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A B S T R A C T  
 

This paper presents a digraph-theoretic extension of the characterization of quasi-idempotent in the 

semigroup On of full order-preserving transformations on a finite chain. Building on earlier results . that 

describe quasi-idempotent as those transformations α ∈ On satisfying α≠α^2=α^4, we provide a novel 

interpretation using the functional digraphs of such maps. We show that a transformation is quasi-

idempotent if and only if each vertex in its associated digraph is either fixed or maps directly into a fixed 

point, and every non-trivial strongly connected component forms a 2-cycle. Furthermore, we prove that 

no directed path of the form v1 → v2 → v3 exists where all vertices are non-stationary. These findings 

offer a new perspective on the structure of On, bridging algebraic properties with graphical structure, and 

set the stage for visual and computational analysis of quasi-idempotent generation in transformation 

semigroups. 
 

 

1. INTRODUCTION 

Transformation semigroups play a foundational role in semigroup theory, much like permutation groups do in group theory.  
The full transformation semigroup Tn on a finite set Xn = {1, 2, . . ., n} provides a universal framework within which many 
semigroups can be embedded. A notable subsemigroup of Tn is the set On of all full order-preserving transformations, which 
has been studied extensively due to its regular structure and combinatorial richness, as outlined by Gomes and Howie [9]. 
Since Howie’s classical result [10] showing that every singular transformation in Tn \ Sn can be expressed as a product of 
idempotents, various investigations have focused on the ranks, generators, and structural properties of idempotent-generated 
semigroups within Tn [5, 11–14, 16, 19]. However, in certain semigroups such as inverse semigroups, the set of idempotents 
forms a subsemigroup and thus cannot serve as a generating set [15]. This led to the introduction of quasi-idempotent—
elements α such that α≠α^2=α^4—which generalize the concept of idempotents while preserving useful generating 
properties. Garba and Imam [7] utilized quasi-idempotent to generate the symmetric inverse semigroup. Subsequent works 
demonstrated their effectiveness in other transformation structures: Madu and Garba [18] showed their role in generating 
order-preserving partial injections, while Bugay [3, 4] analyzed their ranks in ideals and partial transformation semigroups. 
Combinatorial properties of quasi-idempotent have also been explored in recent studies [17]. In a recent contribution, Imam 
et al. [2] characterized quasi-idempotent elements in On and proved that On is generated by quasi-idempotent of height n − 
1. They further determined that such elements map each non-stationary block into a stationary block and established an upper 
bound on the minimal size of quasi-idempotent generating sets. In this paper, we extend this algebraic analysis by adopting 
a digraph-theoretic perspective. By associating each transformation with its functional digraph, we characterize quasi-
idempotent in On using graph-theoretic conditions such as the absence of directed 3-paths among non-stationary vertices 
and the decomposition into stationary vertices and disjoint 2- cycles. This approach provides a structural viewpoint that 
complements the algebraic characterizations and supports further computational applications.  

2. PRELIMINARIES 

Definition 2.1. [15] Let Xn = {1, 2, . . . , n}. A full transformation on Xn is a function α : Xn → Xn. The set of all such 
transformations forms the full transformation semigroup Tn under composition. 

Definition 2.2. [15] A transformation α ∈ Tn is said to be order-preserving if for all x, y ∈ Xn, whenever x ≤ y, it holds that 
α(x) ≤ α(y). The set of all order-preserving transformations in Tn is denoted by On. 
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Definition 2.3. [15] An element α ∈ On is called idempotent if α2 = α. It is called a quasi-idempotent if α≠α^2=α^4. 

Definition 2.4. [21] The digraph of a transformation α ∈ Tn is the functional directed graph Γ = (V, E) where V = Xn and E 
= {(x, α(x)) | x ∈ Xn}. 

3. MAIN RESULTS 

Definition 3.1. A vertex v ∈ V in a functional digraph is called stationary if α(v) = v; otherwise, it is called non-stationary. 

Definition 3.2. A 2-cycle is a pair of distinct vertices v, w ∈ V such that α(v) = w and α(w) = v. 

Theorem 3.3. Let Γ = (V, E) be the functional digraph of an order-preserving trans- formation α ∈ On, where: 

V = {1, 2, . . ., n}, 

E = {(x, α(x)) | x ∈ V}. 

Then the following are equivalent: 

1. α is a quasi-idempotent: α ̸= α2 = α4;\ 

2. The digraph Γ satisfies: 

a. Every vertex v ∈ V is either stationary (α(v) = v) or maps to a stationary vertex; 
b. All non-trivial strongly connected components are 2-cycles; 

c. There is no directed path v1 → v2 → v3 such that all of v1, v2, v3 are non- stationary. 

Proof. (1) ⇒ (2): If α ∈ On is quasi-idempotent, then from the algebraic characterization in the literature, each non-stationary 

block maps into a stationary block. Therefore, each non-stationary vertex maps to a stationary vertex (a). Since no sequence 

of such mappings leads to longer non-trivial cycles, all non-trivial SCCs must be 2-cycles (b). Longer directed paths among 

non-stationary vertices would contradict this (c). 

(2) ⇒ (1): If the digraph structure satisfies (a)–(c), then α2 maps each non- stationary point to the image of a stationary 

vertex. Since stationary points are fixed, α2 = α4, and since α ̸= α2 (due to non-stationarity), α is quasi-idempotent. 

Example 3.4. Let α ∈ O11 be defined by: 

𝛼 = (
{1,2} {3,4} {5,6} {7,8} (9,10) {11}
1 2 5 6 9 10

) 

 

We analyze the structure of α: 

The blocks {1, 2}, {5, 6}, {9, 10} are stationary since the image lies within the same block. 

The blocks {3, 4}, {7, 8}, {11} are non-stationary since they map to other values. 

Each non-stationary block maps into a stationary one: {5, 6} '→ 5 ∈ {5, 6}, and similarly others map to 6 and 9, making 

them eventually stationary under squaring. 

Compute α2: 

𝛼2 = (
{1,2,3,4} {5,6,7,8} {9,10,11}

1 5 9
) 

 

Here, α2 is idempotent, so α2 = α4, and since α≠α^2, it follows that α is quasi- idempotent. 

 

  

 

 

 

  

 

 

Fig. 1. Functional digraph of the transformation α ∈ O11 

Note: All directed edges from non-stationary vertices terminate at stationary ones, satisfying the structural characterization. 

 

1 2 3 4 

9 10 11 
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Proposition 3.5. Let Γ ∈ On be a quasi-idempotent digraph. Then Γ decomposes into: 

 Stationary vertices: {v ∈ V | α(v) = v}, 

 Disjoint 2-cycles: {v ↔ w | α(v) = w, α(w) = v, v≠w}. 

Proof. By Theorem 3.3, only self-loops (stationary) and mutual pairings (2-cycles) are allowed. Since longer paths or cycles 

would violate quasi-idempotency, the structure must consist of such disjoint components. 

Lemma 3.6. In any quasi-idempotent digraph Γ ∈ On: 
 The maximum length of any directed path is 1; 

 There is no directed path x → y → z with x, y, z all non-stationary. 

Proof. Since non-stationary vertices must point to stationary ones, no chain of length greater than 1 is possible among them. 

Any violation of this would imply a non-trivial path beyond the constraints in Theorem 3.1.  

4. CONCLUSION 

In this work, we extended the algebraic study of quasi-idempotent in the semigroup On of full order-preserving 
transformations by introducing a graph-theoretic perspective. Using functional digraphs, we established a necessary and 
sufficient condition for a transformation to be quasi-idempotent based on the structure of its directed graph. Our main results 
reveal that such a transformation admits a decomposition into fixed points and disjoint 2-cycles, with no directed path 
connecting three dis- tinct non-stationary vertices. These findings not only reinforce the algebraic conditions previously 
established but also offer a more intuitive, visual interpretation of quasi- idempotent behavior in On. This approach lays the 
groundwork for future research in the combinatorial and algorithmic analysis of transformation semigroups. In particular, it 
opens up possibilities for developing efficient detection and generation algorithms for quasi-idempotent using graph traversal 
techniques. It may also provide insights into broader classes of semigroups where graphical representations can illuminate 
otherwise complex structural relationships. 
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