

Babylonian Journal of Mathematics Vol. **2024**, **pp**. 53–55 DOI:<u>https://doi.org/10.58496/BJM/2024/007;</u> ISSN:3006-113X <u>https://mesopotamian.press/journals/index.php/mathematics</u>

Research Article On commutativity of alternative rings with $[xy^n x \pm yx^n y, x]=0$ Abubakar Salisu ^{1,*}, ^(D), Shu'aibu Salisu ³, ^(D), Mustapha Mannir Gafai ², ^(D)

¹ Department of Transport, Planning and Management, Federal polytechnic Daura Katsina State. Nigeria.

² Department of Mathematics and Statistics Umaru Musa Yar'adua University Katsina. Nigeria.

³ Department of computer science federal polytechnic Daura Katsina state. Nigeria.

ARTICLEINFO

ABSTRACT

Article History Received 02 Feb 2024 Accepted 03 May 2024 Published 21 May 2024 Keywords Alternative ring anti-commutator n!-torsion free commutator prime rings

prime rings

Let R be a n-torsion free with identity 1, In this article we investigate and prove the commutativity of alternative ring of the property (p_1) , (p_2) and (p_3) under suitable constraints.

 $(p_1) \qquad [xy^n x \pm yx^n y, x] = 0$

 $\begin{array}{ll} (p_2) & [xy^n x \pm yx^n y, y] = 0 \\ (p_3) & [x([xy)] ^2 + ([xy)] ^2 x, x] = 0. \quad \forall x, y \in \mathbb{R}. \end{array}$

1. INTRODUCTION

In this paper R represent an alternative ring with center $Z(R) = \{x \in R | xy = yx\}$, the commutator [x, y] = xy - yx and anti-commutator $xy \ o \ xy = xy + yx$ for any pair element $x, y \in R$, for any positive integer n, an element $x \in R$ is said to be n! -torsion free if and only If nx = 0 implies x = 0. The associator (x, y, z) is define by (x, y, z) = (xy)z - x(yz) for all $x, y, z \in R$. This play a key role in the study of non-associative rings. It can be viewed as a measure of the non-associativity of a ring. In terms of associator, a ring is called left alternative if (x, x, y) = 0 right alternative if (y, x, x) = 0 for all $x, y \in R$ and alternative if both condition hold. i.e. (x, y, y) = 0 and (y, y, x) = 0.

In [2] established that a division ring *R* is commutative if and only if [xy, yx] = 0. Also generalize Guptar's result which assert that a semi prime ring *R* in which $[xy, yx] = xy^2x - yx^2y \in Z(R)$ or $xy \circ xy = xy^2x + yx^2y \in Z(R)$ is necessary commutative, also [1] proved the commutativity of associative ring satisfies the identity $(xy)^2 = xy^2x$. also in their paper proved the properties : $xy \circ xy = xy^2x + yx^2y \in Z(R)$ and $xy^nx \pm yx^ny \in Z(R)$,most be commutative. In addition, [3] have established the commutativity of non-associative ring satisfying the identities $(xy)^2 = x^2y^2$ and $(xy)^2 \in Z(R) \forall x, y \in R$.

Further, [4] established the commutativity of non-associative primitive rings satisfying the identities: $x(x^2 + y^2)+(x^2 + y^2)x \in Z(R)$ and $x(xy)^2 - (xy)^2x \in Z(R)$. Recently [5] show that some results on commutativity of some 2-torsion free non associative rings with unity satisfy:

 $(\alpha\beta)^2 - \alpha\beta \in Z(R)$ for all $\alpha\beta$ in R Motivated by these observation it is natural to look commutativity of alternative rings satisfies

Motivated from them we establish the commutativity of ring with condition $(p_1), (p_2)$ and commutativity of alternative rings with (p_3) with suitable constraint.

Main Result. The following are the main Results. Theorem 2.1.

*Corresponding author. Email: abubakarsalisu8989@gmail.com

Suppose that a n-torsion free an alternative ring R with identity 1 and there exist a positive integer n such that: $[xy^n x \pm yx^n y, x] = 0 \text{ or } [xy^n x \pm yx^n y, y] = 0$ $\forall x, y \in R$. Then R is commutative. Proof.

By hypothesis, we have $[xy^nx \pm yx^ny, y] = 0$. In this property we consider $[xy^nx + yx^ny, y] = 0$ $[vxy^{n}x - xy^{n}xy + y^{2}x^{n}y - yx^{n}y^{2}] = 0$ $[y, (xy^{n}x)] + [y(x^{n}y - yx^{n})y] <=> [y, xy^{n}x] + y[x^{n}, y]y = 0$ Replace y = y + 1 in 2.1 above and applied *n* -torsion free we obtained $[x^{n}C_{1}y_{1}x, y] + [x^{n}C_{2}y_{2}x, y] + \dots + [x^{n}C_{n}y_{n}x, y]$ $x[{}^{n}C_{1}y_{1} + {}^{n}C_{2}y_{2} + \dots + {}^{n}C_{n}y_{n}]x = [x^{n}, y^{2}] + yx^{n} = 0$ We used binomial expansion and by inserting y = y + 1 for *n*-times and using the previous we obtained identity in every stage in above we had $x[({}^{n-1}C_{n-1}{}^{n-1}C_{n-2}+...+{}^{n}C_{n})x,y].$ This gives, $n! [x^2, y] = 0$ in view of *n*-torsion free condition, we get on the commutator $[x^2, y] = 0$ for n > 2 then R is commutative. **Remark 2.2:** The following Corollary is an immediate consequence of our main result if we set n = 2. Corollary 2.3 Let *R* be a 2-torsion free an alternative ring with identity 1. If *R* has a properties: $[xy^2x \pm yx^2y, x] = 0$ or $[xy^2x \pm yx^2y, y] = 0 \quad \forall x, y \in R$. Then R is commutative ring. Proof Since $[xy \ o \ xy, y]$, now we consider $[xy^2x - yx^2y, y] = 0$. $[xy^2x - yx^2y, y] = 0$ $[yxy^2x - xy^2xy + yx^2y^2 - y^2x^2y] = 0$ $[y, xy^2x] + y[x^2, y]y = 0$ 2.3 Replace y = y + 1 in 2.3 above and applied 2-torsion free we obtained $y^2x^2 - x^2y^2 = 0 \iff [y^2, x^2] = 0$ 2.4Replace y = y + 1 in 2.4 above we had $yx^2 - x^2y = 0 \iff [y, x^2] = 0$ 2.5

Replace y = y + 1 in 2.5 above and applied 2-torsion free we obtained $yx - xy = 0 \iff [y, x] = 0$ or yx = xy implies R is commutative. Theorem 3.1

Let R be a 2,3-torsion free alternative ring with unity satisfy $[x(xy)^2 + (xy)^2x, x] = 0$, Then R is commutative.

Proof

From the hypothesis above in 3.1 $x[x(xy)^{2} + (xy)^{2}x] = [x(xy)^{2} + (xy)^{2}x]x,$ for all $x, y \in \mathbb{R}$. 3.2 Substitute x = (1 + x) in (3.2), apply 2,3 torsion free and use (1) we get $y^2 x = x y^2 ,$ for all $x, y \in R$. 33 Substitute y = (y + 1) in (3.3) and Apply 2-torsion This implies xy = yx and R is commutative. Since *R* is a commutative ring and satisfies the identities either (xx)y = x(xy) or

y(xx) = (yx)x, so that R is an alternative ring. Hence an alternative ring R with identity together with commutativity yields (x, x, y) = 0 = (y, x, x), which completes the proof.

Funding

The acknowledgments section of the paper does not mention any financial support from institutions or sponsors.

Conflicts of of interest

The author's paper declares that there are no relationships or affiliations that could create conflicts of interest.

Acknowledgment

The author acknowledges the institution for the intellectual resources and academic guidance that significantly enriched this research.

References

- H. A. S. Abu Jabal and M. A. Khan, "Some Elementary Commutativity Theorem for Associative Rings," Kyungpook Math. J., vol. 1, pp. 49-51, 1993.
- [2] R. N. Gupta, "Nilpotent matrices with invertible transpose," Proc. Amer. Math. Soc., vol. 24, pp. 572-575, 1970.
- [3] Y. Madana Mohana Reddy, G. Shobhatha, and D. V. Ramin Reddy, "Some Commutativity Theorem for Non-Associative Rings," Math Archive, vol. 5, pp. 379-382, 2017.
- [4] Y. Madana Mohana Reddy and S. Latha, "On Commutativity for Certain Non-Associative Primitive Rings with $[x((xy)^2 (xy^2)x) \in Z(R)]$," Math Archive, vol. 7, pp. 292-294, 2020.
- [5] Y. Madana Mohana Reddy, "Some Results on Commutativity of Some 2-Torsion Free Non-Associative Rings with Unity Satisfying: $(\alpha\beta)^2 \alpha\beta \in Z(\mathbb{R})$ for all $\alpha\beta$ in R," Math Archive, vol. 44, no. 10, pp. 416-418, 2023.