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A B S T R A C T  
 

Fuzzy classical Two-Absorbing second sub-modules, Fuzzy classical Two-Absorbing secondary sub-
modules and strongly classical Two-Absorbing second sub-modules are presented in this search under 
the names of comultiplication fuzzy modules, cocyclic fuzzy modules, and multiplication fuzzy modules, 
along with some basic traits and qualities of these concepts. The relationship between fuzzy classical 
Two-Absorbing second sub-modules, fuzzy classical Two-Absorbing secondary sub-modules, fuzzy 
strongly classical Two-Absorbing second sub-modules, and other fuzzy second sub-module concepts is 
also covered. 

 

 

 

 

 
  

 

 

1. INTRODUCTION 

T is a commutative ring with identity in this study, and W is a unitary T-module, or simply T-module. In 1965, Zadeh [14] 
introduced the idea of fuzzy sets. In 1971, Rosenfeld presented the idea of fuzzy groups [1]. In [2], Deniz S. et al. introduced 
the idea of a 2-absorbing fuzzy ideal, which is a prime fuzzy ideal generalization. A classical 2-absorbing sub-module was 
presented by Hojjat et al. [5] in 2015 as a generalization of a classical prime (which is itself quasi-prime). sub-module  "A 
classical 2-absorbing sub-module is a proper sub-module N of a T-module W if each time 𝑎, 𝑏, 𝑐 ∈ 𝑅 and 𝑚 ∈ 𝑀 with 
𝑎𝑏𝑐𝑚 ∈ 𝑁, then 𝑎𝑏𝑚 ∈ 𝑁 or 𝑎𝑐𝑚 ∈ 𝑁 or 𝑏𝑐𝑚 ∈ 𝑁 ". In 2019, Hatam and Wafaa conducted research and presented the 
idea of a traditional T-ABSO fuzzy sub-module [12].   

This paper is divided into three pieces. The definition of fuzzy classical Two-Absorbing second sub-module, necessary 
qualities, various hypotheses, theorems, and examples are examined and presented in Section (1). We examine strongly 
classical two-absorbing second sub-module conceptions and their relationship to two-absorbing second sub-module concepts 
in section (2). As a counterpart notion of Two-Absorbing primary sub-modules, fuzzy classical Two-Absorbing secondary 
sub-modules are introduced in section (3), and some associated findings are obtained. 

Note that: The notations fzy ideal, fzy sub-module, fzy singleton,  fzy second and fzy module represent the fuzzy ideal, 

fuzzy sub-module, fuzzy singleton, fuzzy second and fuzzy module. 
 

2. CONCEPT BASIC 

Definition 2.1[14]: Let S be a non-empty set and L be an interval [0,1] of the real line (real number). A fzy set A in S (a 

fzy subset of S) is a function from S into L.  
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Definition 2.2 [7]:Let  𝑥𝑢: 𝑆 → 𝐿 be a fzy set in S, where  𝑥 ∈ 𝑆, 𝑢 ∈ 𝐿, identify by  

𝑥𝑢(𝑦) = {
𝑢   𝑖𝑓 𝑥 = 𝑦
0  𝑖𝑓 𝑥 ≠ 𝑦 

    , 𝑥𝑢  is named fzy singleton in S. 

If 𝑥 = 0 and 𝑢 = 1, then  01(𝑦) = {
1   𝑖𝑓 𝑦 = 0
0  𝑖𝑓 𝑦 ≠ 0 

  

 

Definition 2.3[15] : The term "fzy ideal of T" refers to a fzy subset K of a ring T, if  ∀ x, y ∈ T: 

1- 𝐾(𝑥 − 𝑦) ≥ 𝑚𝑖𝑛{𝐾(𝑥), 𝐾(𝑦)} 

2- 𝐾(𝑥𝑦) ≥ 𝑚𝑎𝑥{𝐾(𝑥), 𝐾(𝑦)}. 

 

Definition 2.4 [15]: Let W be a T-module fzy set Y of  W is called fzy module of a T-module W if  

1- 𝑌(𝑥 − 𝑦) ≥ 𝑚𝑖𝑛{𝑌(𝑥), 𝑌(𝑦)}, for all 𝑥, 𝑦 ∈ 𝑊. 
2- 𝑌(𝑟𝑥) ≥ 𝑌(𝑥), for all 𝑥 ∈ 𝑊, 𝑟 ∈ 𝑇. 

3- 𝑌(0) = 1 (0 is the zero element of W). 

 

Definition 2.5[8]: Consider two fzy modules of a T-module W, Y and P. P is named fzy sub-module of Y if  𝑃 ⊆ 𝑌. 

 

Proposition 2.6[10]:Let P be fzy set of W. Then the level subset 𝑃𝑢 , ∀𝑢 ∈ 𝐿 is a sub-module of W  iff  P is fzy sub-module 

of fzy  module of a T-module W. 

 

Definition 2.7[13]: Assume that fzy module Y has two fzy sub-modules, P and B. The fzy subset of T, represented by (𝑃: 𝐵), 

is the residual quotient of P and B, which is defined by: 
(𝑃: 𝐵)(𝑟) = 𝑠𝑢𝑝{𝑣 ∈ 𝐿: 𝑟𝑣 . 𝐵 ⊆ 𝑃} for all  𝑟 ∈ 𝑇.That (𝑃: 𝐵) = {𝑟𝑣: 𝑟𝑣 . 𝐵 ⊆  𝑃 ; 𝑟𝑣  𝑖𝑠 𝑎 𝐹. 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑜𝑓 𝑇 }. If 𝐵 =< 𝑥𝑘 >, 

then (𝑃: < 𝑥𝑘 >) = {𝑟𝑣: 𝑟𝑣 . 𝑥𝑘 ⊆ 𝑃 ; 𝑟𝑣 𝑖𝑠 𝑓𝑧𝑦. 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑜𝑓 𝑇}. 

 

Definition 2.8[8]: Assume that P is a proper fzy sub-module of Y. The definition of the fzy annihilator of P, represented by 

Fzy-annP, is: (𝐹𝑧𝑦 − 𝑎𝑛𝑛𝑃)(𝑟) = 𝑠𝑢𝑝{𝑣: 𝑣 ∈ 𝐿 , 𝑟𝑣𝑃 ⊆ 01}, for all 𝑟 ∈ 𝑇. 

Note that: Fzy − ann𝑃 = (01: 𝑃), hence (𝐹𝑧𝑦 − 𝑎𝑛𝑛𝑌)𝑣 ⊆ 𝑎𝑛𝑛𝑌𝑣, [4]. 

 

Proposition 2.9[8]:If  Y is fzy module of a T-module W, then Fzy-annY  is fzy ideal of T. 

 

Definition 2.10[11]:An perfect fzy If Ĥ of a ring T is non-empty and for any 𝑎𝑠 , 𝑏𝑙 fzy singletons of T there exists such that 

𝑎𝑠𝑏𝑙 ⊆ Ĥ Suggest that a choice of 𝑎𝑠 ⊆ Ĥ or  𝑏𝑙 ⊆ Ĥ, ∀𝑠, 𝑙 ∈ 𝐿. 

 

Definition 2.11[2]: Let Ĥ be a fzy ideal of T that is not empty. Then, for any fzy singletons, Ĥ is called the Two-Absorbing 

Fzy Ideal 𝑎𝑠,  𝑏𝑙 ,  𝑟𝑘 of T so that 𝑎𝑠𝑏𝑙  𝑟𝑘 ⊆ Ĥ suggest that a choice of 𝑎𝑠𝑏𝑙 ⊆ Ĥ  or  𝑎𝑠 𝑟𝑘 ⊆ Ĥ or  𝑏𝑙  𝑟𝑘 ⊆ Ĥ. 

 

Definition 2.12[2]:Let H be a proper fzy ideal of T. Then H is said to be Two-Absorbing  primary fzy ideal of  T if  𝑎𝑠𝑏𝑙𝑟ℎ ⊆

𝐻, implies that  𝑎𝑠𝑏𝑙 ⊆ 𝐻  or 𝑎𝑠𝑟ℎ ⊆ √𝐻  or  𝑏𝑙𝑟ℎ ⊆ √𝐻   for any fzy singletons 𝑎𝑠,  𝑏𝑙 ,  𝑟ℎ of  T. 

 

 

Definition 2.13[4]:A fzy module. Y of a T-module W is named a multiplication fzy module If there is a fzy ideal Ĥ of T such 

that 𝑃 = Ĥ𝑌 for every non-empty fzy sub-module P of Y. 

 

Definition 2.14[3]: Let 𝑃 ≠ 01 be the fzy second sub-module, and let Y be the fzy module of a T-module W if ∀ 𝑟 ∈ 𝑇 we 

have 1r. 𝑃 = 𝑃 or 1r.𝑃 = 01 where 1r is fzy ideal of T. 

 

Definition 2.15 [12]: A fzy module Y of a T-module W is named a comultiplication fzy module if P =  F − 𝑎𝑛𝑛𝑌𝐹 − ann𝑃 

for each fzy sub-module P of Y. 

Theorem 2.16 [12]: Assume that Ĥ is a non-empty proper fzy ideal of a ring T. Then the following expressions are equivalent: 

1- Ĥ is Two-Absorbing fzy ideal of T; 

2- If Ṷ𝐾𝐷 ⊆ Ĥ for fzy ideals Ṷ, 𝐾, 𝐷 of T, Ṷ𝐾 ⊆ Ĥ or 𝐾𝐷 ⊆ Ĥ or Ṷ𝐷 ⊆ Ĥ. 
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Definition 1. 17[13]: Let Y be a T-module's fzy. W. A suitable submodule It is claimed that A of Y is an entirely irreducible 

fzy sub-module if 𝐴 = , where {Ai}i∈I is a family of fzy sub-modules of Y, suggest that 𝐴 = Ai for any 𝑖 ∈ 𝐼. Every fzy sub-

module of Y is an intersection of a fully irreducible fzy sub-module of Y, as is readily apparent. 

 

Theorem 2.18[12]:Let 𝑓: 𝑋 → Y be F-epimorphism of T-module  

1) If P is a fzy classical Two-Absorbing sub-module of Y, then 𝑓−1(𝑃) is a fzy classical Two-Absorbing sub-module of 

X. 

2) If P is a fzy classical Two-Absorbing sub-module of X containing 𝑘𝑒𝑟(𝑓). Then 𝑓(𝑃) is a fzy classical Two-

Absorbing sub-module of Y.  

Proposition 2.19 [13]:Let F: X→ Y be Fzy-monomorphism of T − module. If H is a completely irreducible fzy sub −
module of fuzzy module X of a T − module M, then F(H)is a completely irreducible fzy sub − module of F(X) .  

 

3. FZY CLASSICAL TWO-ABSORBING SECOND SUB-MODULES. 

In this section we introduce the notion of fzy classical Two-Absorbing second sub-modules as a generalization of fzy Two-

Absorbing second sub-modules. And  studied some definition , examples , theorems and propositions .  

Definition 3.1: Let P  be a non-zero fzy sub-module of fzy module Y of  a T-module W. Then P is named a fzy classical  

Two-Absorbing second sub-module  of Y if whenever 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖  are fzy singletons of T , H is a completely irreducible fzy 

sub-module . of Y, and 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 ⊆ 𝐻 , then  𝑎𝑠𝑏𝑙𝑃 ⊆ 𝐻 or 𝑏𝑙𝑐𝑖𝑃 ⊆ 𝐻 or 𝑎𝑠𝑐𝑖𝑃 ⊆ 𝐻. We say Y is a classical Two-Absorbing 

fzy second module. if Y is a fzy classical Two-Absorbing second sub-module   of itself . 

Proposition 3.2: Let 𝑃 ≠ 0𝑖 be fzy sub-module  of fzy module of Y of a T-module W. Then P is a fzy classical Two-

Absorbing second sub-module of Y Iff the level sub-module , 𝑃𝑢 ≠ 0  is a classical Two-Absorbing second sub-module  of 

𝑌𝑢 for all 𝑢 ∈ 𝐿.  

Proof: ⇒) Let 𝑎𝑏𝑐 𝑃𝑢 ⊆ 𝐻𝑢 for every 𝑎, 𝑏, 𝑐 ∈ 𝑇 and  𝑃𝑢 ≠ 0 be sub-module  of 𝑌𝑢 , 𝐻𝑢 be completely irreducible ssub-

module  of 𝑌𝑢 we have 𝑎𝑏𝑐 𝑦 ∈ 𝐻𝑢 for all 𝑦 ∈ 𝑃𝑢, then  𝐻(𝑎𝑏𝑐𝑦) ≥ 𝑢.  So (𝑎𝑏𝑐𝑦)𝑢 ⊆ 𝐻, implies that 𝑎𝑠𝑏𝑘𝑐𝑖𝑦𝑙 ⊆ 𝐻, ∀𝑦𝑙 ∈
𝑃 where 𝑢 = 𝑚𝑖𝑛{𝑠, 𝑘, 𝑖 , 𝑙}, hence 𝑎𝑠𝑏𝑘𝑐𝑖  𝑃 ⊆ 𝐻. Since P is a fzy classical Two-Absorbing second sub-module  then either 

𝑎𝑠𝑏𝑘  𝑃 ⊆ 𝐻 or 𝑏𝑘𝑐𝑖  𝑃 ⊆ 𝐻 or 𝑎𝑠𝑐𝑖P ⊆ 𝐻. Hence 𝑎𝑠𝑏𝑘𝑦𝑙 ⊆ 𝐻 or 𝑏𝑘𝑐𝑖𝑦𝑙 ⊆ 𝐻 or 𝑎𝑠𝑐𝑖 ⊆ 𝐻 , so that (𝑎𝑏𝑦)𝑢 ⊆ 𝐻  or  

(𝑏𝑐𝑦)𝑢 ⊆ 𝐻  or (𝑎𝑐)𝑢 ⊆ 𝐻 .Thus, either 𝑎𝑏𝑦 ∈ 𝐻𝑢 or 𝑏𝑐𝑦 ∈ 𝐻𝑢 or  𝑎𝑐 ∈ 𝐻𝑢  , ∀𝑦 ∈ 𝑃𝑢 so 𝑎𝑏𝑃𝑢 ⊆ 𝐻𝑢 or 𝑏𝑐 𝑃𝑢 ⊆ 𝐻𝑢 or 

𝑎𝑐 ⊆ 𝐻𝑢 therefore 𝑃𝑢 is a classical Two-Absorbing second sub-module of 𝑌𝑢.  

⇐) Let 𝑎𝑠𝑏𝑘𝑐𝑖  𝑃 ⊆ 𝐻  for all fzy singletons  𝑎𝑠 , 𝑏𝑘 , 𝑐𝑖  of T and H is completely irreducible fzy sub-module of Y . 

Subsequently  𝑎𝑠 𝑏𝑘𝑐𝑖  𝑦𝑙 ⊆ 𝐻, ∀𝑦𝑙 ∈ 𝑃 ,so (𝑎𝑏𝑐𝑦)𝑢 ⊆ 𝐻  where 𝑢 = 𝑚𝑖𝑛{𝑠, 𝑘, 𝑖 , 𝑙} , hence 𝐻(𝑎𝑏𝑐𝑦) ≥ 𝑢 ,then a 𝑏𝑐 𝑦 ∈
𝐻𝑢 , ∀𝑦 ∈ 𝑃𝑢 indicates 𝑎𝑏𝑐 𝑃𝑢 ⊆ 𝐻𝑢, but 𝑃𝑢 is a classical Two- Absorbing second sub-module of 𝑌𝑢 ,so that either 𝑎𝑏𝑃𝑢 ⊆
𝐻𝑢 or 𝑏𝑐𝑃𝑢 ⊆ 𝐻𝑢 or 𝑎𝑐𝑃𝑢 ⊆ 𝐻𝑢.  Subsequently  𝑎𝑏𝑦 ∈ 𝐻𝑢 or 𝑏𝑐𝑦 ∈ 𝐻𝑢or 𝑎𝑐𝑦 ∈ 𝐻 , ∀𝑦 ∈ 𝑃𝑢 hence either (𝑎𝑏𝑦)𝑢 ⊆ 𝐻 or 

(𝑏𝑐𝑦)𝑢 ⊆ 𝐻 or (𝑎𝑐)𝑢 ⊆ 𝐻 so either  𝑎𝑠𝑏𝑘  𝑃 ⊆ 𝐻 or 𝑏𝑘𝑐𝑖  𝑃 ⊆ 𝐻 or 𝑎𝑠𝑐𝑖𝑃 ⊆ 𝐻. 

Thus, P is a fzy classical Two-Absorbing second sub-module of Y.  

Theorem 3.3: Let P be a non-zero fzy sub-module of Y and Y be the fzy module of a T-module W. Then, the following 

claims are interchangeable:  

a) P is a fzy classical Two-Absorbing second sub-module of Y. 

b) For every  𝑎𝑠, 𝑏𝑙  fzy singletons of T and completely irreducible fzy sub-module H of Y with 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝐻 , (𝐻: 𝑎𝑠𝑏𝑙𝑃) =
(𝐻: 𝑎𝑠𝑃) ∪ (𝐻: 𝑏𝑙𝑃). 

c) For every 𝑎𝑠 , 𝑏𝑙 fzy singletons of T and completely irreducible fzy sub-module H of Y with 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝐻 , (𝐻: 𝑎𝑠𝑏𝑙𝑃) =
(𝐻: 𝑎𝑠𝑃) or (𝐻: 𝑎𝑠𝑏𝑙𝑃) = (𝐻: 𝑏𝑙𝑃).  

d) For every 𝑎𝑠 , 𝑏𝑙 fzy singletons of T, every fzy ideal K of T, and completely irreducible fzy sub-module H of Y with 

𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝐻, either 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝐻 or 𝑎𝑠𝐾𝑃 ⊆ 𝐻 or 𝑏𝑙𝐾𝑃 ⊆ 𝐻. 

e) For every 𝑎𝑠 fzy singleton of T, every fzy ideal K of T, and completely irreducible fzy sub-module H of Y with  𝑎𝑠𝐾𝑃 ⊈
𝐻, (𝐻: 𝑎𝑠𝐾𝑃) = (𝐻: 𝐾𝑃) or (𝐻: 𝑎𝑠𝐾𝑃) = (𝐻: 𝑎𝑠𝑃).  

f) For every 𝑎𝑠 fzy singleton of T , fzy ideals K, N of T, and completely irreducible fzy sub-module H of Y with 𝑎𝑠𝐾𝑁𝑃 ⊆
𝐻 , either 𝑎𝑠𝐾𝑃 ⊆ 𝐻 or 𝑎𝑠𝑁𝑃 ⊆ 𝐻 or  𝐾𝑁𝑃 ⊆ 𝐻.  

g) For fzy ideals K, N of T and completely irreducible fzy sub-module H of Y with 𝐾𝑁𝑃 ⊈ 𝐻, (𝐻: 𝐾𝑁𝑃) = (𝐻: 𝐾𝑃) or 

(𝐻: 𝐾𝑁𝑃) = (𝐻: 𝑁𝑃).  

h) For fzy ideals 𝐾1, 𝐾2, 𝐾3 of T, and completely irreducible fzy sub-module H of Y with 𝐾1𝐾2𝐾3𝑃 ⊆ 𝐻 , either 𝐾1𝐾2𝑃 ⊆
𝐻 or 𝐾1𝐾3𝑃 ⊆ 𝐻 or 𝐾2𝐾3𝑃 ⊆ 𝐻.   

i) For each completely irreducible fzy sub-module H of Y with 𝑃 ⊈ 𝐻, (𝐻: 𝑃) is Two-Absorbing  fzy ideal of T.  

Proof: (𝑎) ⇒ (𝑏) Let 𝑡𝑣 ∈ (𝐻: 𝑎𝑠𝑏𝑙𝑃). Then 𝑡𝑣𝑎𝑠𝑏𝑙𝑃 ⊆ 𝐻. Since 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝐻, then  𝑎𝑠𝑡𝑣𝑃 ⊆ 𝐻 or 𝑏𝑙𝑡𝑣𝑃 ⊆ 𝐻 so that 𝑡𝑣 ∈
(𝐻: 𝑎𝑠𝑃) or 𝑡𝑣 ∈ (𝐻: 𝑏𝑙𝑃) hence (𝐻: 𝑎𝑠𝑏𝑙𝑃) = (𝐻: 𝑎𝑠𝑃) ∪ (𝐻: 𝑏𝑙𝑃). 

(𝑏) ⇒ (𝑐) This follows from the fact that if a fzy ideal is the union of two fzy ideals, then it is equal to one of them.  
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(𝑐) ⇒ (𝑑) Let 𝑎𝑠  , 𝑏𝑙 be fzy singletons of R and H be a completely irreducible fzy sub-module of Y, such that 𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝐻. 

Then 𝐾 ⊆ (𝐻: 𝑎𝑠𝑏𝑙𝑃). If 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝐻, then we are done. Assume that 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝐻. Then by part (𝑐), 𝐾 ⊆ (𝐻: 𝑏𝑙𝑃) or 𝐾 ⊆
(𝐻: 𝑎𝑠𝑃) as desired.  

(𝑑) ⇒ (𝑒) ⇒ (𝑓) ⇒ (𝑔) ⇒ (ℎ) The proofs are similar to those previous implications  
(ℎ) ⇒ (𝑖) Let 𝐾1 , 𝐾2 , 𝐾3 be fzy ideals of R , 𝐾1𝐾2 𝐾3 ⊆ (𝐻: 𝑃), then 𝐾1𝐾2 𝐾3 𝑃 ⊆ 𝐻 . By (ℎ)  either 𝐾1𝐾2P ⊆ 𝐻 or 

𝐾1 𝐾3 𝑃 ⊆ 𝐻 or 𝐾2 𝐾3 𝑃 ⊆ 𝐻 , hence either 𝐾1𝐾2 ⊆ (𝐻: 𝑃) or 𝐾1𝐾3 ⊆ (𝐻: 𝑃) or 𝐾2𝐾3 ⊆ (𝐻: 𝑃) . So that (𝐻: 𝑃) is Two-

Absorbing fzy ideal by theorem (2.15) 
(ℎ) ⇒ (𝑎) Trivial.  

Corollary 3.4: Let A be a fzy classical Two-Absorbing second sub-module of a cocyclic T-module W . Then Fzy-ann(P) is 

Two-Absorbing fzy ideal of T.  

Proof: This follows from Theorem (3.3) (𝑎) ⇒ (𝑖) , because (0) is a completely irreducible fzy sub-module of Y.  

  

Example 3. 5: Let 𝑌: 𝑍𝑝∞ → 𝐿 where 𝑌(𝑦) = {
1 ,  y ∈ 𝑍𝑝∞    

  
0,    o. w.

  

in which p can be any prime number. The Y fzy module of Z-module 𝑍𝑝∞ is clearly visible.  

Let  𝑆: 𝑍𝑝∞ → 𝐿  where 𝑆(𝑦) = {
u ,  y ∈   (

1

𝑝𝑖 + Z) , i ∈ I  
  

0,    o. w.

 

S is clearly a fzy sub-module of Y.   

Now 𝑆𝑢 = 〈
1

𝑝4 + 𝑍〉 is sub-module of 𝑌𝑢 = 𝑍𝑝∞ as Z-module 

𝑆𝑢 is not Two-Absorbing second sub-module Since 

𝑃3 〈
1

𝑃4 + 𝑍〉 ⊆ 〈
1

𝑃
+ 𝑍〉  but 𝑃 〈

1

𝑃4 + 𝑍〉 ⊈ 〈
1

𝑃
+ 𝑍〉 and 𝑃3 ⊈ 𝑎𝑛𝑛(𝑆𝑢) = 0 . So that S is not fzy Two-Absorbing second sub-

module of Y by Proposition 3.2. Thus, S is not fzy classical Two-Absorbing second sub-module of Y. 

Example 3.6: Let 𝑌: 𝑍𝑝𝑞 ⊕ 𝑄 → 𝐿 where 𝑌(𝑦) = {
1    y ∈ 𝑍𝑝𝑞 ⊕ 𝑄

  
0    o. w.

   

where the prime numbers are p and q. The Y fzy module of Z-module 𝑍𝑝𝑞 ⊕ 𝑄 is clearly visible. 

Let  𝑆: 𝑍𝑝𝑞 ⊕ 𝑄 → 𝐿  where 𝐴(𝑦) = {
u    y ∈   𝑍𝑝𝑞 ⊕ 𝑄  

  
0   o. w.

     

It is obvious S a fzy sub-module of Y.  

Now  𝑆𝑢 = 𝑍𝑝𝑞 ⊕ 𝑄 is a  classical Two-Absorbing second sub-module, but it is not a strongly Two-Absorbing second sub-

module So that S is a fzy classical Two-Absorbing second sub-module by Proposition (3.2).    

                                                                                                              

Proposition 3.7: Let P be a fzy classical Two-Absorbing second sub-module of fzy module Y of a T-module W. Then we 

have the following:  

a) If 𝑎𝑠 fzy singleton of T ,then 𝑎𝑠
𝑛𝑃 = 𝑎𝑠

𝑛+1𝑃, for all 𝑛 ≥ 2. 

b) If  H is a completely irreducible fzy sub-module of Y such that 𝑃 ⊈ 𝐻, then √(𝐻: 𝑃) is Two-Absorbing  fzy ideal of R.  

Proof:  

a) It suffices to demonstrate that 𝑎𝑠
𝑛𝑃 = 𝑎𝑠

𝑛+1𝑃 . It is evident that 𝑎𝑠
3𝑃 ⊆ 𝑎𝑠

2𝑃 . Let H be a completely irreducible fzy sub-

module of Y, such that 𝑎𝑠
3𝑃 ⊆ 𝐻 . Since P is a fzy classical Two-Absorbing second sub-module then 𝑎𝑠

2𝑃 ⊆ 𝐻. This 

implies that 𝑎𝑠
2𝑃 ⊆ 𝑎𝑠

3𝑃.  

b) Assume that  𝑎𝑠, 𝑏𝑙 , 𝑐𝑖  are fzy singletons of T and 𝑎𝑠𝑏𝑙𝑐𝑖 ⊆ √(𝐻: P) Then, a positive integer t exists so 𝑎𝑠
𝑡𝑏𝑙

𝑡𝑐𝑖
𝑡  𝑃 ⊆ 𝐻. 

By hypotheses, P is a fzy classical Two-Absorbing second sub-module of Y. Thus, 𝑎𝑠
𝑡𝑏𝑙

𝑡 𝑃 ⊆ 𝐻  or 𝑏𝑙
𝑡𝑐𝑖

𝑡  𝑃 ⊆ 𝐻 or 

𝑎𝑠
𝑡𝑐𝑖

𝑡  𝑃 ⊆ 𝐻. Therefore,  𝑏𝑙 ⊆ √(𝐻: 𝑃) or 𝑏𝑙𝑐𝑖 ⊆ √(𝐻: 𝑃) or 𝑎𝑠𝑐𝑖 ⊆ √(𝐻: 𝑃). 

Theorem 3.8: Let P be fzy sub-module of fzy module Y of a T-module W. Then we have the following:  

a) If A is a fzy classical Two-Absorbing second sub-module of fzy module Y of a T-module W, then KP is a fzy classical 

Two-Absorbing second sub-module of Y for fzy ideal K of T with 𝐾 ⊈ 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).  
b) If P is a fzy classical Two-Absorbing sub-module of Y, then (𝑃:𝑌 𝐾) is a fzy classical Two-Absorbing sub-module sub-

module of Y for fzy ideal K of T with 𝐾 ⊈ (𝑃: 𝑌).  

c) Let 𝜙: 𝑌1 → 𝑌2 be F-monomorphism of T-module. If B is a fzy classical Two-Absorbing second sub-module of 𝜙(𝑌1), 

then 𝜙−1(𝐵) is a fzy classical Two-Absorbing second sub-module of Y.  
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Proof:  

a) Let K be fzy ideal of T with 𝐾 ⊈ 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃) and 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖  be fzy singletons of T, H be a completely irreducible fzy 

sub-module of Y, so that 𝑎𝑠𝑏𝑙𝑐𝑖𝐾𝑃 ⊆ 𝐻, then 𝑎𝑠𝑐𝑖𝑃 ⊆ 𝐻 or 𝑐𝑖  𝑏𝑙𝐾𝑃 ⊆ 𝐻 or 𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝐻 by Theorem (3. 3) (𝑎) ⇒
(𝑑). If 𝑐𝑖  𝑏𝑙𝐾𝑃 ⊆ 𝐻 or 𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝐻, then we are done. If 𝑎𝑠𝑐𝑖𝑃 ⊆ 𝐻, then 𝑎𝑠𝑐𝑖𝐾𝑃 ⊆ 𝑎𝑠𝑐𝑖𝑃 implies that 𝑎𝑠𝑐𝑖𝐾𝑃 ⊆ 𝐻, 

as needed. Since 𝐾 ⊈ Fzy − ann(P), we have 𝐾𝑃 is a non-zero fzy sub-module of Y.  

b) Use the technique of part (a) and apply Theorem (2.16).            

c) If 𝜙−1(𝐵) = 01 , then ϕ(𝑌1) ∩ 𝐵 = 𝜙𝜙−1(𝐵) = 𝜙 (01) = 01. Thus, 𝐵 = 01, is a contradiction. Therefore, 𝜙−1(𝐵) ≠
 01.Now let 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖  are fzy singletons of T, H be a completely irreducible fzy sub-module of Y, and 𝑎𝑠𝑏𝑙𝑐𝑖𝜙−1(𝐵) ⊆
𝐻. Then 𝑎𝑠𝑏𝑙𝑐𝑖𝐵 = 𝑎𝑠𝑏𝑙𝑐𝑖  (𝜙(𝑌1) ∩ 𝐵) = 𝑎𝑠𝑏𝑙𝑐𝑖  𝜙𝜙−1(𝐵) ⊆ 𝜙(𝐻). By Proposition (2.19), 𝜙 (𝐻) is a completely 

irreducible fzy sub-module of 𝜙(𝑌1). Thus, as B is a fzy classical Two-Absorbing second sub-module 𝑎𝑠𝑏𝑙  𝐵 ⊆ 𝜙(𝐻) 

or 𝑏𝑙𝑐𝑖  𝐵 ⊆ 𝜙(𝐻) or 𝑎𝑠𝑐𝑖  𝐵 ⊆ 𝜙(𝐻). Therefore 𝑎𝑠𝑏𝑙𝜙−1(𝐵) ⊆ 𝜙−1𝜙(𝐻) = 𝐻 or 𝑏𝑙𝑐𝑖   𝜙
−1(𝐵) ⊆ 𝜙−1𝜙(𝐻) = 𝐻 or 

𝑎𝑠𝑐𝑖𝜙−1(𝐵) ⊆ 𝜙−1𝜙(𝐻) = 𝐻, as desired .  

Corollary 3.9: Let Y be fzy module of a T-module W. Then we have the following: 

a) If Y is a  fzy multiplication classical Two-Absorbing second T-module then every non-zero fzy sub-module of Y is a  

fzy classical Two-Absorbing  second sub-module of Y. 

b) If Y is a comultiplication fzy module and the zero fzy sub-module of Y is a fzy classical Two-Absorbing sub-module, 

then every proper fzy sub-module of Y is a fzy classical Two-Absorbing sub-module of Y.  

Proof: This follows from parts (a) and (b) of Theorem (3.8).  

Proposition 3.10: Let Y be fzy module of a T-module W and {𝐾𝑖}𝑖∈𝐼  be a chain of fzy classical Two-Absorbing second sub-

modules. of Y. Then ∑ 𝐾𝑖𝑖∈𝐼  is a fzy classical Two-Absorbing second sub-module of Y. 

Proof: Let 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖  are fzy singletons of T, H be a completely irreducible fzy sub-module of Y, and 𝑎𝑠𝑏𝑙𝑐𝑖 ∑ 𝐾𝑖 ⊆ 𝐻𝑖∈𝐼 . 

Assume that 𝑎𝑠𝑏𝑙 ∑ 𝐾𝑖 ⊈ 𝐻𝑖∈𝐼  and 𝑎𝑠𝑐𝑖 ∑ 𝐾𝑖 ⊈ 𝐻𝑖∈𝐼 . Then there are 𝑚, 𝑛 ∈ 𝐼 that previous implications. where 𝑎𝑠𝑏𝑙𝐾𝑛 ⊈ 𝐻 

and 𝑎𝑠  𝑐𝑖 𝐾𝑚 ⊈ 𝐻 . Hence,for every 𝐾𝑛 ⊆ 𝐾𝑠 and every 𝐾𝑚 ⊆ 𝐾𝑑  we have that 𝑎𝑠𝑏𝑙𝐾𝑠 ⊈ 𝐻 and 𝑎𝑠 𝑐𝑖 𝐾𝑑 ⊈ 𝐻. Therefore, 

for each fzy sub-module 𝐾ℎ such that 𝐾𝑛 ⊆ 𝐾ℎ and 𝐾𝑚 ⊆ 𝐾ℎ , we have 𝑏𝑙𝑐𝑖 𝐾ℎ ⊆ 𝐻. Hence 𝑏𝑙 𝑐𝑖 ∑ 𝐾𝑖 ⊆ 𝐻𝑖∈𝐼 , as needed.  

Definition 3.11: A fzy classical Two-Absorbing second sub-module P of fzy module Y of a T-module W is a fzy maximal 

classical Two-Absorbing second sub-module of fzy sub-module B of Y, if 𝑃 ⊆ 𝐵 and there does not exist a fzy classical 

Two-Absorbing second sub-module S of Y such that 𝑃 ⊂ 𝑆 ⊂ 𝐵. 
Lemma 3.12: Let Y be a T-module W's fzy module. A fzy maximum classical Two-Absorbing second sub-module of Y 

then contains each of the fzy classical Two-Absorbing second sub-modules of Y. 

Proof: Using Zorn's Lemma [6] and Proposition (3.10), this is readily demonstrated. 
 

4. FZY STRONGLY CLASSICAL TWO-ABSORBING SECOND SUB-MODULES. 

This section provides a definition of the term fzy strongly classical Two-Absorbing second sub-module of fzy module , we 
consider the relationship between fzy classical Two-Absorbing second sub-modules and fzy strongly classical Two-
Absorbing second sub-modules, example, theorem and propositions 

Definition 4.1: Let P be a non-zero   fzy sub-module of fzy module Y of a T-module W. We say that P is a fzy strongly 

classical Two-Absorbing second sub-module of Y if whenever 𝑎𝑠 , 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T, 𝐻1, 𝐻2, 𝐻3 are completely 

irreducible.fzy sub-modules. of Y and 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3, then 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 or 𝑏𝑙𝑐𝑖𝑃 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 or 

𝑎𝑠𝑐𝑖𝑃 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 . We say Y is fzy strongly classical Two-Absorbing second module if Y is a fzy strongly classical 

Two-Absorbing second sub-module of itself  

Note that: 

  Clearly every fzy strongly classical Two-Absorbing second sub-module is a  fzy classical Two-Absorbing second sub-

module  

Example 4.2: Let 𝑌: 𝑍 → 𝐿  where 𝑌(y) = {
1     if  y ∈  Z 

  
0      o. w.

       

As Z-module, it is clear that Y is Z's fzy module.                                    

Let 𝑃: 𝑍 → 𝐿   where P(y) = {
u          y ∈ 2Z
0              o. w.

  

It evident P is fzy sub-module of Y. 

Now,  P = 2𝑍  is not fzy Two-Absorbing second sub-module of 𝑌𝑢 = 𝑍 as Z-module, since 2.2.2𝑍 ⊆ 8𝑍 where 8𝑍 is a 

completely irred. sub-module  of 𝑌𝑢 = 𝑍 as Z-module, but 2.2𝑍 ⊈ 8𝑍 and 2.2 ∉ 𝑎𝑛𝑛(2𝑍) = (0). Therefore, A is not the 

second sub-module of T-ABSO. Thus, P has no fzy strongly classical Two-Absorbing  second sub-module  
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Theorem 4.3: Let Y fzy module of a T-module W and P be a non-zero fzy sub-module of Y. Then the statements that 

follow are interchangeable: 

a) P is fzy strongly classical Two-Absorbing second sub-module 

b) If 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T, N is  fzy sub-module of Y, and 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 ⊆ 𝑁, then 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑁 or 𝑏𝑙𝑐𝑖𝑃 ⊆ 𝑁 or 

𝑎𝑠𝑐𝑖𝑃 ⊆ 𝑁,  

c) For every 𝑎𝑠 , 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T, 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 = 𝑎𝑠𝑏𝑙𝑃 or 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 = 𝑎𝑠𝑐𝑖𝑃 or 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 = 𝑏𝑙𝑐𝑖𝑃, 

d) For every 𝑎𝑠 , 𝑏𝑙 are fzy singletons of T and sub-module N of Y with 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝑁, (𝑁: 𝑎𝑠𝑏𝑙𝑃) = (𝑁: 𝑎𝑠𝑃) ∪ (𝑁: 𝑏𝑙𝑃), 

e) For every 𝑎𝑠 , 𝑏𝑙 are fzy singletons of T and fzy sub-module N of Y with 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝑁, (𝑁: 𝑎𝑠𝑏𝑙𝑃) = (𝑁: 𝑎𝑠𝑃) or 

(N: 𝑎𝑠𝑏𝑙𝑃) = (𝑁: 𝑏𝑙𝑃),  

f) For every 𝑎𝑠 , 𝑏𝑙 are fzy singletons of T, every fzy ideal K of T, and sub-module N of Y with 𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝑁, either𝑎𝑠𝑏𝑙𝑃 ⊆
𝑁 or 𝑎𝑠𝐾𝑃 ⊆ 𝑁 or 𝑏𝑙𝐾𝑃 ⊆ 𝑁,  

g) For every 𝑎𝑠 is fzy singleton of T, every fzy ideal K of T, and fzy sub-module N of Y with 𝑎𝑠𝐾𝑃 ⊈ 𝑁, (𝑁: 𝑎𝑠𝐾𝑃) =
(𝑁: 𝐾𝑃) or (N: 𝑎𝑠𝐾𝑃) = (𝑁: 𝑎𝑠𝑃),   

h) For every 𝑎𝑠 is fzy singleton of T, fzy ideals K, J of T , and fzy sub-module N of Y with 𝑎𝑠𝐾𝐽𝑃 ⊆ 𝑁, either 𝑎𝑠𝐾𝑃 ⊆ 𝑁 

or 𝑎𝑠𝐽𝑃 ⊆ 𝑁 or 𝐾𝐽𝑃 ⊆ 𝑁,  

i) For fzy ideals K, J of T, and fzy sub-module N of Y with 𝐾𝐽𝑃 ⊈ 𝑁, (𝑁: 𝐾𝐽𝑃) = (𝑁: 𝐾𝑃) or  (𝑁: 𝐾𝐽𝑃) = (𝑁: 𝐽𝑃),  

j) For fzy ideals 𝐾1, 𝐾2, 𝐾3 of T, and fzy sub-module N of Y with 𝐾1𝐾2𝐾3𝑃 ⊆ 𝑁, either 𝐾1𝐾2𝑃 ⊆ 𝑁 or 𝐾1𝐾3𝑃 ⊆ 𝑁 or 

𝐾2𝐾3𝑃 ⊆ 𝑁,  

k) For each fzy sub-module N of Y with 𝑃 ⊈ 𝑁, (𝑁: 𝑃) is T-ABSO fzy ideal of T. 

Proof: (𝑎) ⇒ (𝑏) Let 𝑎𝑠 , 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T, N is  fzy sub-module of Y, and 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 ⊆ 𝑁. Assume on the contrary 

that 𝑎𝑠𝑏𝑙𝐴 ⊈ 𝑁, 𝑏𝑙𝑐𝑖𝑃 ⊈ 𝑁, and 𝑎𝑠𝑐𝑖𝑃 ⊈ 𝑁. Then there exist completely irreducible fzy sub-modules. 𝐻1, 𝐻2, 𝐻3 of Y such 

that N is fzy sub-module of them but 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝐻1 , 𝑏𝑙𝑐𝑖𝑃 ⊈ 𝐻2 ,and 𝑎𝑠𝑐𝑖𝑃 ⊈ 𝐻3. Now we have 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3. 

Thus, by part (a) , 𝑎𝑠𝑏𝑙𝐴 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 or 𝑏𝑙𝑐𝑖𝐴 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3 or 𝑎𝑠𝑐𝑖𝐴 ⊆ 𝐻1 ∩ 𝐻2 ∩ 𝐻3. Therefore, 𝑎𝑠𝑏𝑙𝐴 ⊆ 𝐻1 

or 𝑏𝑙𝑐𝑖𝑃 ⊆ 𝐻2 or 𝑎𝑠𝑐𝑖𝑃 ⊆ 𝐻3 which are contradictions.  

(𝑏) ⇒ (𝑐) Let 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T. Then 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 implies that 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑐𝑖𝑃  or 𝑏𝑙𝑐𝑖𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 

or 𝑎𝑠𝑐𝑖𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 by part (b). Thus, a 𝑏𝑙𝑃 = 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 or 𝑏𝑙𝑐𝑖𝑃 = 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 or 𝑎𝑠𝑐𝑖𝑃 = 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 because the reverse 

inclusions are clear.  
(𝑐) ⇒ (𝑑) Let 𝑡𝑟 ∈ (N: 𝑎𝑠𝑏𝑙𝑃). Then 𝑡𝑟𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑁. Since 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝑁, 𝑎𝑠𝑡𝑟𝑃 ⊆ 𝑁 or 𝑏𝑙𝑡𝑃 ⊆ 𝑁 as needed.  

(𝑑) ⇒ (𝑒) This follows from the fact that if fzy ideal is the union of two fzy ideals, then it is equal to one of them.           
(𝑒) ⇒ (𝑓) Let for some 𝑎𝑠, 𝑏𝑙  are fzy singletons of T, fzy ideal K of T , and fzy sub-module N of Y, 𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝑁. Then 𝐾 ⊆
(𝑁: 𝑎𝑠𝑏𝑙𝑃). If 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑁, then we are done. Assume that 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝑁. Then by part (d), 𝐾 ⊆ (𝑁: 𝑏𝑙𝑃) or 𝐾 ⊆ (𝑁: 𝑎𝑠𝑃) as 

desired.  
(𝑔) ⇒ (ℎ) ⇒ (𝑖) ⇒ (ℎ) ⇒ (𝑗) Have proofs similar to that of the previous implications.  
(𝑗) ⇒ (𝑎) Trivial.  

(𝑗) ⇒ (𝑘) This is forthright.  

Let P be fzy sub-module of fzy module Y of a T-module W. Then Theorem (4.3) 
(𝑎) ⟺ (𝑐) shows that P is a fzy strongly classical Two-Absorbing second sub-module of Y iff P is a fzy strongly classical 

Two-Absorbing second module  

Corollary 4.4: Let A be a fzy strongly classical Two-Absorbing second sub-module of fzy module Y of a T-module W and 

K be fzy ideal of T. Then 𝐾nP = Kn+1P, for all 𝑛 ≥ 2.  

Proof: It is enough to show that 𝐾2P = K3P, by Theorem (4.3) , 𝐾2P = K3P.  

Proposition 4.5: Let Y fzy module of a T-module W. Then we have the following:  

a) If Y is a comultiplication fzy module then P is a fzy strongly classical Two-Absorbing second sub-module of Y. 

b) If  𝑃1 , 𝑃2 are a fzy quasi-prime second sub-module. of Y, then 𝑃1 + 𝑃2 is a fzy strongly classical Two-Absorbing second 

sub-module of Y.  

c) If P is a fzy strongly classical Two-Absorbing second sub-module of Y, then KP is a fzy strongly classical Two-

Absorbing second sub-module of Y for all fzy ideals K of T with 𝐾 ⊈ 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).  

d) If Y is a multiplication fzy strongly classical Two-Absorbing second module then every non-zero fzy sub-module of Y 

is a fzy classical Two-Absorbing second sub-module of Y.  

e) If Y is a fzy strongly classical Two-Absorbing second module then every non-zero homomorphic image of Y is a fzy 

classical Two-Absorbing second module  

Proof:  

a) By Theorem (4.3) (𝑎) ⇒ (𝑘), 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃)) is Two-Absorbing fzy ideal of T. Now the result follows from [13, 

Theorem (4.7)].  
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b) Let 𝑃1, 𝑃2  be a fzy quasi-prime second sub-module. of Y and 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T since 𝑃1 is a fzy quasi-

prime second sub-module we may assume that 𝑎𝑠𝑏𝑙𝑐𝑖𝑃1 = 𝑎𝑠𝑃1. Likewise, assume that 𝑎𝑠𝑏𝑙𝑐𝑖𝑃2 = 𝑏𝑙𝑃2. Hence, 

𝑎𝑠𝑏𝑙𝑐𝑖(𝑃1 + 𝑃2) = 𝑎𝑠𝑏𝑙(𝑃1 + 𝑃2) which implies 𝑃1 + 𝑃2 is a fzy strongly classical Two-Absorbing second sub-module 

by Theorem (4.3) (𝑐) ⇒ (𝑎).  

c) Use the technique of the proof of Theorem (3.10) (a).  

d) This follows from part (c).  

e) This is forthright. 

Proposition 4.6: Let Y fzy module of a T-module M and {𝐾𝑖}𝑖∈𝐼 be a chain of fzy strongly classical Two-Absorbing second 

sub-modules. of Y. Then ∑ 𝐾𝑖𝑖∈𝐼  is a fzy strongly classical Two-Absorbing second sub-module of Y. 

proof: Use the technique of Proposition (3.10).  

Definition 4.7: A fzy strongly classical Two-Absorbing second sub-module P of fzy module Y of a T-module W is a fzy 

maximal strongly classical Two-Absorbing second sub-module of fzy sub-module N of Y ,if 𝑃 ⊆ 𝑁 and there does not exist 

fzy strongly classical Two-Absorbing second sub-module V of Y such that 𝑃 ⊂ 𝑉 ⊂ 𝑁. 

Lemma 4.8: Let Y be a T-module W's fzy module. Subsequently, each fzy maximally strongly classical Two-Absorbing 

second sub-module of Y contains every fzy strongly classical Two-Absorbing second sub-module of Y.   

Proof: Proposition (4.6) and Zorn's Lemma [6] make this easily demonstrable. 

Theorem 4.9: Let 𝜙: 𝑌1 → 𝑌2 be Fzy-monomorphism of fzy modules Y of an T-modules. Next up is the following: 

a) If P is a fzy strongly classical Two-Absorbing second sub-module of 𝑌1, then 𝜙(𝑃) is a fzy strongly classical Two-

Absorbing second sub-module of 𝑌2.  

b) If B is a fzy strongly classical Two-Absorbing second sub-module of 𝜙(𝑌1), then 𝜙−1(𝐵) is a fzy strongly classical 

Two-Absorbing second sub-module of 𝑌1. 

Proof:  

a) Since A non-zero fzy sub-module and 𝜙 is F- monomorphism, we have 𝜙(𝑃) ≠ 01. Let  𝑎𝑠, 𝑏𝑙 , 𝑐𝑖 are fzy singletons of 

T. Then by of Theorem (4.3) (𝑎) ⇒ (𝑐), we can assume that 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 = 𝑎𝑠𝑏𝑙𝑃 . Thus, 𝑎𝑠𝑏𝑙𝑐𝑖𝜙(𝑃) = 𝜙(𝑎𝑠𝑏𝑙𝑐𝑖𝑃) =
𝜙(𝑎𝑠𝑏𝑙𝑃) = 𝑎𝑠𝑏𝑙𝜙(𝑃). Hence, 𝜙(𝑃) is a fzy strongly classical Two-Absorbing second sub-module of Y by Theorem 

(4.3). 

b) If 𝜙−1(𝐵) = 01 , then 𝜙(𝑌1) ∩ 𝐵 = 𝜙 𝜙−1(𝐵) = 𝜙(01) = 01. Thus, 𝐵 = 01 , a contradiction Therefore, 𝜙−1(𝐵) ≠
01. Now, let 𝑎𝑠 , 𝑏𝑙 , 𝑐𝑖 are fzy singletons of T, N be fzy sub-module of 𝑌1 and 𝑎𝑠𝑏𝑙𝑐𝑖𝜙

−1(𝐵) ⊆ 𝑁. Then 𝑎𝑠𝑏𝑙𝑐𝑖𝐵 =
𝑎𝑠𝑏𝑙𝑐𝑖(𝜙(𝑌1) ∩ 𝐵) = 𝑎𝑠𝑏𝑙𝑐𝑖𝜙𝜙−1(𝐵) ⊆ 𝜙(𝑁). Thus, as B is a fzy strongly classical Two-Absorbing second sub-

module 𝑎𝑠𝑏𝑙𝐵 ⊆ 𝜙(𝑁) or 𝑏𝑙𝑐𝑖𝐵 ⊆ 𝜙(𝑁) or 𝑎𝑠𝑐𝑖𝐵 ⊆ 𝜙(𝑁). Therefore, 𝑎𝑠𝑏𝑙𝜙
−1(𝐵) ⊆ 𝜙−1𝜙(𝑁) = 𝑁 or 

𝑏𝑙𝑐𝑖𝜙
−1(𝐵) ⊆ 𝜙−1𝜙(𝑁) = 𝑁 or 𝑎𝑠𝑐𝑖𝜙−1(𝐵) ⊆ 𝜙−1𝜙(𝑁) = 𝑁, as desired.  

 

5. CLASSICAL T-ABSO FUZZY SECONDARY SUB-MODULES 
 In this section we introduce the concept of fzy classical Two-Absorbing secondary sub-modules. as a dual notion of  Two-
Absorbing primary fzy sub-modules and getting some related results. 

Definition 5.1: A non-zero fzy sub-module P of fzy module Y of a T-module W is a fzy classical Two-Absorbing secondary 

sub-module of Y, if whenever 𝑎𝑠 , 𝑏𝑙  are fzy singletons of T, N is fzy sub-module of Y and 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑁, then 𝑎𝑠𝑃 ⊆ 𝑁 or 

𝑏𝑙𝑃 ⊆ 𝑁 or 𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃) .  

Example 5.2: Every fzy strongly Two-Absorbing second sub-module is a fzy classical Two-Absorbing secondary sub-

module but the converser not true in general, for example, 

Let 𝑌: Zp∞ → L where 𝑌(𝑦) = {
1      y ∈ Zp∞     

  
0     o. w.

  

Where p is any prime integer. It is evident Y fzy module of Z-module Zp∞  

Let 𝐴: 𝑍𝑝∞ → 𝐿 where 𝐴(𝑦) = {
u      y ∈   (

1

p3 + Z)  
  

0     o. w.

   

It evident is P fzy sub-module of Y.   

Now, Au = 〈
1

p3 + Z〉 is sub-module of Yu = Zp∞ as Z-module,   Au is not Two-Absorbing second sub-module since 

P2 〈
1

p3 + Z〉 ⊆ 〈
1

p
+ Z〉 but  𝑝 〈

1

p3 + Z〉 ⊈ 〈
1

p
+ Z〉 and P2 ⊈ 𝑎𝑛𝑛 (〈

1

p3 + Z〉) = (0)  

So that, A is not Two-Absorbing second sub-module of Y by [13, Proposition (3.6)]               

A is a fzy classical Two-Absorbing secondary sub-module, which is not fzy Two-Absorbing second sub-module of Y.  
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Example 5.3: Every fzy secondary sub-module. is a fzy classical Two-Absorbing secondary sub-module but the converser 

not true in general. For example, 

Let 𝑌: 𝐴 ⊕ 𝐾 → 𝐿 where 𝑌(𝑦) = {
1      y ∈  A ⊕ 𝐾   

  
0     o. w.

  

The Y fzy module of 𝐴 ⊕ 𝐾 is clearly the Z-module.   

Let 𝐵: 𝐴 ⊕ 𝐾 → 𝐿 where 𝐵(𝑦) = {
u      y ∈   〈

1

𝑝
+ 𝑍〉 ⊕  〈

1

𝑞2 + 𝑍〉 
  

0     o. w.

  

p and q are prime numbers. Clearly, B is a fzy sub-module of Y.   

Now 𝐵𝑢 = 〈
1

𝑝
+ 𝑍〉 ⊕ 〈

1

𝑞2 + 𝑍〉 is a classical T-ABSO secondary sub-module of the Z-module Zp∞ ⊕ Zq∞ but A ⊕ 𝐾 is not 

secondary sub-module of the Z-module 𝑍𝑝∞ ⊕ 𝑍𝑞∞, Then 𝐴 ⊕ 𝐾  is not fzy secondary sub-module of the Z-module 𝑍𝑝∞ ⊕

𝑍𝑞∞ , but 𝐴 ⊕ 𝐾 is a fzy classical Two-Absorbing secondary sub-module of the Z-module 𝑍𝑝∞ ⊕ 𝑍𝑞∞  

Theorem 5.4: Let P be a non-zero fzy sub-module of fzy module Y of a T-module W. The statements that follow are 

interchangeable:  

a) P is a  fzy classical Two-Absorbing secondary sub-module of Y. 

b) If 𝐾𝐽𝑃 ⊆ 𝑁 for some fzy ideals K, J of T and fzy sub-module N of Y, then 𝐾𝑃 ⊆ 𝑁 or 𝐽𝑃 ⊆ 𝑁 or 𝐾𝐽 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃)  

c) For each  𝑎𝑠, 𝑏𝑙  are fzy singletons of T, we have 𝑎𝑠𝑏𝑙P = 𝑎𝑠𝑃 or 𝑎𝑠𝑏𝑙P = 𝑏𝑙𝑃 or 𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑝). 

Proof: (𝑎) ⇒ (𝑏) Let P be a a fzy classical Two-Absorbing secondary sub-module of Y and let 𝐾𝐽𝑃 ⊆ 𝑁 for some fzy ideals 

K, J of T and fzy sub-module N of Y. Suppose 𝐾𝐽 ⊈ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑝).. Then for some 𝑎𝑠 ⊆ 𝐾 and 𝑏𝑙 ⊆ 𝐽, 𝑎𝑠𝑏𝑙 ⊈

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Now since 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑁, 𝑎𝑠𝑃 ⊆ 𝑁 or 𝑏𝑙𝑃 ⊆ 𝑁. We show that either 𝐾𝑃 ⊆ 𝑁 or 𝐽𝑃 ⊆ 𝑁. On contrary, We 

assume that 𝐾𝑃 ⊈ 𝑁 and 𝐽𝑃 ⊈ 𝑁. Then there exist 𝑎𝑠1 ⊆ 𝐾 and  𝑏𝑙1 ⊆ 𝐽 such that 𝑎𝑠1𝑃 ⊈ 𝑁 and 𝑏𝑙1𝑃 ⊈ 𝑁. Since 

𝑎𝑠1𝑏𝑙1𝑃 ⊆ 𝑁  and P is a fzy  classical Two-Absorbing secondary sub-module then 𝑎𝑠1𝑏𝑙1 ⊆ √𝐹 − 𝑎𝑛𝑛(𝐴) We have the 

following three cases:  

Case 1: Suppose 𝑎𝑠𝑃 ⊆ 𝑁 but 𝑏𝑙𝑃 ⊈ 𝑁. Since 𝑎𝑠1𝑏𝑙𝑃 ⊆ 𝑁 and  𝑏𝑙𝑃 ⊈ 𝑁 and 𝑎𝑠1𝑃 ⊈ 𝑁, we have 𝑎𝑠1𝑏𝑙 ⊆

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).. Now, (𝑎𝑠 + 𝑎𝑠1)𝑏𝑙𝑃 ⊆ 𝑁 and 𝑎𝑠𝑃 ⊆ 𝑁 but 𝑎𝑠1𝑃 ⊈ 𝑁 therefore (𝑎𝑠 + 𝑎𝑠1)𝑃 ⊈ 𝑁. As(𝑎𝑠 + 𝑎𝑠1)𝑏𝑙𝑃 ⊆

𝑁 and 𝑏𝑙𝑃 ⊈ 𝑁, (𝑎𝑠 + 𝑎𝑠1)𝑃 ⊈ 𝑁. implies (𝑎𝑠 + 𝑎𝑠1)𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).Thus,  𝑎𝑠1𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). implies that 

𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃), a contradiction.  

Case 2: Suppose 𝑏𝑙𝑃 ⊆ 𝑁 but 𝑎𝑠𝑃 ⊈ 𝑁. Then similar to the Case 1, we get a contradiction.  

Case 3: Suppose 𝑎𝑠𝑃 ⊆ 𝑁 and 𝑏𝑙𝑃 ⊆ 𝑁. Now, 𝑏𝑙𝑃 ⊆ 𝑁 and 𝑏𝑙1𝑃 ⊈ 𝑁 imply (𝑏𝑙 + 𝑏𝑙1)𝑃 ⊈ 𝑁. Since 𝑎𝑠(𝑏𝑙 + 𝑏𝑙1)𝑃 ⊆ 𝑁 

and (𝑏𝑙 + 𝑏𝑙1)𝑃 ⊈ 𝑁 and 𝑎𝑠1𝑃 ⊈ 𝑁, we get 𝑎𝑠1(𝑏𝑙 + 𝑏𝑙1) ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).Since 𝑎𝑠1𝑏𝑙1 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). we have 

𝑎𝑠1𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Again,  𝑃 ⊆ 𝑁 and 𝑎𝑠1𝑃 ⊈ 𝑁 imply (𝑎𝑠 + 𝑎𝑠1)𝑃 ⊈ 𝑁. Since (𝑎𝑠 + 𝑎𝑠1)𝑏𝑙𝑃 ⊆ 𝑁 and (𝑎𝑠 +

𝑎𝑠1)𝑃 ⊈ 𝑁 and 𝑏𝑙1𝑃 ⊈ 𝑁, we have (𝑎𝑠 + 𝑎𝑠1)𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).. Now, as 𝑎𝑠1𝑏𝑙1 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). we get  𝑎𝑠𝑏𝑙1 ⊆

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Since (𝑎𝑠 + 𝑎𝑠1)(𝑏𝑙 + 𝑏𝑙1)𝑃 ⊆ 𝑁 and (𝑎𝑠 + 𝑎𝑠1)𝑃 ⊈ 𝑁 and (𝑏𝑙 + 𝑏𝑙1)𝑃 ⊈ 𝑁, we have  (𝑎𝑠 + 𝑎𝑠1)(𝑏𝑙 +

𝑏𝑙1) ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Since 𝑎𝑠𝑏𝑙1 , 𝑎𝑠1𝑏, 𝑎𝑠1𝑏𝑙1 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃)., we have 𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃)., a 

contradiction. Hence, 𝐾𝑃 ⊆ 𝑁 or 𝐽𝑃 ⊆ 𝑁   

(𝑏) ⇒ (𝑐) Let 𝑎𝑠, 𝑏𝑙  are fzy singletons of T. Then 𝑎𝑠𝑏𝑙𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑃 implies that 𝑎𝑠𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑃 or 𝑏𝑙𝑃 ⊆ 𝑎𝑠𝑏𝑙𝑃 or 𝑎𝑠𝑏𝑙 ⊆

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Thus, 𝑎𝑠𝑏𝑙𝑃 =  𝑎𝑠𝑃 or 𝑎𝑠𝑏𝑙𝑃 = 𝑏𝑙𝑃 or 𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).        

(𝑐) ⇒ (𝑎) This is clear.  

Remark 5.5: Let P and N are two fzy sub-modules. of fzy module Y of a T-module W. To prove 𝑃 ⊆ 𝑁, it is enough to show 

that if H is a completely irreducible fzy sub-module of Y such that 𝑁 ⊆ 𝐻, then 𝑃 ⊆ 𝐻. 

Theorem 5.6: Let A be a fzy classical Two-Absorbing secondary sub-module of fzy module Y of a T-module W. Then Fzy-

ann(P) is Two-Absorbing primary fzy ideal of T.   

Proof: Let 𝑎𝑠, 𝑏𝑙 , 𝑐𝑖  are fzy singletons of T and 𝑎𝑠𝑏𝑙𝑐𝑖 ⊆  Fzy − ann(P)         

Suppose that 𝑎𝑠𝑏𝑙 ⊈ Fzy − ann(P) and 𝑏𝑙𝑐𝑖 ⊈ √Fzy − ann(P) we show that 𝑎𝑠𝑐𝑖 ⊆ √Fzy − ann(P). There exist 

completely irreducible fzy sub-modules. 𝐻1 and 𝐻2 of Y so that 𝑎𝑠𝑏𝑙𝑃 ⊈ 𝐻1 and 𝑏𝑙𝑐𝑖𝑃 ⊈ 𝐻2. Since 𝑎𝑠𝑏𝑙𝑐𝑖𝑃 = 01 ⊆ 𝐻1 ∩

𝐻2, 𝑎𝑠𝑐𝑖𝑃 ⊆ (𝐻1 ∩ 𝐻2:𝑌 𝑏𝑙). Thus, 𝑏𝑙  𝑎𝑠𝑃 ⊆ 𝐻1 ∩ 𝐻2 or 𝑐𝑖  𝑏𝑙𝑃 ⊆ 𝐻1 ∩ 𝐻2 or 𝑎𝑠𝑐𝑖 ⊆ √Fzy − ann(𝑃). If 𝑏𝑙𝑎𝑠𝑃 ⊆ 𝐻1 ∩ 𝐻2 

or 𝑐𝑖  𝑏𝑙𝑃 ⊆ 𝐻1 ∩ 𝐻2, then 𝑏𝑙  𝑎𝑠𝑃 ⊆ 𝐻1 or 𝑐𝑖  𝑏𝑙𝑃 ⊆ 𝐻2 which are contradictions. Therefore, 𝑎𝑠𝑐𝑖 ⊆ √Fzy − ann(P). 

Proposition 5.7: If K is Two-Absorbing primary fzy ideal ideal of T, then √𝐾 is Two-Absorbing fzy ideal of T [11] 
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Corollary 5.8: Let A be a fzy classical Two-Absorbing secondary sub-module of fzy module Y of a T-module W. Then 

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃) is Two-Absorbing fzy ideal of T.  

Proof: By Theorem (5.6), 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃) is Two-Absorbing primary fzy ideal of T. Thus, by Proposition (5.7), 

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃)  is Two-Absorbing fzy ideal of T.  

Example 5.9: The converse of Theorem (5.6) is not true in general for example.  

Let 𝑌: 𝑍𝑝𝑞 ⊕ 𝑄 → 𝐿 where 𝑌(𝑦) = {
1      y ∈ 𝑍𝑝𝑞 ⊕ 𝑄    

  
0     o. w.

  

It is evident Y is fzy module of 𝑍𝑝𝑞 ⊕ 𝑄 as Z-module  

Let 𝐴: 𝑍𝑝𝑞 ⊕ 𝑄 → 𝐿 where 𝐴(𝑦) = {
u      y ∈ 𝑍𝑝𝑞 ⊕ 𝑄    

  
0     o. w.

 

p and q are prime numbers. Clearly, A is a fzy sub-module of Y.  

Now 𝑎𝑛𝑛(𝑦) = 0 is Two-Absorbing Primary ideal of Z , But Y is not a fzy classical Two-Absorbing secondary Z-module 

Then 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑦) = 01 is Two-Absorbing primary fzy ideal of Z, But Y is not a fzy classical Two-Absorbing secondary 

Z-module  

Theorem 5.10: Let P be fzy sub-module  of fzy module Y of a T-module W. Then we have the following:  

a) If A is a fzy classical Two-Absorbing secondary sub-module of Y then KA is a fzy classical Two-Absorbing secondary 

sub-module of Y for all ideals K of T with 𝐾 ⊈ 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃).  

b) If Y is a multiplication fzy classical Two-Absorbing secondary module Then every non-zero fzy sub-module of Y is a 

fzy classical Two-Absorbing secondary sub-module of Y.  

Proof:  

a) Let K be fzy ideal of T with 𝐾 ⊈ 𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Then KP is a non-zero fzy sub-module of Y. 𝐿𝑒𝑡 𝑎𝑠 , 𝑏𝑙 are fzy 

singletons of T, N be fzy sub-module of Y and 𝑎𝑠𝑏𝑙𝐾𝑃 ⊆ 𝑁. then 𝑎𝑠𝑏𝑙𝑃 ⊆ (𝑁:𝑌  K). Thus, 𝑎𝑠𝐾𝑃 ⊆ 𝑁 or 𝑏𝑙𝐾𝑃 ⊆ 𝑁 or 

𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃) ⊆  √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝐾𝑃). As needed. 

b) This follows from part (a). 

Theorem 5.11: Let : 𝑌1 → 𝑌2 be Fzy-monomorphism of T-module. Then we have the following:  

a) If P is a fzy classical Two-Absorbing secondary sub-module of 𝑌1, then 𝜙(𝑃) is a fzy classical Two-Absorbing 

secondary sub-module of 𝑌2. 

b) If B is a classical T-ABSO fzy secondary sub-module of 𝜙(𝑌1), then 𝜙−1(𝐵) is a fzy classical Two-Absorbing secondary 

sub-module of 𝑌1.  

Proof:     

a) Since P is non-zero fzy sub-module and f is Fzy-monomorphism, we have 𝜙(𝑃) ≠ 01. Let 𝑎𝑠, 𝑏𝑙  are fzy singletons of 

T, B be fzy sub-module of Y, and 𝑎𝑠𝑏𝑙 𝜙(𝑃) ⊆ 𝐵. Then 𝑎𝑠𝑏𝑙 𝑃 ⊆ 𝜙−1(𝐵). As P is fzy classical Two-Absorbing 

secondary sub-module 𝑎𝑠𝑃 ⊆ 𝜙−1(𝐵) or 𝑏𝑙 𝑃 ⊆ 𝜙−1(𝐵)  𝑜𝑟 𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑃). Therefore, 𝑎𝑠𝜙(𝑃) ⊆

𝜙(𝜙−1(𝐵)) = 𝜙(𝑌1) ∩ 𝐵 ⊆ 𝐵 or 𝑏𝑙 𝜙(𝑃) ⊆ 𝜙(𝜙−1(𝐵)) = 𝜙(𝑌1) ∩ 𝐵 ⊆ 𝐵 or 𝑎𝑠𝑏𝑙 ⊆ √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝑓(𝑃)), As 

needed.  

b) If 𝜙−1(𝐵) = 01, then 𝜙(𝑌1) ∩ B = 𝜙𝜙−1B = 𝜙(01) = 01
́ . Thus, B = 01, a contradiction . Therefore, 𝜙−1(𝐵) ≠ 01. 

Now let 𝑎𝑠, 𝑏𝑙  are fzy singletons of T, N be fzy sub-module of X  and 𝑎𝑠𝑏𝑙 𝜙
−1(B) ⊆ 𝑁. Then 𝑎𝑠𝑏𝑙 �́� = 𝑎𝑠𝑏𝑙 (𝜙(𝑌1) ∩

B) = 𝑎𝑠𝑏𝑙  𝜙𝜙−1(B) ⊆ 𝜙(𝑁). As B is fzy classical Two-Absorbing secondary sub-module 𝑎𝑠𝐵 ⊆ 𝜙(𝑁) or 𝑏𝑙B ⊆

𝜙(𝑁) or 𝑎𝑠𝑏𝑙 √𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝐵). Hence, 𝑎𝑠𝜙−1(𝐵) ⊆ 𝜙−1 𝜙(𝑁) = 𝑁 or 𝑏𝑙𝜙
−1(B) ⊆ 𝜙−1𝜙(𝑁) = 𝑁 or 𝑎𝑠𝑏𝑙 ⊆

√𝐹𝑧𝑦 − 𝑎𝑛𝑛(𝜙−1(𝐵)), As desired.  
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