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A B S T R A C T  
 

The aim of this paper is to establish the existence and uniqueness theorems of multi-dimensional 

conformable fractional partial integro-differential equations theorem ,The Picard iterative sequence 

converges when the provided functions are assumed to be sufficiently smooth. This is accomplished by 

demonstrating that the sequence is a Cauchy sequence in the entire normed space of continuous functions, 

implying the presence of a solution. 

for generalized contraction mappings with respect to w-distances in complete metric spaces. 

 

 

 

 
  

 

 

1. INTRODUCTION 

Fractional calculus was introduced by mathematicians like Leibniz and Euler in the 18th century, but it was not until the 
20th century that it began to be studied more systematically. In the 1970s, researchers like Samko, Kilbas, and Marichev 
developed a theory of fractional integrals and derivatives that was based on the Riemann-Liouville definition of fractional 
derivatives. Fractional calculus was introduced by mathematicians like Leibniz and Euler in the 18th century, but it was not 
until the 20th century that it began to be studied more systematically. In the 1970s, researchers like Samko, Kilbas, and 
Marichev developed a theory of fractional integrals and derivatives that was based on the Riemann-Liouville definition of 

fractional derivatives [4,5]. 

In recent years, there has been growing interest in extending fractional calculus to higher dimensions, and this has led to the 
development of the theory of CFPIDEs. These equations are a generalization of fractional partial differential equations, and 
they involve both fractional derivatives and fractional integrals. The first Existence and Uniqueness Theorem for CFPIDEs 
was established in 2019 by Jafari et al. In their work, they proved that under certain conditions, CFPIDEs have a unique 
solution that can be expressed in terms of a series solution. The conditions they imposed were based on a new concept of 
conformable fractional derivative, which is a modification of the Riemann-Liouville fractional derivative that is better suited 
for higher-dimensional problems. Since the publication of Jafari et al.'s result, there has been a growing interest in the study 
of CFPIDEs and their applications in fields like physics, engineering, and finance. Researchers have continued to refine the 
theory and develop new techniques for solving CFPIDEs, and it is likely that this area of mathematics will continue to be an 

active area of research for years to come [6,7,8]. 

Various phenomena's of viscoelastic its, diffusion procedures, relaxation vibrations, electrochemistry, etc. are successfully 
described by fractional differential equations (FDEs) and therefor The researchers tried to suggest several types of fractional 
operators to describe more accurately these phenomena's since fractional order deferential equations are generalization of 
integer order deferential equations to non-integer order ones. The fractional calculus was bounded up with fractional integrals 
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obtained by iterating an integral to get the n -th order integral and after that replacing n by any number, and then by using 
the classical method the corresponding derivatives were defined, proposed a new derivative with real orders, and hence 
different definitions of fractional integrals and derivatives are proposed and In this work the conformable fractional calculus 
will be considered. Which is due to its well-behaved properties and the close relationship with first order derivative, 
conformable derivatives and integrals and has exerted a tremendous fascination on researchers [1, 2]. 

The most well-known fixed-point results in the metrical fixed point theory are on based Banach's contraction mapping 
principle, Moreover, this principle has many applications not only of the various branches in mathematical topics, but also 
in economics, chemistry, biology, computer science, engineering, and others. Based on the mentioned impact, it was 
developed extensively by several researchers [3]. This enables a researcher to choose the most suitable operator in order to 

describe the dynamics in a real world problem. 

2. THEORETICAL BACKGROUND FOR BANACH FIXED POINT THEOREM  

This section introduces some basic concepts that are necessary for establishing the theorem on the existence and uniqueness 
for the solution and to find sufficient conditions that satisfies the Lipschitz condition. The main aim of this section is to 

provide some necessary definitions and a theorem including Banach fixed point theorem, which are used throughout this 

thesis. Now, we will start with the basic concepts related to this work, in which more elementary concepts of under graduate 

study will be omitted. 

Definition 2.1. [32] Let (𝑋, ‖ ⋅ ‖) be a normed space and 𝑇: 𝑋 → 𝑋 be a mapping. 𝐴 point 𝑥 ∈ 𝑋 for which 𝑇𝑥 = 𝑥 is called 

a fixed point of 𝑇. 

Theorem 2.2. [9]Let (𝑋, ‖ ⋅ ‖) be a complete normed space and let the mapping  : 𝑋 → 𝑋 be a contraction mapping, then 𝑇 

has exactly one fixed point. 

An additional definition which is also necessary in the proof the existence and uniqueness of solution of the considered 

IDE in this work is the next definition of Lipschitzian function.. 

Remark 2.5. The space 𝐶𝑡
𝑚−1([𝑎, 𝑏] × [0, 𝑇]) will be used to denote the Banach space of all continuous real valued 

functions 𝑢 defined on [𝑎, 𝑏] × [0, 𝑇] with continuous 𝑚th  order partial derivatives with respect to 𝑡. 

3. EXISTENCE AND UNIQUENESS OF MULTI-DIMENSIONAL INTEGRO-DIFFERENTIAL 

EQUATIONS WITH FRACTIONAL DERIVATIVE  

One of the most important tasks in this thesis is to find the approximate solution of multi-dimensional integro-differential 

equations to satisfy the existence and uniqueness theorem. As we said above, we shall use the fixed point principle based 

on Banach fixed point theorem or the contraction mapping. which has the form: 

Consider the generalized two-dimensional linear integro-differential equation of fractional order: 

𝑇𝑥
𝛼𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) + 𝐼𝑠

𝛽𝐼𝑡
𝛾[𝐾(𝑥, 𝑦, 𝑠, 𝑡)𝑢(𝑠, 𝑡)] 

where 𝑔 and 𝐾 are enough smooth functions, 𝑥 ∈ [𝑎, 𝑏], 𝑦 ∈ [𝑐, 𝑑], 

𝑇𝑥
𝛼 is the conformable fractional derivative of order 𝛼 ∈ ℝ+with respect to 𝑥, and 𝐼𝑠

𝛽 , 𝐼𝑡
𝛾
 are the conformable fractional 

integrals of orders 𝛽, 𝛾 ∈ (0,1] with respect to 𝑠 and 𝑡, respectively. 

The existence and uniqueness of the solution of Eq. (1) will be proved based on Picard successive iterative approach. 

Theorem (1): 

Suppose that 

Ω = {(𝑥, 𝑦) ∣ 𝑥 ≥ 𝑎, 𝑦 ≥ 𝑐} 

and let 𝑔 and 𝐾 be enough smooth functions on Ω. 

Then Eq. (1) has a solution. 

Proof: 

In order to be able to apply the Picard iterative method on Eq. (1), we must first drop the derivative from the left-hand side 

of Eq. (1). 

For this purpose, apply the conformable fractional integral with respect to 𝑥 of order 𝛼 to both sides, getting: 

𝐼𝑥
𝛼𝑇𝑥

𝛼𝑢(𝑥, 𝑦) = 𝐼𝑥
𝛼𝑔(𝑥, 𝑦) + 𝐼𝑥

𝛼𝐼𝑠
𝛽𝐼𝑡

𝛾[𝐾(𝑥, 𝑦, 𝑠, 𝑡)𝑢(𝑠, 𝑡)] 

and hence, from the properties of conformable fractional order differentiation and integration, we get: 

𝑢(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

(𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∫  
𝑥

𝑎

∫  
𝑤

𝑎

∫  
𝑦

𝑐

(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1[𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢(𝑠, 𝑡)]𝑑𝑡𝑑𝑠𝑑𝑤 … (2) 

In order to prove the existence of the solution of Eq. (1), which is equivalent to proving the existence of a solution of Eq. 

(2), we use the Picard iteration method on Eq. (2), given by ... 
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From Eq. (2), we define the iterative sequence as 

𝑢𝑛+1(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

(𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∫  
𝑥

𝑎

∫  
𝑤

𝑎

∫  (𝑤 − 𝑎)𝛼−1
𝑦

𝑐

(𝑠 − 𝑎)𝛽−1(𝑡

− 𝑐)𝛾−1[𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢𝑛(𝑠, 𝑡)]𝑑𝑡𝑑𝑠𝑑𝑤 … (3) 

where 𝑢0(𝑥, 𝑦) is the initial approximate solution, which is taken for simplicity to begin as some assumed function often 

equal to zero or different from the initial solution of Eq. (1). 
Now, the principle of mathematical induction will be used to prove that 

|𝑢𝑛+1(𝑥, 𝑦) − 𝑢𝑛(𝑥, 𝑦)| ≤ 

If 𝑛 = 0, and since 𝑔 and 𝐾 are smooth functions, 

then |𝑔| ≤ 𝐺0 , |𝐾| ≤ 𝐾0, 

where 𝐺0 and 𝐾0 are positive constants. 

Hence, when starting with 𝑢0(𝑥, 𝑦) = 0, 

we get from Eq. (3): 

𝑢1(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

(𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡  (approximate solution)  

Therefore, 

|𝑢1(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)| = |∫  
𝑥

𝑎

  (𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡| 

and hence, 

|𝑢1(𝑥, 𝑦) − 𝑢0(𝑥, 𝑦)| ≤ ∫  
𝑥

𝑎

  |𝑡 − 𝑎|𝛼−1|𝑔(𝑡, 𝑦)|𝑑𝑡

≤ 𝐺0 ∫  
𝑥

𝑎

  (𝑡 − 𝑎)𝛼−1𝑑𝑡 = 𝐺0

(𝑥 − 𝑎)𝛼

𝛼

 

If 𝑛 ≥ 1, then: 

|𝑢𝑛+2(𝑥, 𝑦) − 𝑢𝑛+1(𝑥, 𝑦)| =∣ 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

  (𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

  (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢𝑛

≤ ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

  (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1|𝐾(𝑤, 𝑦, 𝑠, 𝑡)||𝑢𝑛+1(𝑠, 𝑡) − 𝑢𝑛(𝑠, 𝑡)|𝑑𝑡𝑑𝑠𝑑𝑤

≤
𝐾0𝐺0

𝛼
∭  

𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

 (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽+𝛼−1(𝑡 − 𝑐)𝛾−1𝑑𝑡𝑑𝑠𝑑𝑤

 

=
𝐾0𝐺0(𝑦 − 𝑐)𝛾

𝛼𝛾
∫  

𝑥

𝑎

  (𝑤 − 𝑎)𝛽+𝛼−1𝑑𝑤

=
𝐾0𝐺0(𝑦 − 𝑐)𝛾(𝑥 − 𝑎)𝛽+𝛼

𝛼𝛾(𝛽 + 𝛼)(𝛽 + 2𝛼)

 

If 𝑛 = 2, then: 

|𝑢3(𝑥, 𝑦) − 𝑢2(𝑥, 𝑦)| =∣ 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

  (𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

  (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢2(𝑠, 𝑡)

 ≤ ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

  (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1|𝐾(𝑤, 𝑦, 𝑠, 𝑡)||𝑢2(𝑠, 𝑡) − 𝑢1(𝑠, 𝑡)|𝑑𝑡𝑑𝑠𝑑𝑤
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≤
𝐾0

2𝐺0

𝛼
∭𝑎,𝑎,𝑐

𝑥,𝑦,𝑦
 (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1|𝑢1(𝑠, 𝑡)|𝑑𝑡𝑑𝑠𝑑𝑤

≤
𝐾0

2𝐺0

𝛼
∭𝑎,𝑎,𝑐

𝑥,𝑦,𝑦
 (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1(𝑡 − 𝑐)𝛾𝑑𝑡𝑑𝑠𝑑𝑤

 =
𝐾0

2𝐺0(𝑦 − 𝑐)2𝛾

𝛼2𝛽2
∫𝑎

𝑥
 ∫𝑎

𝑤
 

(𝑤 − 𝑎)𝛽+2𝛼−1

(𝛽 + 𝛼)(𝛽 + 2𝛼)
(𝑠 − 𝑎)𝛽−1𝑑𝑠𝑑𝑤

 =
𝐾0

2𝐺0(𝑦 − 𝑐)2𝛾(𝑥 − 𝑎)2(𝛽+𝛼)

𝛼2𝛽2(𝛽 + 𝛼)(𝛽 + 2𝛼)

 

Similarly, if 𝑛 = 3, then we will have 

|𝑢4(𝑥, 𝑦) − 𝑢3(𝑥, 𝑦)| ≤
𝐾0

3𝐺0(𝑦 − 𝑐)3𝛾(𝑥 − 𝑎)3(𝛼+𝛽)

3! 𝛼3𝛽3(𝛽 + 𝛼)(𝛽 + 2𝛼)(𝛽 + 3𝛼)(4𝛽 + 3𝛼)
 

Therefore, as 𝑛 increases, we will have that {𝑢𝑛} is a Cauchy sequence in the space 𝐶(Ω), which is a complete normed 

space. 

Thus, there exists 𝑢(𝑥, 𝑦) such that 

𝑢(𝑥, 𝑦) = lim
𝑛→∞

 𝑢𝑛(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω 

Therefore, when taking the limit as 𝑛 → ∞ of the iterative equation (3), we get ... 

lim
𝑛→∞

 𝑢𝑛+1(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

(𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∭  
𝑥,𝑤,𝑦

𝑎,𝑎,𝑐

(𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡

− 𝑐)𝛾−1𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢(𝑠, 𝑡)𝑑𝑡𝑑𝑠𝑑𝑤 

and hence, 

𝑢(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

(𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∭  
𝑥,𝑤,𝑦

𝑎,𝑎,𝑐

(𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢(𝑠, 𝑡)𝑑𝑡𝑑𝑠𝑑𝑤 

Therefore, 𝑢(𝑥, 𝑦) is a solution of Eq. (1). 

Theorem (2): 

Suppose that 𝑔 and 𝐾 in Eq. (1) are smooth functions, such that 

|𝑔| ≤ 𝐺0 , |𝐾| ≤ 𝐾0 < 1, 𝐾0𝐺0 ∈ ℝ+. 

Then the solution of Eq. (1) is unique. 

Proof: 

Suppose that 𝑢∗(𝑥, 𝑦) ∈ 𝐶(Ω) is any other solution of Eq. (1), or equivalently Eq. (2). 

Hence, 

𝑢∗(𝑥, 𝑦) = 𝑢0(𝑥, 𝑦) + ∫  
𝑥

𝑎

(𝑡 − 𝑎)𝛼−1𝑔(𝑡, 𝑦)𝑑𝑡 + ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

(𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡

− 𝑐)𝛾−1𝐾(𝑤, 𝑦, 𝑠, 𝑡)𝑢∗(𝑠, 𝑡)𝑑𝑡𝑑𝑠𝑑𝑤 … (4) 

Thus, subtracting Eq. (4) from Eq. (3), we get: 

𝑢𝑛+1(𝑥, 𝑦) − 𝑢∗(𝑥, 𝑦) = ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

(𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1𝐾(𝑤, 𝑦, 𝑠, 𝑡)[𝑢𝑛(𝑠, 𝑡) − 𝑢∗(𝑠, 𝑡)]𝑑𝑡𝑑𝑠𝑑𝑤 

Hence, when 𝑛 ≥ 0, we get 

|𝑢𝑛+1(𝑥, 𝑦) − 𝑢∗(𝑥, 𝑦)| ≤ 𝐾0 ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

(𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1|𝑢𝑛(𝑠, 𝑡) − 𝑢∗(𝑠, 𝑡)|𝑑𝑡𝑑𝑠𝑑𝑤 

If the initial approximate solution is 𝑢0(𝑥, 𝑦) = 0, then from the last inequality we have 
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|𝑢1(𝑥, 𝑦) − 𝑢∗(𝑥, 𝑦)| ≤ 𝐾0 sup
(𝑥,𝑦)∈Ω

 |𝑢∗(𝑥, 𝑦)|
(𝑦 − 𝑐)𝛾(𝑥 − 𝑎)𝛽+𝛼

𝛾𝛽(𝛽 + 𝛼)
 

Also, if 𝑛 ≥ 1, it will imply that 

|𝑢𝑛+1(𝑥, 𝑦) − 𝑢∗(𝑥, 𝑦)| ≤ 𝐾0 sup
(𝑥,𝑦)∈Ω

 ∭  
𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

(𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1|𝑢𝑛(𝑠, 𝑡) − 𝑢∗(𝑠, 𝑡)|𝑑𝑡𝑑𝑠𝑑𝑤 

≤ 𝐾0
2 sup

(𝑥,𝑦)∈Ω
 |𝑢∗(𝑥, 𝑦)| ∭  

𝑥,𝑦,𝑦

𝑎,𝑎,𝑐

  (𝑤 − 𝑎)𝛼−1(𝑠 − 𝑎)𝛽−1(𝑡 − 𝑐)𝛾−1
(𝑡 − 𝑐)𝛾(𝑠 − 𝑎)𝛽(𝑤 − 𝑎)𝛼

𝛾𝛽(𝛽 + 𝛼)
𝑑𝑡𝑑𝑠𝑑𝑤

= 𝐾0
2 sup

(𝑥,𝑦)∈Ω
 |𝑢∗(𝑥, 𝑦)|

(𝑦 − 𝑐)2𝛾+1(𝑥 − 𝑎)2𝛽+2𝛼+1

𝛾(2𝛾 + 1)𝛽((𝛽 + 𝛼)(2𝛽 + 𝛼)(2𝛽 + 2𝛼 + 1))

 

and so, as 𝑛 → ∞, and since |𝐾0| < 1, with an increased denominator, we will have 

|𝑢𝑛+1(𝑥, 𝑦) − 𝑢∗(𝑥, 𝑦)| → 0  as  𝑛 → ∞. 

That is, 

lim
𝑛→∞

 𝑢𝑛(𝑥, 𝑦) = 𝑢∗(𝑥, 𝑦). 

Since lim
𝑛→∞

 𝑢𝑛(𝑥, 𝑦) = 𝑢(𝑥, 𝑦), it follows that 𝑢(𝑥, 𝑦) = 𝑢∗(𝑥, 𝑦). 

Hence, the fractional conformable integro-differential equation (1) has a unique solution. 
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