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1. INTRODUCTION

T is a commutative ring with identity in this study, and W is a unitary T-module, or simply T-module. In 1965, Zadeh [14]
introduced the idea of fuzzy sets. In 1971, Rosenfeld presented the idea of fuzzy groups [1]. In [2], Deniz S. et al. introduced
the idea of a 2-absorbing fuzzy ideal, which is a prime fuzzy ideal generalization. A classical 2-absorbing sub-module was
presented by Hojjat et al. [5] in 2015 as a generalization of a classical prime (which is itself quasi-prime). sub-module "A
classical 2-absorbing sub-module is a proper sub-module N of a T-module W if each time a,b,c € R and m € M with
abcm € N, then abm € N or acm € N or bem € N ". In 2019, Hatam and Wafaa conducted research and presented the
idea of a traditional T-ABSO fuzzy sub-module [12].

This paper is divided into three pieces. The definition of fuzzy classical Two-Absorbing second sub-module, necessary
qualities, various hypotheses, theorems, and examples are examined and presented in Section (1). We examine strongly
classical two-absorbing second sub-module conceptions and their relationship to two-absorbing second sub-module concepts
in section (2). As a counterpart notion of Two-Absorbing primary sub-modules, fuzzy classical Two-Absorbing secondary
sub-modules are introduced in section (3), and some associated findings are obtained.

Note that. The notations fzy ideal, fzy sub-module, fzy singleton, fzy second and fzy module represent the fuzzy ideal,

fuzzy sub-module, fuzzy singleton, fuzzy second and fuzzy module.

2. CONCEPT BASIC

Definition 2.1[14]: Let S be a non-empty set and L be an interval [0,1] of the real line (real number). A fzy set Ain S (a
fzy subset of S) is a function from S into L.
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Definition 2.2 [7]:Let x,:S — L beafzy setin S, where x € S, u € L, identify by

_(uifx=y . . .
2, (y) _{O ifx %y , X, 1S named fzy singleton in S.
1 ify=0

Ifx=0andu =1, then 0,(y) Z{O ify+0

Definition 2.3[15] : The term "fzy ideal of T" refers to a fzy subset Kofaring T, if VX, y € T:
1- K(x —y) = min{K(x),K(y)}
2- K(xy) = max{K(x),K»)}.

Definition 2.4 [15]: Let W be a T-module fzy set Y of W is called fzy module of a T-module W if
1- Y(x—vy) =2min{Y(x),Y(y)}, forall x,y e W.

2- Y(ix)=Y(), forallx e W,r eT.

3- Y(0) =1 (0isthe zero element of W).

Definition 2.5[8]: Consider two fzy modules of a T-module W, Y and P. P is named fzy sub-module of Y if P C Y.

Proposition 2.6[10]:Let P be fzy set of W. Then the level subset B,, Vu € L is a sub-module of W iff P is fzy sub-module
of fzy module of a T-module W.

Definition 2.7[13]: Assume that fzy module Y has two fzy sub-modules, P and B. The fzy subset of T, represented by (P: B),
is the residual quotient of P and B, which is defined by:

(P:B)(r) = sup{v € L:1,,.B < P}forall r e T.That(P:B) = {r,:1,.B € P;7,is aF.singletonof T }.IfB =< x;, >,
then (P: < x, >) ={r,:1,.x, € P; 1, is fzy.singleton of T}.

Definition 2.8[8]: Assume that P is a proper fzy sub-module of Y. The definition of the fzy annihilator of P, represented by
Fzy-annP, is: (Fzy — annP)(r) = sup{viv € L, P € 0,},forallr € T.
Note that: Fzy — annP = (0;: P), hence (Fzy — annY),, € annY,, [4].

Proposition 2.9[8]:If Y is fzy module of a T-module W, then Fzy-annY is fzy ideal of T.

Definition 2.10[11]:An perfect fzy If A of a ring T is non-empty and for any as, b, fzy singletons of T there exists such that
ab; € A Suggest that a choice of a; € Hor b, € H, Vs,1 € L.

Definition 2.11[2]: Let H be a fzy ideal of T that is not empty. Then, for any fzy singletons, H is called the Two-Absorbing
Fzy Ideal aq, b, 1, Of T so that a,b, 1, © H suggest that a choice of a;h, € H or agr, € Hor b, 7, € H.

Definition 2.12[2]:Let H be a proper fzy ideal of T. Then H is said to be Two-Absorbing primary fzy ideal of T if asb;r, S
H, implies that agb; € H or asry, S VH or b, S+VH forany fzy singletons ag, b;, 1, of T.

Definition 2.13[4]:A fzy module. Y of a T-module W is named a multiplication fzy module If there is a fzy ideal A of T such
that P = HY for every non-empty fzy sub-module P of Y.

Definition 2.14[3]: Let P # 0, be the fzy second sub-module, and let Y be the fzy module of a T-module W if Vr € T we
have 1,.P = P or 1,..P = 0, where 1, is fzy ideal of T.

Definition 2.15 [12]: A fzy module Y of a T-module W is named a comultiplication fzy module if P = F — annyF — annP
for each fzy sub-module P of Y.

Theorem 2.16 [12]: Assume that H is a non-empty proper fzy ideal of aring T. Then the following expressions are equivalent:
1- H is Two-Absorbing fzy ideal of T;

2- If UKD c H for fzy ideals U,K,D of T, UK € Hor KD € Hor UD c H.
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Definition 1. 17[13]: Let Y be a T-module's fzy. W. A suitable submodule It is claimed that A of Y is an entirely irreducible
fzy sub-module if A =, where {A,}i¢; is a family of fzy sub-modules of Y, suggest that A = A, for any i € I. Every fzy sub-
module of Y is an intersection of a fully irreducible fzy sub-module of Y, as is readily apparent.

Theorem 2.18[12]:Let f: X — Y be F-epimorphism of T-module

1) IfPisafzy classical Two-Absorbing sub-module of Y, then f~1(P) is a fzy classical Two-Absorbing sub-module of
X.

2) If Pisafzy classical Two-Absorbing sub-module of X containing ker(f). Then f(P) is a fzy classical Two-
Absorbing sub-module of Y.

Proposition 2.19 [13]:Let F: X— Y be Fzy-monomorphism of T — module. If H is a completely irreducible fzy sub —

module of fuzzy module X of a T — module M, then F(H)is a completely irreducible fzy sub — module of F(X) .

3. FZY CLASSICAL TWO-ABSORBING SECOND SUB-MODULES.

In this section we introduce the notion of fzy classical Two-Absorbing second sub-modules as a generalization of fzy Two-

Absorbing second sub-modules. And studied some definition , examples , theorems and propositions .

Definition 3.1: Let P be a non-zero fzy sub-module of fzy module Y of a T-module W. Then P is named a fzy classical

Two-Absorbing second sub-module of Y if whenever ag, b, ¢; are fzy singletons of T, H is a completely irreducible fzy

sub-module . of Y, and asb,c;P < H , then asb,P € H or b,c;P € H or a,c;P S H. We say Y is a classical Two-Absorbing

fzy second module. if Y is a fzy classical Two-Absorbing second sub-module of itself .

Proposition 3.2: Let P # 0; be fzy sub-module of fzy module of Y of a T-module W. Then P is a fzy classical Two-

Absorbing second sub-module of Y Iff the level sub-module , B, # 0 is a classical Two-Absorbing second sub-module of

Y, forallu € L.

Proof: =) Let abc P, < H,, for every a,b,c € T and B, # 0 be sub-module of Y, H, be completely irreducible ssub-

module of Y, we have abc y € H, forall y € B,, then H(abcy) = u. So (abcy), € H, implies that agb,c;y; € H,Vy, €

P where u = min{s, k, i}, hence agb,c; P < H. Since P is a fzy classical Two-Absorbing second sub-module then either

asb, P S Horb,c; P < H orasc;P € H. Hence agh,y, € H or byc;y; € H or acc; € H , so that (aby), € H or

(bcy), € H or (ac), S H .Thus, either aby € H,, or bcy € H, or ac € H, ,Vy € B, s0 abP, € H,, or bc B, € H, or

ac < H,, therefore B, is a classical Two-Absorbing second sub-module of Y,,.

<) Let agb,c; P < H for all fzy singletons ag, by ,c; of T and H is completely irreducible fzy sub-module of Y .

Subsequently a byc; y; € H, Vy; € P ,s0 (abcy),, € H where u = min{s, k,i,l} , hence H(abcy) = u ,thena bcy €

H,,Vy € B, indicates abc P, < H,, but B, is a classical Two- Absorbing second sub-module of Y,, ,so that either abP, <

H, or bcB, € H, or acB, € H,. Subsequently aby € H, or bcy € H,or acy € H , Yy € B, hence either (aby),, € H or

(bcy), € H or (ac), S H so either a;b, P € H or byc; P € H or a,c;P € H.

Thus, P is a fzy classical Two-Absorbing second sub-module of Y.

Theorem 3.3: Let P be a non-zero fzy sub-module of Y and Y be the fzy module of a T-module W. Then, the following

claims are interchangeable:

a) P isafzy classical Two-Absorbing second sub-module of V.

b) Forevery as, b, fzy singletons of T and completely irreducible fzy sub-module H of Y with a,b,P € H , (H: ash,P) =
(H:as,P) U (H: b, P).

c) Forevery a, b, fzy singletons of T and completely irreducible fzy sub-module H of Y with a,b,P € H , (H: agh,P) =
(H:azP) or (H:ash,P) = (H: b;P).

d) For every ay, b; fzy singletons of T, every fzy ideal K of T, and completely irreducible fzy sub-module H of Y with
asb;KP < H, either a;h,P € H or agKP < H or b,KP € H.

e) Forevery a, fzy singleton of T, every fzy ideal K of T, and completely irreducible fzy sub-module H of Y with a,KP &
H,(H:a,KP) = (H:KP) or (H: a;KP) = (H: asP).

f) Forevery a, fzy singleton of T, fzy ideals K, N of T, and completely irreducible fzy sub-module H of Y with a,KNP <
H ,either a,KP € Hora,NP < Hor KNP € H.

g) For fzy ideals K, N of T and completely irreducible fzy sub-module H of Y with KNP & H, (H: KNP) = (H:KP) or
(H:KNP) = (H: NP).

h) For fzy ideals K;, K,, K5 of T, and completely irreducible fzy sub-module H of Y with K, K,K;P € H , either K;K,P <
HorK,K;P € Hor K,K;P € H.

i) For each completely irreducible fzy sub-module H of Y with P € H, (H: P) is Two-Absorbing fzy ideal of T.

Proof: (a) = (b) Lett, € (H:ash,P). Thent,a,b,P < H. Since a,b;P &€ H, then ast,P < H or b;t,P € Hsothatt, €

(H:azP) ort, € (H: b;P) hence (H: a;b;P) = (H:azP) U (H: b,P).

(b) = (c) This follows from the fact that if a fzy ideal is the union of two fzy ideals, then it is equal to one of them.
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(c) = (d) Let ag, b; be fzy singletons of R and H be a completely irreducible fzy sub-module of Y, such that a;h; KP < H.
Then K € (H: asb,P). If a;b,P € H, then we are done. Assume that a;b;P ¢ H. Then by part (c),K € (H:b,P) or K €
(H: ayP) as desired.

(d) = (e) = (f) = (g) = (h) The proofs are similar to those previous implications

(h) = (i) Let K, ,K, , K5 be fzy ideals of R , KK, K; < (H: P), then K;K, K;P € H . By (h) either K;K,P € H or
K, K;P S HorK,K;P < H, hence either K;K, € (H: P) or K;K; < (H: P) or K,K; € (H: P) . So that (H: P) is Two-
Absorbing fzy ideal by theorem (2.15)

(h) = (a) Trivial.

Corollary 3.4: Let A be a fzy classical Two-Absorbing second sub-module of a cocyclic T-module W . Then Fzy-ann(P) is
Two-Absorbing fzy ideal of T.

Proof: This follows from Theorem (3.3) (a) = (i) , because (0) is a completely irreducible fzy sub-module of Y.

1, y€Zpo
Example 3. 5: LetY: Z,~ — L where Y(y) =

0, o.w.
in which p can be any prime number. The Y fzy module of Z-module Z,« is clearly visible.
u, ye (5+2)iel
Let S:Z,» — L where S(y) = P

0, o.w.

S is clearly a fzy sub-module of Y.

Now S, = (z% + Z) is sub-module of ¥;, = Z,, as Z-module
S, is not Two-Absorbing second sub-module Since
p3 (:—4 +Z)c (% +Z) but P (:—4 +27Z) ¢ (% + Z)and P2 & ann(S,) = 0. So that S is not fzy Two-Absorbing second sub-
module of Y by Proposition 3.2. Thus, S is not fzy classical Two-Absorbing second sub-module of Y.

1 yeZ,,®Q
Example 3.6: LetY: Z,, &© Q — L where Y (y) = {

0 o.w.
where the prime numbers are p and g. The Y fzy module of Z-module Z,,, & Q is clearly visible.

u ye€ quGBQ
Let S:Z,, ®Q — L where A(y) =

0 o.w.
It is obvious S a fzy sub-module of Y.

Now S, = Z,, @ Q isa classical Two-Absorbing second sub-module, but it is not a strongly Two-Absorbing second sub-
module So that S is a fzy classical Two-Absorbing second sub-module by Proposition (3.2).

Proposition 3.7: Let P be a fzy classical Two-Absorbing second sub-module of fzy module Y of a T-module W. Then we

have the following:

a) If a4 fzy singleton of T ,then a*P = a**1P, forall n > 2.

b) If Hisacompletely irreducible fzy sub-module of Y such that P & H, then ./ (H: P) is Two-Absorhing fzy ideal of R.

Proof:

a) It suffices to demonstrate that a? P = a*1P . It is evident that a3P € a2P . Let H be a completely irreducible fzy sub-
module of Y, such that a2P € H . Since P is a fzy classical Two-Absorbing second sub-module then a2P € H. This
implies that a2P € a3P.

b) Assume that ag, by, c; are fzy singletons of T and agb,c; < /(H: P) Then, a positive integer t exists so atbfcf P € H.
By hypotheses, P is a fzy classical Two-Absorbing second sub-module of Y. Thus, atbf P < H or bfcf P < H or
atct P < H. Therefore, b, € /(H: P) or b,c; < \/(H: P) or asc; < /(H: P).

Theorem 3.8: Let P be fzy sub-module of fzy module Y of a T-module W. Then we have the following:

a) If Aisa fzy classical Two-Absorbing second sub-module of fzy module Y of a T-module W, then KP is a fzy classical
Two-Absorbing second sub-module of Y for fzy ideal K of T with K & Fzy — ann(P).

b) If Pisafzy classical Two-Absorbing sub-module of Y, then (P:y K) is a fzy classical Two-Absorbing sub-module sub-
module of Y for fzy ideal K of T with K & (P:Y).

c) Letg¢:Y; - Y, be F-monomorphism of T-module. If B is a fzy classical Two-Absorbing second sub-module of ¢(Y;),
then ¢ ~1(B) is a fzy classical Two-Absorbing second sub-module of Y.
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Proof:

a) LetKbe fzyideal of Twith K & Fzy — ann(P) and aq, b;, ¢; be fzy singletons of T, H be a completely irreducible fzy
sub-module of Y, so that a;b,c;KP < H, then asc;P S H or ¢; b,KP S H or agb;KP < H by Theorem (3. 3) (a) =
(d). If ¢; bKP € H or agh;KP < H, then we are done. If a;c;P S H, then a;c;KP S a,c; P implies that a;c;KP < H,
as needed. Since K & Fzy — ann(P), we have KP is a non-zero fzy sub-module of Y.

b) Use the technique of part (a) and apply Theorem (2.16).

c) If¢p~1(B)=0,,thenp(¥)NB = pp~1(B) = ¢ (0,) = 0,. Thus, B = 0, is a contradiction. Therefore, p~1(B) #
0,.Now let ay, by, ¢; are fzy singletons of T, H be a completely irreducible fzy sub-module of Y, and asb;c;¢p"1(B) €
H. Then asb,c;B = asbic; (p(Y;) N B) = asbic; pp~1(B) € ¢ (H). By Proposition (2.19), ¢ (H) is a completely
irreducible fzy sub-module of ¢ (Y;). Thus, as B is a fzy classical Two-Absorbing second sub-module a;b; B € ¢(H)
or bic; B € ¢(H) oragc; B € ¢(H). Therefore ash;p~2(B) € ¢ 1¢p(H) = H or bic; ¢~2(B) € ¢ 1¢p(H) = H or
asc;d~1(B) € ¢~1p(H) = H, as desired .

Corollary 3.9: Let Y be fzy module of a T-module W. Then we have the following:

a) IfYisa fzy multiplication classical Two-Absorbing second T-module then every non-zero fzy sub-module of Y is a
fzy classical Two-Absorbing second sub-module of Y.

b) If Y is a comultiplication fzy module and the zero fzy sub-module of Y is a fzy classical Two-Absorbing sub-module,
then every proper fzy sub-module of Y is a fzy classical Two-Absorbing sub-module of Y.

Proof: This follows from parts (a) and (b) of Theorem (3.8).

Proposition 3.10: Let Y be fzy module of a T-module W and {K;};c; be a chain of fzy classical Two-Absorbing second sub-

modules. of Y. Then ¥;, K; is a fzy classical Two-Absorbing second sub-module of Y.

Proof: Let ag, by, ¢; are fzy singletons of T, H be a completely irreducible fzy sub-module of Y, and agsb;c; Y, K; € H.

Assume that asb; Y.;e; K; € H and agc; Yie; K; € H. Then there are m, n € I that previous implications. where a;b,K,, € H

and a, ¢; K,,, € H . Hence,for every K,, € K, and every K,,, © K; we have that a;b,K; € H and a, c; K; € H. Therefore,

for each fzy sub-module K, such that K,, < K, and K,,, € K}, , we have b;c; K;, € H. Hence b, ¢; Y.;c; K; € H, as needed.

Definition 3.11: A fzy classical Two-Absorbing second sub-module P of fzy module Y of a T-module W is a fzy maximal

classical Two-Absorbing second sub-module of fzy sub-module B of Y, if P € B and there does not exist a fzy classical

Two-Absorbing second sub-module S of Y suchthat P € S c B.

Lemma 3.12: Let Y be a T-module W's fzy module. A fzy maximum classical Two-Absorbing second sub-module of Y

then contains each of the fzy classical Two-Absorbing second sub-modules of Y.

Proof: Using Zorn's Lemma [6] and Proposition (3.10), this is readily demonstrated.

4. FZY STRONGLY CLASSICAL TWO-ABSORBING SECOND SUB-MODULES.

This section provides a definition of the term fzy strongly classical Two-Absorbing second sub-module of fzy module , we
consider the relationship between fzy classical Two-Absorbing second sub-modules and fzy strongly classical Two-
Absorbing second sub-modules, example, theorem and propositions

Definition 4.1: Let P be a non-zero fzy sub-module of fzy module Y of a T-module W. We say that P is a fzy strongly
classical Two-Absorbing second sub-module of Y if whenever ag, b;, c; are fzy singletons of T, H,, H,, H; are completely
irreducible.fzy sub-modules. of Y and a;b;c;P € H; N H, N H;, then agh,P < H; N H, N H5 or b,c;P € H, N H, N H; or
asc;P € H; N H, N Hy . We say Y is fzy strongly classical Two-Absorbing second module if Y is a fzy strongly classical
Two-Absorbing second sub-module of itself
Note that:

Clearly every fzy strongly classical Two-Absorbing second sub-module is a fzy classical Two-Absorbing second sub-
module

1 ifyeZ

Example 4.2: LetY:Z —» L whereY(y) =

0 o.w.
As Z-module, it is clear that Y is Z's fzy module.

LetP:Z —» L where P(y) = {8 y i i}z

It evident P is fzy sub-module of Y.

Now, P = 2Z is not fzy Two-Absorbing second sub-module of ¥, = Z as Z-module, since 2.2.2Z < 8Z where 87 is a
completely irred. sub-module of Y, = Z as Z-module, but 2.2Z & 8Z and 2.2 ¢ ann(2Z) = (0). Therefore, A is not the
second sub-module of T-ABSO. Thus, P has no fzy strongly classical Two-Absorbing second sub-module



Hanoon et al, Babylonian Journal of Mathematics, 2024, 85-94

Theorem 4.3: Let Y fzy module of a T-module W and P be a non-zero fzy sub-module of Y. Then the statements that

follow are interchangeable:

a) P isfzy strongly classical Two-Absorbing second sub-module

b) If ag, by, c; are fzy singletons of T, N is fzy sub-module of Y, and asb,c;P S N, then a;b,P S N or b;c;P S N or
asc;P € N,

c) Forevery a, by, ¢; are fzy singletons of T, asb;c;P = ash, P or agh,c;P = asc;P or agh;c;P = b;c;P,

d) Forevery ag, b, are fzy singletons of T and sub-module N of Y with a;b,P € N, (N: agh;P) = (N:a,P) U (N: b;P),

e) For every a,, b, are fzy singletons of T and fzy sub-module N of Y with a.b,P € N, (N:a.b;P) = (N:a,P) or
(N:ash;P) = (N: b;P),

f) Forevery ag, b, are fzy singletons of T, every fzy ideal K of T, and sub-module N of Y with a;b,KP S N, eithera;b,P <
NorasKP S NorbKP SN,

g) For every ag is fzy singleton of T, every fzy ideal K of T, and fzy sub-module N of Y with a,KP € N, (N: a,KP) =
(N:KP) or (N: a,KP) = (N:a,P),

h) For every ay is fzy singleton of T, fzy ideals K, J of T, and fzy sub-module N of Y with a;KJP < N, either a,KP € N
oragJP S NorKJP S N,

i) Forfzy ideals K, J of T, and fzy sub-module N of Y with KJP € N, (N: KJP) = (N: KP) or (N:KJP) = (N:]JP),

j) For fzy ideals K;, K,, K5 of T, and fzy sub-module N of Y with K; K,K;P < N, either K;K,P € N or K;K;P S N or
K,K:P S N,

k) For each fzy sub-module N of Y with P € N, (N: P) is T-ABSO fzy ideal of T.

Proof: (a) = (b) Let ag, by, ¢; are fzy singletons of T, N is fzy sub-module of Y, and a;b;c;P < N. Assume on the contrary

that a;b;A € N, byc;P € N, and a,c;P € N. Then there exist completely irreducible fzy sub-modules. H,, H,, H; of Y such

that N is fzy sub-module of them but a,b,P € H, , b;c;P € H, ,and a,c;P £ Hs;. Now we have asb;c;P € H; N H, N Hs.

Thus, by part (8) , a;byA € H, N H, N H; or b;c;A € H; N H, N H; or agsc;A S Hy N H, N Hs. Therefore, a;h;A € H,

or b;c;P € H, or asc;P S H; which are contradictions.

(b) = (c) Letag, by, c; are fzy singletons of T. Then ayb,c;P S agb,c; P implies that a;b;P < asb;c;P or b,c;P < agb,c;P

or asc;P S asb;c;P by part (b). Thus, ab,P = ash;c;P or b;c;P = asb;c;P or asc;P = agsb;c;P because the reverse

inclusions are clear.

(c) = (d) Lett, € (N:asb,P). Then t,.ash;P < N. Since a;h;P £ N, a,t,P € N or b;tP < N as needed.

(d) = (e) This follows from the fact that if fzy ideal is the union of two fzy ideals, then it is equal to one of them.

(e) = (f) Let for some ag, b; are fzy singletons of T, fzy ideal K of T, and fzy sub-module N of Y, a;b;KP € N. Then K <

(N:asbP). If agh;P S N, then we are done. Assume that a;b,P € N. Then by part (d), K < (N: b;P) or K € (N: azP) as

desired.

(g) = (h) = (i) = (h) = (j) Have proofs similar to that of the previous implications.

() = (a) Trivial.

(j) = (k) This is forthright.

Let P be fzy sub-module of fzy module Y of a T-module W. Then Theorem (4.3)

(a) & (c) shows that P is a fzy strongly classical Two-Absorbing second sub-module of Y iff P is a fzy strongly classical

Two-Absorbing second module

Corollary 4.4: Let A be a fzy strongly classical Two-Absorbing second sub-module of fzy module Y of a T-module W and

K be fzy ideal of T. Then K"P = K"*1P, foralln > 2.

Proof: It is enough to show that K2P = K3P, by Theorem (4.3) , K?P = K3P.

Proposition 4.5: Let Y fzy module of a T-module W. Then we have the following:

a) IfYisacomultiplication fzy module then P is a fzy strongly classical Two-Absorbing second sub-module of Y.

b) If P, P, are a fzy quasi-prime second sub-module. of Y, then P, + P, is a fzy strongly classical Two-Absorbing second
sub-module of Y.

c) If Pisafzy strongly classical Two-Absorbing second sub-module of Y, then KP is a fzy strongly classical Two-
Absorbing second sub-module of Y for all fzy ideals K of T with K & Fzy — ann(P).

d) If Y isa multiplication fzy strongly classical Two-Absorbing second module then every non-zero fzy sub-module of Y
is a fzy classical Two-Absorbing second sub-module of Y.

e) If Y isa fzy strongly classical Two-Absorbing second module then every non-zero homomorphic image of Y is a fzy
classical Two-Absorbing second module

Proof:

a) By Theorem (4.3) (a) = (k), Fzy — ann(P)) is Two-Absorbing fzy ideal of T. Now the result follows from [13,
Theorem (4.7)].
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b) Let P, P, be a fzy quasi-prime second sub-module. of Y and ag, b;, ¢; are fzy singletons of T since P, is a fzy quasi-
prime second sub-module we may assume that asb,c;P; = a,P;. Likewise, assume that asb,c;P, = b;P,. Hence,
asb,c;(P, + P,) = asb;(P; + P,) which implies P; + P, is a fzy strongly classical Two-Absorbing second sub-module
by Theorem (4.3) (¢) = (a).

c) Use the technique of the proof of Theorem (3.10) (a).

d) This follows from part (c).

e) This is forthright.

Proposition 4.6: Let Y fzy module of a T-module M and {K;};¢; be a chain of fzy strongly classical Two-Absorbing second

sub-modules. of Y. Then Y ;¢; K; is a fzy strongly classical Two-Absorbing second sub-module of Y.

proof: Use the technique of Proposition (3.10).

Definition 4.7: A fzy strongly classical Two-Absorbing second sub-module P of fzy module Y of a T-module W is a fzy

maximal strongly classical Two-Absorbing second sub-module of fzy sub-module N of Y ,if P € N and there does not exist

fzy strongly classical Two-Absorbing second sub-module V of Y suchthat P c V c N.

Lemma 4.8: Let Y be a T-module W's fzy module. Subsequently, each fzy maximally strongly classical Two-Absorbing

second sub-module of Y contains every fzy strongly classical Two-Absorbing second sub-module of Y.

Proof: Proposition (4.6) and Zorn's Lemma [6] make this easily demonstrable.

Theorem 4.9: Let ¢: Y; — Y, be Fzy-monomorphism of fzy modules Y of an T-modules. Next up is the following:

a) If P is a fzy strongly classical Two-Absorbing second sub-module of Y;, then ¢(P) is a fzy strongly classical Two-
Absorbing second sub-module of Y.

b) If B is a fzy strongly classical Two-Absorbing second sub-module of ¢(Y;), then ¢~1(B) is a fzy strongly classical
Two-Absorbing second sub-module of Y;.

Proof:

a) Since A non-zero fzy sub-module and ¢ is F- monomorphism, we have ¢ (P) # 0,. Let ag, by, c; are fzy singletons of
T. Then by of Theorem (4.3) (a) = (c), we can assume that asb;c;P = asb;P . Thus, asb;c;¢(P) = ¢p(asb;c;P) =
¢(asb,P) = asbyp(P). Hence, ¢p(P) is a fzy strongly classical Two-Absorbing second sub-module of Y by Theorem
(4.3).

b) If¢p1(B)=0;,then p(Y;,) NB = ¢ ¢~1(B) = ¢(0,) = 0,. Thus, B = 0, , a contradiction Therefore, ¢~1(B) #
0,. Now, let ag, b, ¢; are fzy singletons of T, N be fzy sub-module of ¥; and asb;c;¢p"1(B) € N. Then a.b,c;B =
ash;c;(p(Y;) N B) = asbc;pp~1(B) € ¢p(N). Thus, as B is a fzy strongly classical Two-Absorbing second sub-
module a.b;B € $p(N) orb,c;B < ¢(N) or asc;B S ¢p(N). Therefore, ab;p 2 (B) S p(N)=N or
bicip™*(B) €S ¢ 1p(N) = N or asc;p 1 (B) € ¢~ 1p(N) = N, as desired.

5. CLASSICAL T-ABSO FUZZY SECONDARY SUB-MODULES
In this section we introduce the concept of fzy classical Two-Absorbing secondary sub-modules. as a dual notion of Two-
Absorbing primary fzy sub-modules and getting some related results.

Definition 5.1: A non-zero fzy sub-module P of fzy module Y of a T-module W is a fzy classical Two-Absorbing secondary
sub-module of Y, if whenever ag, b; are fzy singletons of T, N is fzy sub-module of Y and a;b;P < N, then a,P € N or
b,P € N or ash, € \/Fzy — ann(P) .
Example 5.2: Every fzy strongly Two-Absorbing second sub-module is a fzy classical Two-Absorbing secondary sub-
module but the converser not true in general, for example,

1 y € Zpoo
LetY:Zp~ — L where Y(y) = {

0 ow.
Where p is any prime integer. It is evident Y fzy module of Z-module Z

u yeE (5+72)
Let A: Z, — L where A(y) = P

0 o.w.
It evident is P fzy sub-module of Y.

Now, A, = (p%+ Z) is sub-module of Y, = Z,~ as Z-module, A, is not Two-Absorbing second sub-module since
2L 1 1 1 2 L -
PH(5+2) S+ Z)but p(5+2) & ¢ +2Z)andP g;ann(<p3+2)) =(0)

So that, A is not Two-Absorbing second sub-module of Y by [13, Proposition (3.6)]
A is a fzy classical Two-Absorbing secondary sub-module, which is not fzy Two-Absorbing second sub-module of Y.
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Example 5.3: Every fzy secondary sub-module. is a fzy classical Two-Absorbing secondary sub-module but the converser
not true in general. For example,

1 ye AQK
LetY:A@ K —» LwhereY(y) = {

0 o.w.
The Y fzy module of A @ K is clearly the Z-module.

U YE CH2)B (5+2)
Let B: A @ K — L where B(y) = p q

0 o.w.
p and g are prime numbers. Clearly, B is a fzy sub-module of Y.

Now B, = (% +2Z)P (ql—2 + Z) is a classical T-ABSO secondary sub-module of the Z-module Z,~ @ Zg but A @ K is not

secondary sub-module of the Z-module Z,, & Z,~, Then A @ K is not fzy secondary sub-module of the Z-module Z,,- &
Zq~ ,but A @ K is a fzy classical Two-Absorbing secondary sub-module of the Z-module Z,~ @ Z ;e

Theorem 5.4: Let P be a non-zero fzy sub-module of fzy module Y of a T-module W. The statements that follow are
interchangeable:

a) Pisa fzy classical Two-Absorbing secondary sub-module of Y.

b) IfKJP < N for some fzy ideals K, J of T and fzy sub-module N of Y, then KP € N or JP € N or K] < /Fzy — ann(P)
c) Foreach ag, b, are fzy singletons of T, we have asb,P = a,P or a;h,P = b,P or azb; € \/Fzy — ann(p).

Proof: (a) = (b) Let P be aafzy classical Two-Absorbing secondary sub-module of Y and let K/P < N for some fzy ideals
K, J of T and fzy sub-module N of Y. Suppose KJ & /Fzy — ann(p).. Then for some a, € K and b, €], asb; €
JFzy —ann(P). Now since a;b;P € N, a,P < N or b;P € N. We show that either KP € N or JP < N. On contrary, We
assume that KP € N and JP € N. Then there exist a;; € K and b;; €/ such thata,,P € N and b P € N. Since
asbP €N and Pis a fzy classical Two-Absorbing secondary sub-module then ag, b;; € /F — ann(4) We have the
following three cases:

Case 1: Suppose a,P € N but b)P £ N. Since agb,P €N and bP EN and ai P € N, we have aqb;, ©
JFzy — ann(P).. Now, (as + as1)b;P € N and a,P € N but a,, P € N therefore (a;, + a;1)P € N. As(a, + ag)b,P S

Nand b,P € N, (a5 + ag,)P € N.implies (a; + ag;)b; € /Fzy — ann(P).Thus, ag b, € \/Fzy — ann(P). implies that
agsb; € \/Fzy — ann(P), a contradiction.

Case 2: Suppose b;P € N but a,P € N. Then similar to the Case 1, we get a contradiction.

Case 3: Suppose a;P € N and b,P € N. Now, b;P € N and b;;P & N imply (b, + b;;)P & N. Since ay(b, + b;;)P S N
and (b; + b;;)P € N and a,,P € N, we get ay,(b; + byy) € /Fzy — ann(P).Since ay, b;; € /Fzy — ann(P). we have
ag b, € JFzy —ann(P). Again, P € N and ayP € N imply (as + as;)P € N. Since (a5 + ag;)b,P € N and (a, +
as1)P € Nand b; P € N, we have (a; + as1)b; € /Fzy — ann(P).. Now, as a1 by € +/Fzy — ann(P). we get agh;; S
JFzy — ann(P). Since (as + as,)(b; + b;1)P € N and (as + ag)P € N and (b, + by;)P € N, we have (a; + asq) (b, +
b)) € Fzy —ann(P). Since agb;;,asb, ag by €+ Fzy —ann(P)., we have agb, €./ Fzy —ann(P)., a
contradiction. Hence, KP € NorJP € N

(b) = (c) Letag, b; are fzy singletons of T. Then asb;P S a,b; P implies that a,P S asb, P or bP S asb,P or asb; <
+ Fzy —ann(P). Thus, a;h;P = a,P or ach;P = b,P or agh; < \/Fzy — ann(P).

(¢) = (a) Thisis clear.

Remark 5.5: Let P and N are two fzy sub-modules. of fzy module Y of a T-module W. To prove P < N, it is enough to show
that if H is a completely irreducible fzy sub-module of Y such that N € H, then P € H.

Theorem 5.6: Let A be a fzy classical Two-Absorbing secondary sub-module of fzy module Y of a T-module W. Then Fzy-
ann(P) is Two-Absorbing primary fzy ideal of T.

Proof: Let ag, by, ¢; are fzy singletons of T and a b;c; S Fzy — ann(P)

Suppose that agb; € Fzy — ann(P) and b;c; € /Fzy — ann(P) we show that a,c; € /Fzy —ann(P). There exist
completely irreducible fzy sub-modules. H; and H, of Y so that a,b,P &€ H, and b,c;P & H,. Since asb;c;P =0, € H; N
H,, asc;P © (Hy N Hyiy by). Thus, b; agP € Hy N H, or¢; b;P € H; N H, or asc; € /Fzy —ann(P). If ba,P € H, N H,
or¢; b;P € H; N H,, then b; a,P € H, or ¢; b;P € H, which are contradictions. Therefore, a,c; < \/Fzy — ann(P).
Proposition 5.7 If K is Two-Absorbing primary fzy ideal ideal of T, then VK is Two-Absorbing fzy ideal of T [11]
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Corollary 5.8: Let A be a fzy classical Two-Absorbing secondary sub-module of fzy module Y of a T-module W. Then

+ Fzy — ann(P) is Two-Absorbing fzy ideal of T.
Proof: By Theorem (5.6), Fzy — ann(P) is Two-Absorbing primary fzy ideal of T. Thus, by Proposition (5.7),

J Fzy —ann(P) is Two-Absorbing fzy ideal of T.

Example 5.9: The converse of Theorem (5.6) is not true in general for example.
1 y€Zy®Q

LetY:Z,, @® Q » L whereY(y) =

0 o.w.
Itis evident Y is fzy module of Z,,, € Q as Z-module

u yEqu @Q
LetA:Z,, © Q - L where A(y) =

0 o.w.
p and g are prime numbers. Clearly, A is a fzy sub-module of .

Now ann(y) = 0 is Two-Absorbing Primary ideal of Z , But Y is not a fzy classical Two-Absorbing secondary Z-module
Then Fzy — ann(y) = 0, is Two-Absorbing primary fzy ideal of Z, But Y is not a fzy classical Two-Absorbing secondary
Z-module

Theorem 5.10: Let P be fzy sub-module of fzy module Y of a T-module W. Then we have the following:

a) If Alis a fzy classical Two-Absorbing secondary sub-module of Y then KA is a fzy classical Two-Absorbing secondary
sub-module of Y for all ideals K of T with K € Fzy — ann(P).

b) If Y is a multiplication fzy classical Two-Absorbing secondary module Then every non-zero fzy sub-module of Y is a
fzy classical Two-Absorbing secondary sub-module of Y.

Proof:

a) Let K be fzy ideal of T with K € Fzy — ann(P). Then KP is a non-zero fzy sub-module of Y. Let ag, b; are fzy
singletons of T, N be fzy sub-module of Y and a;b;KP < N. then a;b;P < (N:y K). Thus, a,KP € N or b,KP < N or
ash; € \/Fzy — ann(P) S \/Fzy — ann(KP). As needed.

b) This follows from part (a).

Theorem 5.11: Let: Y; — Y, be Fzy-monomorphism of T-module. Then we have the following:

a) If Pisafzy classical Two-Absorbing secondary sub-module of Y;, then ¢ (P) is a fzy classical Two-Absorbing
secondary sub-module of Y,.

b) IfBisaclassical T-ABSO fzy secondary sub-module of ¢(Y;), then ¢ =1 (B) is a fzy classical Two-Absorbing secondary
sub-module of Y;.

Proof:

a) Since P is non-zero fzy sub-module and f is Fzy-monomorphism, we have ¢ (P) # 0. Let ag, b; are fzy singletons of
T, B be fzy sub-module of Y, and asb, ¢(P) € B. Then a,b, P S ¢~1(B). As P is fzy classical Two-Absorbing

secondary sub-module asP € ¢~1(B) orb, P € ¢ 1(B) or ash, € \/Fzy — ann(P). Therefore, as,p(P) S
d(¢p71(B)) =¢p(Y;)NBSB or b ¢p(P)< ¢p(¢p*(B)) =p(Y,)NBCSB or ash, S/Fzy —ann(f(P)), As
needed.

b) If ¢~1(B) = 04, then ¢(¥;) N B = ¢¢~1B = ¢(0,) = 0,. Thus, B = 0,, a contradiction . Therefore, ¢ ~1(B) # 0;.
Now let a, b, are fzy singletons of T, N be fzy sub-module of X and a;b; ¢ ~1(B) S N. Then a,b; B = asb; (¢(¥;) N
B) = a,b; ¢ 1(B) S ¢p(N). As B is fzy classical Two-Absorbing secondary sub-module a,B € ¢(N) or b;B €
¢(N) or agh,/Fzy — ann(B). Hence, a,¢p 2 (B) S ¢dp 1 dp(N) =N or b¢p 1(B) S ¢ 1¢p(N) =N or ash, C

JFzy — ann(¢~1(B)), As desired.
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