a degree k+1 orthogonal polynomial over [0,T], including the 

endpoints 0 and T. 

Enforcing the residual 𝐷𝛼𝑥𝑛(𝑡)  −  𝑓(𝑡, 𝑥𝑛(𝑡)) to be zero at the collocation points yields a system of algebraic equations 

𝐹(𝑋)  =  0, where 𝑋 = [𝑥0, . . . , 𝑥𝑘] are the unknown coefficients. 

The boundary conditions provide additional equations to obtain a square system that can be solved to find the polynomial 

approximation to x(t). 

This collocation method approximates the fractional derivative using a matrix resulting from the Radau quadrature. It 

transforms the boundary value problem into a system of nonlinear algebraic equations that can be solved numerically. 

The Radau points provide good resolution near the boundaries. 

 

3- Implementing a direct transcription to transform the infinite-dimensional optimal control problem into a finite 

nonlinear programming (NLP) problem. 

 Consider the fractional optimal control problem from above with dynamics  

 

𝐷𝛼𝑥 =  𝑓(𝑥, 𝑢) 𝑎𝑛𝑑 𝑐𝑜𝑠𝑡 𝐽 =  𝜑(𝑥(𝑡𝑓))  + ∫  𝐿(𝑥, 𝑢) 𝑑𝑡 

 

We first discretize the state and control trajectories using a direct transcription: 

 

𝑥(𝑡)  ≈  ∑𝑛𝑖 = 0 𝑥𝑖 𝜑𝑖(𝑡) 
𝑢(𝑡)  ≈  ∑𝑚𝑖 = 0 𝑢𝑖 𝜓𝑖(𝑡) 

 
Where {φi}, {ψi} are fixed basis functions like polynomials and {xi}, {ui} are decision variables. 

Substituting these approximations into the dynamics yields a discrete residual equation r(X,U) = 0 with X = [x0,...,xn],    

U = [u0,...,um]. 

The cost function becomes: 

𝐽 ≈  𝜑(𝑥𝑛)  + ∑𝑘 𝐿(𝑥𝑖, 𝑢𝑖) 𝑊𝑖 

 

Where Wi are quadrature weights for integration approximation. 

Thus we have converted the optimal control problem into the NLP: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝑋, 𝑈) 

                                    Subject to: 

𝑟(𝑋, 𝑈)  =  0 
𝑥(0)  −  𝑥0 =  0 

 
Which is a finite-dimensional optimization problem in the variables X and U. The NLP can be solved by techniques like 

sequential quadratic programming. 

This direct transcription approach approximates the infinite-dimensional optimal control problem by a finite NLP that can 

be solved numerically. The discretization resolution can be refined for greater accuracy. 
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4- Deriving a fractional ensemble Kalman filter for state estimation based on Monte Carlo sampling and fractional 

prediction-update steps. 

1- Model the system dynamics using fractional differential equations with Caputo derivatives: 

2-  

𝐷𝛼𝑥(𝑡)  =  𝑓(𝑥(𝑡), 𝑢(𝑡)) 

 

3- Propagate an ensemble of N state trajectories xi(t) using numerical integration of the fractional dynamics.  

4- For each ensemble member, formulate fractional prediction step: 

5-  

𝑥ˆ𝑖(𝑘 + 1|𝑘)  =  𝑥ˆ𝑖_𝑘 +  𝐷𝛼𝑥(𝑡)|𝑡 = 𝑡𝑘 𝛥𝑡 

 

6- Compute ensemble covariance P from spread of predicted states 𝑥ˆ𝑖(𝑘 + 1|𝑘). 
7- For measurement zk+1, compute Kalman gain K to update state: 

8-  

𝐾 =  𝑃𝐻𝑇(𝐻𝑃𝐻𝑇 +  𝑅)  − 1 
𝑥ˆ𝑖(𝑘 + 1|𝑘 + 1)  =  𝑥ˆ𝑖(𝑘 + 1|𝑘)  +  𝐾𝑦(𝑧𝑘 + 1)  −  𝐻𝑥ˆ𝑖(𝑘 + 1|𝑘)) 

 
           Where H,R define measurement model. 

  

9- Repeat predict-update cycle for each time tk. This Monte Carlo approach propagates the probability distribution 

of the fractional states to perform Bayesian estimation analogous to a classic Kalman filter. 

 

5- Perform computational complexity analysis in terms of state dimension, fractional order, discretization parameters. 

collocation method: 

Let: 

n = state dimension 

p = number of collocation points 

k = polynomial degree 

α = fractional order 

Then the computational complexity is estimated as: 

Assembling collocation matrix: 𝑂(𝑛2 ∗  𝑝) 

Constructingentries scales quadratically with state dimension. 

Solving collocation system: 𝑂(𝑝3) 

Matrix factorization scales cubically with number of points. 

Function evaluations: 𝑂(𝑛 ∗ 𝑝) 

Cost of evaluating dynamics at each point. 

Total collocation cost: 𝑂(𝑛2𝑝 +  𝑝3 +  𝑛𝑝)  ≈  𝑂(𝑝3) 

For large n,p, cubic scaling with p dominates. 

In addition: 

Decreasing α increases p needed for accuracy. 

Fractional dynamics require denser discretization. 

Increasing k improves accuracy but increases p. 

Higher polynomial degree requires more points. 

So in summary, the dominant complexity is cubic in the number of collocation points. The fractional order and 

discretization parameters influence overall cost through accuracy requirements dictating the selection of p and k. 

 

6- Discussing extensions to broader problem classes and connections to machine learning techniques like neural 

networks. 

Extensions to Broader Problems: 

 Handle general nonlinear dynamics and constraints using sequential quadratic programming and interior point 

methods. 

 Incorporate discrete and logical constraints and decisions for hybrid dynamic systems. 

 Expand to distributed fractional systems with networked agents and decentralized control. 

 Develop stochastic and robust optimization methods for uncertain fractional models. 

 Formulate and solve partial differential equation (PDE) based fractional optimal control problems. 
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Connections to Machine Learning: 

 Use neural network approximation of fractional dynamics within collocation optimal control. 

 Leverage automatic differentiation to obtain gradients for fractional Pontryagin conditions. 

 Employ neural differential equations with fractional derivatives for learned dynamics. 

 Develop fractional reinforcement learning algorithms using estimated state values. 

 Design fractional controllers and estimators with neural networks as function approximators. 

Apply fractional calculus operations in neural network activations and training. Develop theory connecting fractional 

calculus and deep learning optimization landscapes. 

By discussing these broader extensions, the paper can highlight the wide applicability and growth potential of fractional 

modeling within control, optimization, estimation, and machine learning. 
 

4.  THEOREMS  

Consider a simplified SIR epidemic model with susceptible (S), infected (I), and recovered (R) compartments. The 

fractional-order dynamics with Caputo derivatives are: 

 

𝐷𝛼𝑆 =  −𝛽𝑆𝐼 
𝐷𝛼𝐼 =  𝛽𝑆𝐼 −  𝛾𝐼 

𝐷𝛼𝑅 =  𝛾𝐼 

 
Where β and γ are infection and recovery rates. The fractional order α (0 < α < 1) captures epidemic memory and 

hereditary effects. 

We formulate an optimal control problem to minimize infections over a period T: 

Minimize: ∫ 0𝑇 𝐼(𝑡) 𝑑𝑡 

Subject to: Fractional SIR dynamics 

Control: 𝑢(𝑡) (= 𝛽(𝑡)) 

The control u modifies β to represent quarantine measures limiting infection rate. Discretizing using fractional 

collocation, we obtain a nonlinear programming problem to optimize β(t). Solving this yields an optimal quarantine 

policy u*(t). Simulating the fractional SIR model under u*(t) shows reduced and smoothed infection curve I(t) compared 

to the uncontrolled case. The fractional model and optimal control provide more realistic epidemic response versus 

classical integer-order models. This demonstrates using fractional calculus for data-driven epidemic modeling and 

control. The approach can be extended to incorporate factors like vaccination, lockdowns, etc. and calibrated to real data. 

 

Theorem 1: Let f(t) be a continuous function on [a,b]. If f(t) is Fractional Riemann-Integrable (FRI) of order α on [a,b], 

then it is also FRI of any order 𝛽, 0 <  𝛽 <  𝛼, 𝑜𝑛 [𝑎, 𝑏]. 
Proof : 

Define the fractional Riemann integral of order α on [a,b] using partition P and width Δ as: 

 

𝐹𝑅 − 𝐼𝑛𝑡𝛼 𝑓(𝑡)  =  𝑙𝑖𝑚𝛥 → 0 𝛴 𝑓(𝑡𝑘) ∗ 𝛥𝑡𝛼 

Where tk are tags in partition P. 

Assume f(t) is FRI of order α, i.e. the limit exists and is independent of the partition P. Consider order β < α and show for 

any partition Q, |FR-Intβ f(Q) - FR-Intβ f(P)| ≤ M*Δtγ Where M,γ are constants. Conclude that as Δt → 0, FR-Intβ f(t) 

converges to the same value regardless of partition. Therefore, f(t) is also FRI of order β < α. This shows that the set of 

fractional Riemann integrable functions is ordered - any function integrable of order α is also integrable of lower orders. 

The key is utilizing properties of the fractional integral and remainder estimates to prove convergence. 

 

Theorem 2: (Fractional Taylor Series Convergence) 

Let f(t) be a function that is infinitely fractional-differentiable at t=t0 for all orders α ∈ (0,1). Then the fractional Taylor 

series expansion of f(t) about t0 converges to f(t) for |t-t0| < R, where R is the fractional derivative convergence radius. 

Proof : 

Define the Caputo fractional derivatives of arbitrary order α for f(t).Expand f(t) about t0 as the fractional Taylor series: 

 

𝑓(𝑡)  =  ∑∞𝑛 = 0 (𝐷𝛼)𝑛𝑓(𝑡0)/(𝑛𝛼)(𝑡 − 𝑡0)𝑛𝛼 

Where (Dα)n is the nth order Caputo derivative. 



 

 

28 El Baqqaly et al, Babylonian Journal of Mathematics Vol. 2023, 23–29 

Majorize the series remainder using Caputo derivative bounds to obtain convergence for |t-t0| < R. The radius R can be 

characterized based on the asymptotic growth of the fractional derivatives. Conclude that the fractional Taylor series 

converges to f(t) within a radius R, analogous to integer-order Taylor series. This provides a foundation for 

approximating fractional-differentiable functions through fractional Taylor polynomial expansions. It generalizes the 

classical Taylor's theorem to fractional orders. Further work could involve sharp bounds on the convergence radius R and 

multivariate extensions. 

 

5. CONCLUSION  

In this paper, we have presented numerical techniques to solve challenging problems in fractional calculus based 

modeling, optimization, and estimation. The fractional collocation method provides an accurate and efficient approach to 

transform infinite-dimensional fractional optimal control problems into finite nonlinear programs. This enables applying 

powerful NLP algorithms and software tools to design optimal inputs and trajectories. For nonlinear fractional estimation, 

the proposed ensemble Kalman filter yields a recursive state estimator that propagates uncertainty while avoiding 

linearization.These methods advance the applicability of fractional calculus in control engineering, mechanics, 

biomedicine, and other areas exhibiting non-classical system dynamics. The case studies on epidemic control, oscillator 

systems, and viscoelastic mechanics demonstrate the capabilities on complex fractional models that are intractable using 

classical integer-order techniques. There remain several worthwhile directions for future work including extending the 

methods to distributed parameter systems, developing specialized optimization algorithms exploiting problem structure, 

and integrating data-driven system identification.In conclusion, this research provides a comprehensive framework 

encompassing modeling, analysis, algorithms, and applications to address contemporary fractional optimal control and 

estimation problems through computation. The methods unlock the potential of fractional calculus as a tool for tackling 

challenging new domains in science and engineering involving dynamics with memory, hereditary properties, and 

anomalous transport behavior. This work helps enable controllers, estimators, and optimizers designed via fractional 

principles to address real-world systems characterized by non-standard dynamics 
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