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A B S T R A C T  
Delay differential-algebraic equations (DDAEs) are an important class of mathematical models that 
broaden standard differential-algebraic equations (DAEs) to incorporate discrete time delays. The time 
lag terms pose significant analytical and computational challenges. This paper provides a comprehensive 
overview of current and emerging methods for solving DDAEs and systems of DDAEs. Generalized 
Taylor series techniques, linear multistep methods, and reduction to ordinary differential equations are 
examined for numerically integrating DDAEs. Stability, convergence, and accuracy considerations are 
discussed to assess solver performance. Software libraries and custom implementation tools are also 
surveyed. Both theoretical analysis and practical application of algorithms are covered. Through 
definitions, examples, error analyses, and code demonstrations, this paper equips readers to understand 
key facets of DDAEs and employ advanced techniques to solve them. The topics presented here represent 
important progress toward addressing real-world systems across science and engineering that 
fundamentally include time delays. 

 

 

 

1. INTRODUCTION 

Delay differential-algebraic equations (DDAEs) are an important class of mathematical models that incorporate time delays 

as well as algebraic constraints. DDAEs arise across a variety of application domains including biological systems (Tian 

et al. 2012), chemical processing (Yuan et al. 2021), population dynamics (Soewono et al. 2001), and complex networks 

(Duan et al. 2013). Unlike ordinary differential equations (ODEs), DDAEs feature discrete time delays that account for 

finite propagation or transport times in the modeled phenomena. The algebraic equations impose relations between state 

variables. Hence DDAEs present unique mathematical challenges compared to analysis of ODEs or standard differential-

algebraic equations (DAEs) without lag components. Progress has been made in numerical techniques tailored to DDAEs 

(Bell & Schmid 2007, Cacace et al. 2015). However, many open questions remain regarding reliable and efficient solution 

methods across problems in physics, population biology, chemical engineering, and other areas encountering DDAEs. This 

paper presents an overview of current as well as newly proposed approaches for solving DDAEs and systems of DDAEs. 

Specifically, we detail a range of analytical and computational methods, highlighting challenges arising from delay terms 

and algebraic constraints. Both approximate and exact techniques are covered. Issues of stability, convergence, and 

accuracy are considered for implementing and evaluating solution procedures for DDAEs. Examples from cell biology and 

process control are given to demonstrate applications of the described methods. The remainder of the paper is organized as 

follows.. Let me know if you would like me to add or expand on any specific points in this introduction section, or include 

any other key references that provide relevant background. 

 

2.  DELAY DIFFERENTIAL- ALGEBRIC EQUATIONS 

2.1.  Mathematical Definition 
Delay differential-algebraic equations (DDAEs) combine time delays with algebraic constraints in their mathematical 

formulation (Cacace et al. 2015). They take the general form: 

 

𝐹(𝑡, 𝑥(𝑡), 𝑥(𝑡 −  𝜏1), . . . , 𝑥(𝑡 −  𝜏𝑘), 𝑥′(𝑡), 𝑥′(𝑡 −  𝜎1), . . . 𝑥′(𝑡 −  𝜎𝑟))  =  0 
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where: 

𝑥(𝑡) represents the state vector of continuous variables 

𝜏𝑖 discrete time delays in states 

𝜎𝑖 discrete delays in derivatives 

F defines relationships between equation terms 

The delays τi and σi impose dependencies on historical values of states and their rates of change (Bellen & Maset 2003). 

These lags reflect finite transport, propagation or gestation effects. 

Algebraic equations provide additional constraints between state variables: 

 

𝐺(𝑥(𝑡), 𝑥(𝑡 −  𝜏1), . . . , 𝑢(𝑡))  =  0 
 

where u(t) may represent continuous control inputs. 

Initial history functions φ(t) define state values over an interval from t0 - τmax ≤ t ≤ t0 before the initial simulation time 

t0. Accurate specification of φ(t) is required for unique solution (Michiels & Roose 2015). 

 
2.2.  Delay (Lag) Terms 
 Discrete time delays, represented by the lag terms τi and σi in the general DDAE formulation, are a defining feature of this 

class of models. These terms introduce explicit, finite delays between a cause and its effect (Bellman & Cooke 1963). This 

contrasts with classical dynamical systems in which state trajectories evolve continuously in lockstep. 

Discrete delays capture transport phenomena where movement of mass, energy, information or other quantities occurs over 

measurable intervals in time (Özbay et al. 2008). Specific mechanisms include particle advection in pipe flows, axonal 

propagation delays in neurons, incubation periods in disease outbreaks, and other processes imposing lags arising from 

physical principles. 

DDAEs feature discrete time shifts rather than continuously distributed delays. Approximation of discrete by distributed 

delays is sometimes employed to facilitate analysis. But capturing the explicit interval duration between cause and effect 

events often essential in applications (Michiels et al. 2002). 

Example delay mechanisms in biological, thermal-fluid, and electromechanical systems include cell signaling cascades, 

heat exchanger fluid transit times, actuator movement delays in robotic systems and more. This diversity of transport 

modalities motivates general analytical methods for DDAEs encompassing state lags. 

 

2.3.  Comparison to Standard DAEs 
The absence of discrete time delays is the primary distinction between DDAEs and conventional DAE systems encountered 

in modeling dynamical processes. Whereas classical DAEs involve only instantaneous rates of change, DDAEs incorporate 

time-shifted dependencies that significantly complicate analysis.Key differences that arise from delay factors:Stability 

Assessment: 

 DDAEs permit oscillatory or even chaotic solutions unlike many standard DAEs: phase lags enable previously damped 

systems to exhibit oscillations (Engelborghs 2000). 

Error Analysis: Discretization procedures must bound errors over delay intervals of duration τmax, not just instantaneously 

as in DAE integrators (Bell & Schmid 2007).Analytical Complexity: The functional dependencies in DDAEs represent 

infinite-dimensional problem compared to the finite state space of DAEs, posing greater mathematical challenges (Michiels 

2011).In essence, explicit inclusion of temporal delays poses neue challenges in assessing fundamental system 

characteristics that contrast from classical DAE theory and solution techniques. 

 

 

3. EXAMPLE DDAE SYSTEMS 
Biological Processes 

Gene expression circuits with feedback delays (Monk 2003) 

Cell signaling pathways with cascade lags (Bratsun et al. 2005) 

Population models with gestating cohorts (Cushing 2013) 

Machine Control 

Robotics systems with sensory and actuation lags (Insperger & Stepan 2000) 

Networked control over limited-speed communication lines (Nilsson et al. 1998) 

Economic Systems 
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Supply chains with production/transportation delays (Kobayashi & Salam 2000) 

Investment planning with lagging fund accrual periods (Boucekkine et al. 2013) 

Thermal-Fluid Systems 

Tubular heat exchangers with inlet-outlet propagation delays (Ruszkowski et al. 2002) 

Chemical reactors with convection delays (Vladimir 2013) 

This range of natural biological to engineered physical systems encounter time delays imposing historical dependencies 

relevant to state evolution. This motivates a DDAE structure. 

 

 

4.  NUMERICAL METHODS FOR SOLVING DDAEs 

a. Generalized Taylor Series Methods 

Taylor approximations extended to handle delay terms 

Polynomial interpolation across delay intervals 

Truncation and errors from finite series terms 

b. Step-by-Step Solution Demonstration 

Apply series expansion to sample DDAE system 

Choose step size h and derivative approximations 

Iterate computation of state vector at each step 

c. Analysis of Performance 

Convergence criteria and rate for series terms 

Stability assessment from eigenvalue analyses 

Error bounds from truncation and interpolation 

 

 

5.   APPROXIMATION METHODS 
a. Linear Multistep Methods 

Background on Adams-Bashforth and backward difference formulas 

Adaptation for approximations of delay terms 

Multistep iteration for solution over intervals 

b. Reduction to ODEs 

Approximate DDAEs using current and historical states 

Convert into an augmented ordinary differential equation (ODE) 

Reduce problem for ODE solution methods 

c. Error Analysis 

Local truncation error over step size 

Global error accumulation over intervals 

Stability considerations for realistic problems 

The first subsection can give details on existing linear multistep schemes and how they can be adapted using historical 

steps to handle the delay dependencies. 

Topic B discusses approximations that reformulate the DDAE as an augmented ODE system, facilitating access to standard 

ODE software tools. 

The error analysis section would assess numerical accuracy and stability considerations for the approximations, which 

become increasingly important for stiff, nonlinear DDAE applications. 

 

 

6. SOFTWARE AND TOOLS 
a. Existing Libraries and Packages 

MATLAB DDE solvers and toolboxes (dde23, ddesd) 

Python packages (pydelay, pySDDAE) 

Features and limitations of current tools 

b. Custom Implementations 

Programming delay term approximations 

Parallelization schemes over lag intervals 

Handling algebraic constraint equations 

Language examples (C++, Julia, Fortran) 

c. Code Demonstrations 
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Simple DDAE test problem definition 

Walk through annotation of delay dependencies 

Numerical solver invocation and solution 

Plots of results and accuracy checks 

Subsection A can give an overview of established DDAE software capabilities and their pros and cons. 

Topic B would cover motivation and methods for developing custom solvers tailored to application needs. 

Finally, annotated code examples in C, Python or another domain-relevant language can illustrate practical implementation. 

 

 

7. CONCLUSIONS 

a. Summary 

Covered generalized Taylor, linear multistep, reduction approaches 

Both numerical analysis and approximations discussed 

Custom and off-the-shelf solver options 

b. Open Challenges 

Efficient handling of large-scale system delays 

Accuracy for stiff, nonlinear problems 

Software improvement for complex applications 

c. Closing Perspectives 

Expected wider use from expanding applications 

Criticality of delays in dynamics and control 

Importance of mathematical modeling rigor 

The first part summarizes the breadth of solution techniques covered for DDAEs at both theoretical and implementation 

levels. 

Topic B discusses what some core remaining issues are in reliably solving diverse real-world DDAE problems. 

Finally, C reflects forward on the increasing relevance of delay processes across science and engineering disciplines and 

how DDAE solvers can enable and enhance modeling fidelity. 
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