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A B S T R A C T  
Reliability optimization is a critical aspect of modern engineering systems and products, particularly 
with the growing complexity and interconnectedness of systems. This paper delves into the 
significance of reliability optimization and the techniques employed to achieve it. It highlights the 
benefits of optimizing reliability, including reduced costs, enhanced customer retention, and a 
competitive advantage. The paper discusses the challenges of balancing performance, cost, and 
reliability, especially in real-world systems with intricate nonlinear interactions between 
subcomponents. It introduces various reliability optimization techniques, including redundancy 
analysis, physics-based models, accelerated testing, and data-driven methods. The paper emphasizes 
the potential of advanced sensing and AI-based methods for reliability optimization. It highlights the 
importance of AI in optimizing the design and management of complex cyber-physical systems (CPS), 
where failures can have severe economic and safety consequences. The paper also discusses the 
empirical review of over 50 studies since 2016, which provides insights into the effectiveness of 
various optimization approaches across industry verticals. In conclusion, reliability optimization is 
crucial for the development and operation of modern engineering systems and products. Advanced 
sensing and AI-based methods offer promising solutions for optimizing reliability in complex systems, 
particularly CPS. By systematically optimizing reliability, companies can reap significant benefits and 
ensure the successful operation of their products and services. 

 

 
 
1. INTRODUCTION 
Reliability optimization is increasingly important for modern engineering systems and products. As systems become 

more complex, with greater automation and connectivity, ensuring reliable operation is both challenging and critical [1]. 

Optimizing reliability has been shown to reduce costs from failures, prevent revenue losses from downtime, improve 

customer retention, and provide competitive advantage [2][3]. However, balancing tradeoffs across performance, cost and 

reliability for real-world systems requires navigating complex nonlinear interactions between subcomponents [4]. 

Techniques applied for reliability optimization include redundancy analysis [5], physics-based models [6], accelerated 

testing [7], and data-driven methods leveraging operational data [8][9]. While these approaches have merit, taking 

advantage of modern smart systems and advanced sensing for optimization remains an open opportunity [10]. Our 

systematic review examines the latest techniques, particularly AI-based methods, for optimizing design and management 

of complex cyber-physical systems where failures can have severe economic and safety impacts [11][12]. While existing 

surveys examine model-based [13] or component focused [14] reliability techniques, a comprehensive investigation 

comparing emerging data-driven methods is lacking. We conduct an empirical review of over 50 studies since 2016 

benchmarking optimization approaches across industry verticals. Our findings provide guidance on technique selection 

and avenues for impactful research to substantially improve system reliability[15-20].. 

 

2. MEHODOLOGY  

 Search Strategy 

We systematically searched six databases (IEEE Xplore, ASME, ScienceDirect, SpringerLink, Wiley Online Library, and 

Taylor & Francis Online) in November 2022 for peer-reviewed articles published between January 2016 and November 

2022. The following search string was used across all databases [21]: 
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("reliability optimization" OR "reliability-based optimization" OR "reliability based optimization") AND ("product" OR 

"system") AND ("machine learning" OR "deep learning" OR "neural network" OR "physics model" OR "simulation 

model")  

Additional targeted searches for specific methods were done using terms such as “finite element model”, “computational 

model”, “recurrent neural network”, “CNN”, “random forest” etc. Reference lists of included articles were hand searched 

for any missed relevant articles [22-25]. 

 

 Eligibility Criteria 

Studies were assessed for inclusion based on the following criteria: 

1. Published in English language 

2. Published between Jan 2016 to Nov 2022 

3. Peer-reviewed journal articles or conference papers 

4. Focus on data-driven or physics-based optimization approaches 

5. Target reliability of complex cyber-physical systems 

Grey literature, books, editorials, reviews, extended abstracts and non-peer reviewed articles were excluded. Meeting 

abstracts were also not included given lack of adequate details. 

 

 Study Selection and Data Extraction 

An initial list of 152 articles was obtained from the database search, additional white literature search and reference 

mining. After removing duplicates, two researchers independently screened the titles/abstracts of 134 articles based on 

the eligibility criteria, identifying 57 articles for full-text review. Finally, 42 studies were selected for inclusion in the 

systematic review after full-text assessment and any conflicts were resolved through discussion. 

A predefined data extraction form was used by the two reviewers to independently extract relevant data from the final set 

of included articles in order to minimize bias. Extracted parameters included publication date, system type, specific 

optimization method, objectives, performance metrics, datasets used, limitations and implications. 

 

 

3. ANALYSIS AND RESULTS  

 Publication Trends 

The 42 studies selected were published between 2016-2022, with over 50% published in the last 2 years indicating rising 

research interest. The selected papers spanned 15 different peer-reviewed journals and 14 conference proceedings, with 

the IEEE Transactions on Reliability and Annual Reliability & Maintainability Symposium dominating (Figure 1) [26]. 

[Figure 1: Number of selected studies by publication source] 

 

 Optimization Methods 

We categorized optimization approaches into model-based analytical methods, physics-based simulations, classical ML 

models, and Deep Learning (DL) models. Analytical models using reliability block diagrams and failure mode analysis 

were most common (35%), followed by DL-based methods (25%), physics simulations (22%) and classical ML (18%). 

Model-based methods provide interpretable system reliability models but rely on assumptions. Physics simulations 

capture complex component interactions but require extensive parameter tuning. Classical ML is limited by feature 

engineering needs and simplicity for complex spaces. DL methods are emerging as most promising by automatically 

learning features but can be data-hungry and lack interpretability[27]. 

 

 Key Findings 

Our review revealed four major gaps in existing literature. First, learning complex failure dependencies and cascading 

effects is still challenging. Second, exploration of hybrid models combining strengths of different approaches is limited 

but promising. Third, model integration into engineering workflows and design practices remains largely theoretical. 

Finally, there is a lack of standardized real-world datasets to effectively benchmark methods, although testbeds are 

emerging [28-30]. 

 

 

4. DISCUSSION  
Our systematic review highlights significant implications for both reliability optimization researchers and industry 

practitioners. For researchers, this review surfaces gaps around capturing complex failure interactions, integrating 

optimization models into system design flows, and lack of standardized testbeds. Addressing these gaps through 
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innovations in physics-driven machine learning and better simulation-model exchange hold promise to advance scientific 

knowledge [31],[32]. 

On the application side, our findings provide practitioners initial evidence and guidance around adopting emerging AI 

methods compared to traditional analytical models for reliability optimization. Hybrid models that combine strengths of 

both physics-models and data-driven learning may have the greatest real-world impact. Further work is needed by both 

researchers and industry leaders to translate innovations emerging from laboratories to large-scale manufacturing and 

asset management. 

Specifically, future studies should focus on modeling cascading failures, developing computational benchmarks and 

testbeds, creating usable model integration tools with engineering software, and demonstrating value via in-situ system 

implementation. While simulation models can explore reliability improvements earlier in design cycles, retrofitting AI 

models on operational systems also warrants attention. 

As with any secondary research, our review has some inherent limitations including selection bias and availability of 

evidence. However, by systematically searching major scientific databases using comprehensive search criteria, extensive 

screening, and full-text review of recent studies, we obtained a representative sample of latest work on reliability 

optimization. Employing two independent reviewers further minimized bias. Thus, this study makes both conceptual and 

empirical contributions to characterizing the state of literature in this rapidly evolving field. 

 

 

5. CONCLUSION  
In conclusion, our review synthesizes cutting-edge advancements across model-based, data-driven and hybrid AI 

techniques for optimizing system reliability over the last 5 years. The gaps and future directions highlighted lay a 

research agenda for substantial improvements in ensuring the safe, reliable and cost-effective functionality of complex 

cyber-physical systems . 
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