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A B S T R A C T  
 

The main objective of this paper is to introduce and solve two-dimension linear system of fractional 

order partial integro-differential equations using the most well-known approximation methods, which 

is the variational iteration method. After that, the convergence of the derived sequence of iterative 

approximations to the exact solution is proved, which is must be assumed to be exist according to 

existence and uniqueness theorem of partial integro-differential equations. Two illustrative examples 

are considered utilizing the computer software (PTC Mathcad) and then comparison between the exact 

and the approximate solutions for a test examples are given to show the efficiency and reliability of the 
proposed method.  
 

1. INTRODUCTION 

Fractional calculus explores the concepts of differentiation and integration non-integer order. The fractional calculus 

subject is more general version of the classical analysis of calculus. Fractional calculus becomes nowadays more popular 

than classical calculus due to its implementation in many fields, such as science and technology. Also, fractional order 
partial integro-differential equations (FPIDEs) are very popular due to its excellent simulation properties various 

scientific fields. It is used to represent physical and engineering phenomena’s that are largely described by fractional 

differential equations, in which fractional derivation models are used to better identify those systems that require 

accurate modeling attenuation. Non-Fourier conduction, sound dissipation, geophysics, relaxation, creep, 

viscoelasticity, rheology, fluid dynamics, COVID-19 and malaria are an applications models of such to topic [1-3]. 

Fractional integro-differential equations are a special type of equations having the integral equations with either fractional 

derivative. In recent years, there has been a growing interest the concerning integro-differential equations, in different 

topics, such as nonlinear functional analysis and their applications in the theory of engineering, mechanics, chemistry, 

physics, economics, kinetics, astronomy, biology, potential theory and electro statistics include integro-differential 

equations, [4,5]. 

The FPIDEs are a generalization of the classical integer order partial differential equations (PDEs) and integral equations, 

which are increasingly used to pattern problems in fluid flow, finance and other areas of applications. Moreover, fractional 

derivatives provide an excellent writing for the characterization of memory and inherited properties of various problems 

and operations, [6]. 

Among the most popular semi-analytical methods is the variational iteration method (VIM), which is a powerful iterative 

approximated method based on the Lagrange multiplier technique. Since its emergence in the late 1990s, where it has been 

widely used to solve various problems, including initial value problems for fractional differential equations, [7-16]. In 
addition to the above, the VIM has demonstrated remarkable reliability and efficiency in a wide range of scientific 
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applications, both linear and nonlinear. It was shown by many authors that this method is more powerful than some other 

existing techniques, such as the Adomian decomposition method, perturbation method, etc. One of the main advantages of 

the VIM is that it provides easily applicable successive approximations that converge rapidly towards the exact solution, 

[17]. 

In this article, two-dimensional systems of FPIDEs will be solved approximately using the VIM as an iteration approach 

and then prove the convergence of the obtained sequence of iterative solutions to the exact solution, which must be exist 

virtually based on the existence and uniqueness theorem of the solution of such type of problems. 

2. PRELIMINARIES 

In this section, some basic definitions and properties of fractional order derivatives and integrals related to the present work 

will be given for completeness purpose. In this section, it will be assumed that 𝐶𝑡
𝑚([𝑎, 𝑏] × [0, 𝑇]) to be the space of all 𝑚-

continuously differentiable functions up to order 𝑚 with respect to 𝑡. 

Definition 2.1, [18]. The left Riemann-Liouville fractional integral operator of order 𝛼 > 0 of a function 𝑢 is defined by: 

𝐼𝑥
𝛼

0 
𝑅 𝑢(𝑥) =

1

𝛤(𝛼)
∫ (𝑥 − 𝑠)𝛼−1

𝑥

0

𝑢(𝑠)𝑑𝑠,   𝑠 > 0 

where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, Γ(α) is the classical gamma function and 𝐼𝑥
0

 
𝑅 𝑢(𝑥) = 𝑢(𝑥). 

Definition 2.2, [19]. The left-differential Riemann-Liouville fractional operator of order 𝛼 > 0 of a function 𝑢 is defined 

as: 

𝐷𝑥
𝛼

𝑎
𝑅 𝑢(𝑥) =

1

𝛤(𝑚 − 1)

𝑑𝑚

𝑑𝑥𝑚
∫ (𝑥 − 𝑠)𝑚−𝛼−1

𝑥

𝑎

𝑢(𝑠)𝑑𝑠 

where  𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ.   
Definition 2.3, [20,21]. The Caputo fractional order derivative of a function 𝑢 of order 𝛼 > 0, is defined as: 

𝐷𝑥
𝛼𝑢(𝑥) =0

𝐶
1

𝛤(𝑚 − 𝛼)
∫(𝑥 − 𝑠)𝑚−𝛼−1

𝑥

0

𝑢(𝑚)(𝑠)𝑑𝑠 

where 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ 

Some properties of fractional order derivatives and integrals of order 𝛼 > 0, where  𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, which are 

needed later on in this work are stated below [19]: 

i. 𝐷𝑥
𝛼  𝐼𝑥

𝛼
 

𝑅 𝑢(𝑥) = 𝑢(𝑥). 
𝐶   

ii. 𝐼𝑥
𝛼 𝐷𝑥

𝛼𝑢(𝑥) = 𝑢(𝑥) − ∑ 𝑢(𝑘)(0+)
𝑢𝑘

𝑘!
 , 𝑢 > 0𝑛−1

𝑘=0 
𝐶

 
𝑅 .     

where 0+ refers to the right-hand sided limit of the function as 𝑥 tends to 0.      

iii. 𝐼 
𝑅

𝑥
𝛼𝑢𝑣 =

Г(𝑣+1)

Г(𝑣+𝛼+1)
𝑢𝑣+𝛼 , 𝑣 > −1, 𝑢 > 0. 

iv. 𝐷𝑥
𝛼 ∑ 𝑐𝑖𝑢𝑖(𝑥)𝑘

𝑖=0 
𝐶 = ∑ 𝑐𝑖 𝐷𝑥

𝛼𝑢𝑖(𝑥) 
𝐶𝑘

𝑖=0 , where 𝑐𝑖 is a constant, ∀ 𝑖 = 0,1, ⋯ , 𝑘. 

3. VARIATIONAL ITERATION METHOD FOR SOLVING SYSTEMS OF FPIDEs 

In this section, the VIM will be generalized to solve systems of FPIDEs, in which the general problem formulation is to 

solve the system: 

𝐷𝑡
𝛼1

0
𝐶 𝑢1(𝑥, 𝑡) = 𝑔1(𝑥, 𝑡) + 𝐼𝑥

𝛽1
𝑎

 𝐼𝑡
𝛾1

0
 𝑘1(𝑥, 𝑡, 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), … , 𝑢𝑘(𝑥, 𝑡)) 

𝐷𝑡
𝛼2

0
𝐶 𝑢2(𝑥, 𝑡) = 𝑔2(𝑥, 𝑡) + 𝐼𝑥

𝛽2
𝑎

 𝐼𝑡
𝛾2

0
 𝑘2(𝑥, 𝑡, 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), … , 𝑢𝑘(𝑥, 𝑡)) 

                ⋮                      ⋮                                               ⋮                                                                                                        (1) 

𝐷𝑡

𝛼𝑘
0
𝐶 𝑢𝑘(𝑥, 𝑡) = 𝑔𝑘 (𝑥, 𝑡) + 𝐼𝑥

𝛽𝑘
𝑎

 𝐼𝑡

𝛾𝑘
0
 𝑘𝑘(𝑥, 𝑡, 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), … , 𝑢𝑘(𝑥, 𝑡))   

with initial conditions: 

𝑢1(𝑥, 0) = 𝑐1 , 𝑢2(𝑥, 0) = 𝑐2, … , 𝑢𝑘(𝑥, 0) = 𝑐𝑘                                                                                                                                               (2) 

for all 𝑘 ∈ ℕ , 𝛼𝑝 , 𝛽𝑝 , 𝛾𝑝 ∈ (0,1], ∀ 𝑝 = 1,2, ⋯ , 𝑘 and (𝑥, 𝑡) ∈ Ω, where Ω = {(𝑥, 𝑡) ∈ ℝ2| 𝑎 ≤ 𝑥 ≤ 𝑏, 0 ≤ 𝑡 ≤ 𝑇} and 𝑘𝑝 

are the kernel functions which are given, 𝑔𝑝 are given continuous functions, 𝑢𝑝 are an unknown real valued functions to 

be evaluated.  

The variational iteration formulation for solving system (1) starts by introducing first the next theorem, which is 

necessary for obtaining the approximation-numerical results, [22].  
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Theorem 3.1, [22]. Consider the generalized system of FPIDEs (1) defined over the region Ω and suppose that the kernel 

functions 𝑘𝑝 satisfies Lipschitz condition with respect to 𝑢𝑝,𝑛 and Lipschitz constants 𝐿𝑝, such that 𝐿𝑝 <
Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)

𝑇𝑤𝑝  (𝑏−𝑎)𝛽𝑝
, ∀ 𝑝 = 1,2, ⋯ , 𝑘. Then Eq. (1) has a unique solution. 

 

The sequence of iterative approximate solutions using the proposed approach is derived in the next theorem: 

 

Theorem 3.2. Consider the generalized system of FPIDE (1) with the initial conditions given in Eqs. (2), which has a 

unique solution and 𝑢𝑝,𝑛 ∈ 𝐶𝑡
𝑚([𝑎, 𝑏] × [0, 𝑇]) be the approximate solution of system (1). Then the sequence of 

approximate solutions using the VIM are approximated by: 

𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) − 𝐼
𝑡

𝛼𝑝
0
 { 𝐷

𝑡

𝛼𝑝  0
𝐶 𝑢𝑝,𝑛(𝑥, 𝑡) − 𝑔𝑝(𝑥, 𝑡) − 𝐼𝑥

𝛽𝑝
𝑎
𝑅 𝐼0

𝑅
𝑡

𝛾𝑝  𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠)} (3) 

for all 𝑛 = 0,1,2, …  ,   𝑝 = 1,2, … , 𝑘. 
Proof. For any 𝑝 = 1,2, … , 𝑘; multiply both sides of the 𝑝𝑡ℎ  equation of system (1) by a general Lagrange multiplier 𝜆𝑝 , 
which will yield to: 

𝜆𝑝{ 𝐷
𝑡

𝛼𝑝
0
𝐶 𝑢𝑝(𝑥, 𝑡) − 𝑔𝑝(𝑥, 𝑡) − 𝐼𝑥

𝛽𝑝
𝑎
𝑅 𝐼0

𝑅
𝑡

𝛾𝑝𝑘𝑝(𝑥, 𝑡, 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), … , 𝑢𝑝(𝑥, 𝑡))} = 0                                                  (4) 

where 𝛼𝑝, 𝛽𝑝 , 𝛾𝑝 ∈ (0,1]. 

Now, take the left-hand sided Reiman-Liouville fractional order integral 𝐼0
𝑅

𝑡

𝛼𝑝
 of both sides of Eq. (4), implies to: 

𝐼0
𝑅

𝑡

𝛼𝑝𝜆𝑝{ 𝐷
𝑡

𝛼𝑝
0
𝐶 𝑢𝑝(𝑥, 𝑡) − 𝑔𝑝(𝑥, 𝑡) − 𝐼𝑥

𝛽𝑝
𝑎
𝑅 𝐼0

𝑅
𝑡

𝛾𝑝𝑘𝑝(𝑥, 𝑡, 𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡), … , 𝑢𝑝(𝑥, 𝑡))}                                                 (5) 

hence the correction functional for the 𝑝𝑡ℎ  equation of system (1) will take the form: 

𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) + 𝐼
𝑡

𝛼𝑝
0
𝑅 𝜆𝑝(𝑥, 𝑠) { 𝐷𝑠

𝛼𝑝 0
𝐶 𝑢𝑝,𝑛(𝑥, 𝑠) − 𝑔𝑝(𝑥, 𝑠) −

𝐼𝑎
𝑅

𝑥

𝛽𝑝 𝐼0
𝑅

𝑡

𝛾𝑝𝑘𝑝(𝑦, 𝑠, �̃�1,𝑛(𝑦, 𝑠), �̃�2,𝑛(𝑦, 𝑠), … , �̃�𝑝,𝑛(𝑦, 𝑠)}                                       (6) 

where �̃�1,𝑛, �̃�2,𝑛, … , �̃�𝑘,𝑛 are considered as restricted variations. Hence, the approximate solution of the correction functional 

is: 

𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) + 𝐼0
𝑅

𝑡
𝛼𝜆𝑝(𝑥, 𝑠) {𝐷𝑡

 𝑢𝑝,𝑛(𝑥, 𝑠) − 𝑔𝑝(𝑥, 𝑠) −

𝐼𝑎
𝑅

𝑥

𝛽𝑝 𝐼0
𝑅

𝑡

𝛾𝑝𝑘𝑝(𝑦, 𝑠, �̃�1,𝑛(𝑦, 𝑠), �̃�2,𝑛(𝑦, 𝑠), … , �̃�𝑝,𝑛(𝑦, 𝑠) }                                      (7) 

Therefore, carrying out the first variations of both sides of Eq. (7) relative to 𝑢1,𝑛 , 𝑢2,𝑛, … , 𝑢𝑘,𝑛 , respectively using the 

assumptions that: 

𝛿𝑢1,𝑛(𝑥, 0) = 0, 𝛿𝑢2,𝑛(𝑥, 0) = 0, … , 𝛿𝑢𝑘,𝑛(𝑥, 0) = 0 and 𝛿𝑔𝑝(𝑥, 𝑡) = 0 

Now, because it is so difficult to evaluate 𝜆𝑝 for the correction functional (7), the fractional integral 𝐼0
𝑅

𝑡

𝛼𝑝
 is approximated 

by a single integral and hence, 

𝛿𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑝,𝑛(𝑥, 𝑡) + ∫ 𝐷𝑠  𝜆𝑝(𝑥, 𝑠)𝛿𝑢𝑝,𝑛(𝑥, 𝑠)𝑑𝑠
𝑡

0
                                                                                           (8) 

Thus, upon using integration by parts with respect to 𝑠, we get:  

𝛿𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝛿𝑢𝑝,𝑛(𝑥, 𝑡) + 𝜆𝑝(𝑥, 𝑠)𝛿𝑢𝑝,𝑛(𝑥, 𝑠)| 𝑠=𝑡 + ∫ 𝛿𝑢𝑝,𝑛 (𝑥, 𝑠)𝜆𝑝
′ (𝑥, 𝑠)𝑑𝑠

𝑡

0
  

Therefore: 

𝛿𝑢𝑝,𝑛+1(𝑥, 𝑡) = (1 + 𝜆𝑝)𝛿𝑢𝑝,𝑛(𝑥, 𝑠)| 𝑠=𝑡 − ∫ 𝛿𝑢𝑝,𝑛(𝑥, 𝑠)𝜆𝑝
′ (𝑥, 𝑠)𝑑𝑠

𝑡

0
                                                                          (9) 

Based on variational theory, the following necessary condition is obtained as a result for an arbitrary 𝛿𝑢𝑝,𝑛 

𝜆𝑝
′ (𝑥, 𝑠) = 0, ∀ 𝑝 = 1,2, ⋯ , 𝑘                                                                                                                                                                    (10) 

with initial condition: 

1 + 𝜆𝑝(𝑥, 𝑠) |𝑠=𝑡 = 0                                                                                                                                                    (11) 

Solving Eqs. (10) with initial conditions (11), the following general Lagrange multipliers are obtained 𝜆𝑝(𝑥, 𝑠) = −1, 

for all 𝑝 = 1,2, … , 𝑘.  

Hence, after substituting the values of 𝜆𝑝 back into the correction functional (6), the following variational iteration formula 

is obtained: 

𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) − 𝐼
𝑡

𝛼𝑝
0
 { 𝐷

𝑡

𝛼𝑝𝑢𝑝,𝑛(𝑥, 𝑠) −0
𝑐 𝑔𝑝(𝑥, 𝑠) − 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝛾𝑝
0
 𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛 (𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠)}  

for all 𝑝 = 1,2, … , 𝑘.     
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4. CONVERGENCE ANALYSIS  

The convergence of the obtained iterative sequence of approximate solutions of system (1) to the exact solution may be 

achieved and proved as in the next theorem: 

 

Theorem 4.1. Let 𝑢𝑝, 𝑢𝑝,𝑛 ∈ 𝐶𝑡
𝑚([𝑎, 𝑏] × [0, 𝑇]) be respectively the exact and approximate solutions   of system (1) and 

(3). If 𝐸𝑝,𝑛(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) − 𝑢𝑝(𝑥, 𝑡) and the kernels 𝑘𝑝 satisfies Lipschitz condition with constants 𝐿𝑝 <
Γ(𝛼𝑝+1)Γ(𝛽𝑝+1)

𝑇𝛼𝑝 (𝑏−𝑎)𝛽𝑝
, 

then the sequence of approximate solutions {𝑢𝑝,𝑛}, 𝑛 = 0,1,2, … converge to the exact solution 𝑢𝑝(𝑥, 𝑡), where 𝑝 =

1,2, … , 𝑘;   𝑘 ∈ ℕ , 𝛼𝑝 , 𝛽𝑝 , 𝛾𝑝 ∈ (0,1]. 

Proof. Using Eq. (3), the approximate solutions of Eq. (1) obtained using the VIM is given by:  

𝑢𝑝,𝑛+1(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) − 𝐼
𝑡

𝛼𝑝
0
 { 𝐷

𝑡

𝛼𝑝𝑢𝑝,𝑛(𝑥, 𝑠) − 𝑔𝑝(𝑥, 𝑠) −0
𝑐 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝛾𝑝
0
 𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠))}  

Also, 𝑢𝑝 is the exact solution of Eq. (1) and hence, it satisfies Eq. (3), i.e., 

𝑢𝑝(𝑥, 𝑡) = 𝑢𝑝(𝑥, 𝑡) − 𝐼
𝑡

𝛼𝑝
0
 { 𝐷

𝑡

𝛼𝑝𝑢𝑝,𝑛(𝑥, 𝑠) − 𝑔𝑝(𝑥, 𝑠) −0
𝐶 𝐼𝑥

𝛽𝑝
0
 𝐼

𝑡

𝛾𝑝
0
 𝑘𝑝(𝑦, 𝑠, 𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))}  

Subtracting 𝑢𝑝 from 𝑢𝑝,𝑛+1 implies to: 

𝑢𝑝,𝑛+1(𝑥, 𝑡) − 𝑢𝑝(𝑥, 𝑡) = 𝑢𝑝,𝑛(𝑥, 𝑡) − 𝑢𝑝(𝑥, 𝑡) − 𝐼
𝑡

𝛼𝑝
0
 { 𝐷

𝑡

𝛼𝑝
0
𝑐 𝑢𝑝,𝑛(𝑥, 𝑠) − 𝐷

𝑡

𝛼𝑝
0
𝑐 𝑢𝑝(𝑥, 𝑠) − 𝑔𝑝(𝑥, 𝑠) + 𝑔𝑝(𝑥, 𝑠) −

𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝛾𝑝
0
 [𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠)) − 𝑘𝑝(𝑦, 𝑠, 𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))]}  

and hence: 

𝐸𝑝,𝑛+1(𝑥, 𝑡) = 𝐸𝑝,𝑛 (𝑥, 𝑡) − 𝐼
𝑡

𝛼𝑝
0
 { 𝐷

𝑡

𝛼𝑝
0
𝑐 𝐸𝑝,𝑛(𝑥, 𝑠) − 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝛾𝑝
0
 [𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛 (𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠)) −

𝑘𝑝(𝑦, 𝑠, 𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))]}  

= 𝐸𝑝,𝑛(𝑥, 𝑡) − 𝐸𝑝,𝑛(𝑥, 𝑡) + 𝐸𝑝,𝑛(𝑥, 0)

+ 𝐼0
 

𝑡

𝛼𝑝 𝐼𝑥

𝛽𝑝
𝑎
 𝐼

𝑡

𝛾𝑝
0
 {𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠))

− 𝑘𝑝(𝑦, 𝑠, 𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))} 

and since 𝐸𝑝,𝑛 (𝑥, 0) = 0 , therefore when 𝑤𝑝 = 𝛼𝑝 + 𝛾𝑝, we will get: 

𝐸𝑝,𝑛+1(𝑥, 𝑡) = 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝑤𝑝
0
 {𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛 (𝑦, 𝑠)) − 𝑘𝑝(𝑦, 𝑠, 𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))}  

                                                                                                                                         (12) 

Since the kernel functions 𝑘𝑝 satisfies Lipschitz condition with constants 𝐿𝑝 and upon applying the supremum norm on Eq. 

(12), getting:  

‖𝐸𝑝,𝑛+1(𝑥, 𝑡)‖ ≤ 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝑤𝑝
0
 ‖𝑘𝑝(𝑦, 𝑠, 𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛(𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠))−𝑘𝑝(𝑦, 𝑠, 𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))‖  

≤ 𝐿𝑝 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝑤𝑝
0
 ‖(𝑢1,𝑛(𝑦, 𝑠), 𝑢2,𝑛 (𝑦, 𝑠), … , 𝑢𝑝,𝑛(𝑦, 𝑠)) − (𝑢1(𝑦, 𝑠), 𝑢2(𝑦, 𝑠), … , 𝑢𝑝(𝑦, 𝑠))‖  

≤ 𝐿𝑝 𝐼𝑥

𝛽𝑝
𝑎

 𝐼
𝑡

𝑤𝑝
0
 (‖𝐸1,𝑛(𝑦, 𝑠)‖ + ‖𝐸2,𝑛(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,𝑛 (𝑦, 𝑠)‖)                                                          (13) 

Using the definition of left-hand sided Riemann-Liouville of fractional integral twice in inequality (13), then inequality 

(13) will be reduced to: 

‖𝐸𝑝,𝑛+1(𝑥, 𝑡)‖ ≤
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)
∫ (𝑡 − 𝑠)𝑤𝑝−1 ∫ (𝑥 − 𝑦)𝛽𝑝−1𝑥

𝑎

𝑡

0
(‖𝐸1,𝑛(𝑦, 𝑠)‖ + ‖𝐸2,𝑛(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,𝑛(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠   

         (14) 

≤
𝐿𝑝

Γ(w𝑝)Γ(β𝑝)
∫ ∫ (𝑥 − 𝑦)𝛽𝑝−1(𝑡 − 𝑠)𝑤𝑝−1𝑥

𝑎

𝑡

0
 (‖𝐸1,𝑛(𝑦, 𝑠)‖ + ‖𝐸2,𝑛(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,𝑛(𝑦, 𝑠)‖) 𝑑𝑦𝑑𝑠  

≤
𝐿𝑝

Γ(w𝑝)Γ(β𝑝)
∫ ∫ (𝑥 − 𝑎)𝛽𝑝−1 𝑡𝑤𝑝−1𝑥

𝑎

𝑡

0
(‖𝐸1,𝑛(𝑦, 𝑠)‖ + ‖𝐸2,𝑛(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,𝑛(𝑦, 𝑠)‖) 𝑑𝑦𝑑𝑠        (15) 

Thus, if 𝑛 = 0, then: 

‖𝐸𝑝,1(𝑥, 𝑡)‖ ≤
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)
∫ ∫ (𝑥 − 𝑎)𝛽𝑝−1 𝑡𝑤𝑝−1𝑥

𝑎

𝑡

0
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠  

=
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)

(𝑥−𝑎)𝛽𝑝

𝛽𝑝

𝑡𝑤𝑝

𝑤𝑝
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)  

≤
𝐿𝑝(𝑥−𝑎)𝛽𝑝𝑡𝑤𝑝

Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)                                                       (16) 

If 𝑛 = 1, then: 

‖𝐸𝑝,2(𝑥, 𝑡)‖ ≤
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)
∫ ∫ (𝑥 − 𝑎)𝛽𝑝−1 𝑡𝑤𝑝−1𝑥

𝑎

𝑡

0
(‖𝐸1,1(𝑦, 𝑠)‖ + ‖𝐸2,1(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,1(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠  
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≤
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)
∫ ∫ (𝑥 − 𝑎)

𝑥

𝑎

𝛽𝑝−1
 𝑡𝑤𝑝−1𝑡

0

𝐿𝑝(𝑥−𝑎)𝛽𝑝𝑡𝑤𝑝

Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ +

‖𝐸𝑝,0(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠   

=
𝐿𝑝

2

Γ(𝑤𝑝)Γ(𝛽𝑝)Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)
∫ ∫ (𝑥 − 𝑎)2𝛽𝑝−1 𝑡2𝑤𝑝−1𝑥

𝑎

𝑡

0
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ +

‖𝐸𝑝,0(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠  

=
𝐿𝑝

2

Γ(𝑤𝑝)Γ(𝛽𝑝)Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)

(𝑥−𝑎)2𝛽𝑝

2𝛽𝑝

𝑡2𝑤𝑝

2𝑤𝑝
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)  

≤ (
𝐿𝑝

2Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)
)

2

(𝑥 − 𝑎)2𝛽𝑝𝑡2𝑤𝑝(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)                         (17) 

If 𝑛 = 2, then: 

‖𝐸𝑝,3(𝑥, 𝑡)‖ ≤
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)
∫ ∫ (𝑥 − 𝑎)𝛽𝑝−1 𝑡𝑤𝑝−1𝑥

𝑎

𝑡

0
(‖𝐸1,2(𝑦, 𝑠)‖ + ‖𝐸2,2(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,2(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠  

≤
𝐿𝑝

Γ(𝑤𝑝)Γ(𝛽𝑝)
∫ ∫ (𝑥 − 𝑎)𝛽𝑝−1 𝑡𝑤𝑝−1𝑥

𝑎

𝑡

0
(

𝐿𝑝

2Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)
)

2

(𝑥 − 𝑎)2𝛽𝑝𝑡2𝑤𝑝(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ +

     ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠  

=
𝐿𝑝

3

22Γ(𝑤𝑝)Γ(𝛽𝑝)Γ2(𝑤𝑝+1)Γ2(𝛽𝑝+1)
∫ ∫ (𝑥 − 𝑎)3𝛽𝑝−1𝑥

𝑎
𝑡3𝑤𝑝−1𝑡

0
(‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ +

⋯ +‖𝐸𝑝,0(𝑦, 𝑠)‖)𝑑𝑦𝑑𝑠  

≤
𝐿𝑝

3

2232Γ3(𝑤𝑝+1)Γ3(𝛽𝑝+1)
(𝑥 − 𝑎)3𝛽𝑝𝑡3𝑤𝑝(‖𝐸1,0(𝑦, 𝑠)‖ +  ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)                   (18) 

Therefore, for any arbitrary natural number 𝑛, and upon mathematical induction, it can be concluded that: 

‖𝐸𝑝,𝑛+1(𝑥, 𝑡)‖ ≤
𝐿𝑝

𝑛(𝑥−𝑎)𝑛𝛽𝑝𝑡𝑛𝑤𝑝

(2×3×…×𝑛)2Γ𝑛(𝑤𝑝+1)Γn(𝛽𝑝+1)
 (‖𝐸1,0(𝑦, 𝑠)‖ + ‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖) 

=
1

(𝑛!)2 (
𝐿𝑝(𝑏−𝑎)𝛽𝑝 𝑇𝑤𝑝

Γ(𝑤𝑝+1)Γ(β𝑝+1)
)

𝑛

(‖𝐸1,0(𝑦, 𝑠)‖ +‖𝐸2,0(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,0(𝑦, 𝑠)‖)  

Now, since 𝐿𝑝 <
Γ(𝑤𝑝+1)Γ(𝛽𝑝+1)

𝑇𝑤𝑝(𝑏−𝑎)𝛽𝑝
 and hence as 𝑛 → ∞, then (‖𝐸1,𝑛(𝑦, 𝑠)‖ + ‖𝐸2,𝑛(𝑦, 𝑠)‖ + ⋯ + ‖𝐸𝑝,𝑛(𝑦, 𝑠)‖) → 0, and 

thus 𝑢𝑝,𝑛(𝑥, 𝑡) → 𝑢𝑝(𝑥, 𝑡) as 𝑛 → ∞, which means that the sequence of approximate solutions of Eq. (3) converge to the 

exact solution of Eq. (1).   

 

5. ILLUSTRATIVE EXAMPLES  

In this section, two illustrative test examples will be considered and simulated using the VIM (3). The considered examples 

are for linear case. 

 

Example 5.1. Consider the problem of solving the following linear system of FPIDEs:  

𝐷𝑡
𝛼1

0
𝐶 𝑢1(𝑥, 𝑡) = −0.64784 𝑡2.33 𝑥3.6 + 1.11917 𝑡0.6 𝑥2 + 𝐼𝑥

𝛽1
𝑎

 𝐼0
 

𝑡
𝛾1{(𝑥𝑡)𝑢2(𝑥, 𝑡)}                                                     (19) 

𝐷𝑡
𝛼2

0
𝐶 𝑢2(𝑥, 𝑡) = 2.25675𝑡0.5𝑥2 − 0.26192𝑡1.45𝑥3.8 + 0.27083𝑡2.45𝑥2.8  + 𝐼𝑥

𝛽2
𝑎

 𝐼0
 

𝑡
𝛾2{(𝑥 − 𝑡)𝑢1(𝑥, 𝑡)}                       (20)  

with initial conditions:  

𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 0                                                                                                                                                (21) 

where 𝛼1 = 0.4, 𝛼2 = 0.5, 𝛽1 = 0.6, 𝛽2 = 0.8, 𝛾1 = 0.33 and 𝛾2 = 0.45, for all (𝑥, 𝑡) ∈ [0,1] × [0,1]. For comparison 

purpose, the exact solutions are given by 𝑢1(𝑥, 𝑡) = 𝑥2𝑡 and 𝑢2(𝑥, 𝑡) = 2𝑥2𝑡. Now, by applying the VIM, and by using 

with the initial approximate solution as follows: 

𝑢1,0(𝑥, 𝑡) = −0.64784 𝑡2.33 𝑥3.6 + 1.11917 𝑡0.6 𝑥2   

and 

𝑢2,0(𝑥, 𝑡) = 2.25675𝑡0.5𝑥2 − 0.26192𝑡1.45𝑥3.8 + 0.27083𝑡2.45𝑥2.8  

Then, the first and second approximate solutions of Eq. (19) which are denoted by 𝑢1,1(𝑥, 𝑡) and 𝑢1,2(𝑥, 𝑡), respectively 

while the first and second approximate solutions of Eq. (20) which are denoted by 𝑢2,1(𝑥, 𝑡), 𝑢2,2(𝑥, 𝑡), are evaluated. The 

approximate solutions are computed for 𝑥 = 0.5, 𝑡 ∈ [0,1], ∆𝑡 = 0.1. Also, comparison is then made with the exact 

solutions, where the values are listed in Table 5.1. From the results of Table I, the convergence and the accuracy of the 

obtained results between the exact and approximate solutions may be seen.  

Also, Table II presents for comparison purpose the absolute errors between the approximate and the exact solutions for 

different values of 𝑥 and 𝑡. 
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TABLE I.  THE EXACT AND APPROXIMATE SOLUTIONS OF EXAMPLE 5.1 

𝑡 𝑢1(𝑥, 𝑡) 𝑢1,1(𝑥, 𝑡) 𝑢1,2(𝑥, 𝑡) 𝑢2(𝑥, 𝑡) 𝑢2,1(𝑥, 𝑡) 𝑢2,2(𝑥, 𝑡) 

0 0 0 0 0 0 0 

0.1 0.025 0.025197 0.025 0.05 0.050297 0.05 

0.2 0.05 0.0508 0.050002 0.1 0.100623 0.100003 

0.3 0.075 0.076742 0.075006 0.15 0.150822 0.150008 

0.4 0.1 0.102937 0.10001 0.2 0.200863 0.200014 

0.5 0.125 1.29301 0.125014 0.25 0.250755 0.250016 

0.6 0.15 0.155752 0.150016 0.3 0.300532 0.300012 

0.7 0.175 1.82216 0.175013 0.35 0.350248 0.349996 

0.8 0.2 0.208621 0.200005 0.4 0.39997 0.399966 

0.9 0.225 0.234906 0.224991 0.45 0.44978 0.449919 

1 0.25 0.261012 0.249976 0.5 0.499776 0.499853 

TABLE II.  THE ABSOLUTE ERRORS OF EXAMPLE 5.1. 

𝑡 |𝑢1(𝑥, 𝑡) − 𝑢1,1(𝑥, 𝑡)| |𝑢1(𝑥, 𝑡) − 𝑢1,2(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,1(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,2(𝑥, 𝑡)| 

0 0 0 0 0 

0.1 1.972×10-4 2.767×10-7 2.975×10-4 4.824×10-7 

0.2 8.003×10-4 1.99×10-6 6.229×10-4 3.189×10-6 

0.3 1.742×10-3 5.528×10-6 8.221×10-4 8.199×10-6 

0.4 2.937×10-3 1.01×10-5 8.632×10-4 1.358×10-5 

0.5 4.301×10-3 1.411×10-5 7.552×10-4 1.606×10-5 

0.6 5.752×10-3 1.559×10-5 5.325×10-4 1.165×10-5 

0.7 7.216×10-3 1.275×10-5 2.478×10-4 3.701×10-6 

0.8 8.621×10-3 4.576×10-6 3.044×10-4 3.362×10-5 

0.9 9.906×10-3 8.577×10-6 2.196×10-4 8.079×10-5 

1 0.011 2.428×10-5 2.243×10-4 1.465×10-4 

 

Similarly, if we choose other values for 𝛼1and 𝛼2 such as 𝛼1, 𝛼2 = 1, and substitute this value in Eq. (19), we can get the 

value of 𝑔(𝑥, 𝑡) and Eq. (19) will be: 

𝐷𝑡
𝛼1

0
𝐶 𝑢(𝑥, 𝑡) = −0.81637 𝑡2.75 𝑥2.5 + 1.12837 √𝑡 𝑥 + 𝐼𝑥

𝛽1
𝑎

 𝐼0
 

𝑡
𝛾1{(𝑥𝑡)𝑢2(𝑥, 𝑡)}                                                    (22) 

𝐷𝑡
𝛼2

0
𝐶 𝑢2(𝑥, 𝑡) = −0.53975𝑡2.3 𝑥3.25 + 2.14734 𝑡0.8 𝑥 + 𝐼𝑥

𝛽2
𝑎

 𝐼0
 

𝑡
𝛾2{(𝑥 − 𝑡)𝑢1(𝑥, 𝑡)}                                              (23) 

with the initial condition 

𝑢1(𝑥, 0) = 0, 𝑢2(𝑥, 0) = 0                                                                                                                              (24) 

where,  

𝛼1, 𝛼2 = 1, 𝛽1 = 0.6, 𝛽2 = 0.8, 𝛾1 = 0.33, and 𝛾2 = 0.45 for all (𝑥, 𝑡) ∈ [0,1] × [0,1]. For comparison purpose, the 

exact solutions are given by 𝑢1(𝑥, 𝑡) = 𝑥2𝑡  and 𝑢2(𝑥, 𝑡) = 2𝑥2𝑡. Now, by applying the VIM, and by using 

with the initial approximate solution as follows: 

𝑢1,0(𝑥, 𝑡) = −0.81637 𝑡2.75 𝑥2.5 + 1.12837 √𝑡 𝑥   

and 

𝑢2,0(𝑥, 𝑡) = −0.53975𝑡2.3 𝑥3.25 + 2.14734 𝑡0.8 𝑥 

Then, the first and second approximate solutions of Eq. (25) which are denoted by 𝑢1,1(𝑥, 𝑡) and  𝑢1,2(𝑥, 𝑡), 
respectively while the first and second approximate solutions of Eq. (26) which are denoted by 

𝑢2,1(𝑥, 𝑡), 𝑢2,2(𝑥, 𝑡), are evaluated. The approximate solutions are computed for 𝑥 = 0.5, 𝑡 ∈ [0,1], ∆𝑡 = 0.1. 

Also, comparison is then made with the exact solutions where the values are listed in Table III. From the 

results of Table III, the convergence and the accuracy of the obtained results between the exact and 

approximate solutions may be seen.  

Also, Table IV, presents for comparison purpose the absolute errors between the approximate and the exact 

solutions for different values of 𝑥 and 𝑡. 
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TABLE III.  THE EXACT AND APPROXIMATE SOLUTIONS OF EXAMPLE 5.1 

𝑡 𝑢1(𝑥, 𝑡) 𝑢1,1(𝑥, 𝑡) 𝑢1,2(𝑥, 𝑡) 𝑢2(𝑥, 𝑡) 𝑢2,1(𝑥, 𝑡) 𝑢2,2(𝑥, 𝑡) 

0 0 0 0 0 0 0 

0.1 0.025 0.024992 0.025 0.05 0.049977 0.05 

0.2 0.05 0.049924 0.05 0.1 0.099894 0.1 

0.3 0.075 0.074707 0.075 0.15 0.149772 0.15 

0.4 0.1 0.099237 0.099999 0.2 0.199658 0.200001 

0.5 0.125 0.1234 0.124998 0.25 0.249618 0.250003 

0.6 0.15 0.147072 0.149998 0.3 0.299737 0.300009 

0.7 0.175 0.170126 0.174998 0.35 0.350113 0.350024 

0.8 0.2 0.192428 0.200001 0.4 0.40086 0.400053 

0.9 0.225 0.213841 0.255011 0.45 0.452106 0.450107 

1 0.25 0.234228 0.250035 0.5 0.503995 0.500199 

TABLE IV.  THE ABSOLUTE ERRORS OF EXAMPLE 5.1. 

𝑡 |𝑢1(𝑥, 𝑡) − 𝑢1,1(𝑥, 𝑡)| |𝑢1(𝑥, 𝑡) − 𝑢1,2(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,1(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,2(𝑥, 𝑡)| 

0 0 0 0 0 

0.1 7.56×10-6 1.713×10-9 2.232×10-5 1.251×10-10 

0.2 7.607×10-5 4.034×10-8 1.061×10-4 7.101×10-9 

0.3 2.933×10-4 2.332×10-7 2.282×10-4 1.228×10-7 

0.4 7.63×10-4 7.352×10-7 3.422×10-4 7.763×10-7 

0.5 1.6×10-3 1.587×10-6 3.815×10-4 3.099×10-6 

0.6 2.928×10-3 2.464×10-6 2.626×10-4 9.417×10-6 

0.7 4.874×10-3 2.339×10-6 1.133×10-4 2.386×10-5 

0.8 7.572×10-3 9.619×10-7 8.601×10-4 5.304×10-5 

0.9 0.011 1.128×10-5 2.106×10-3 1.069×10-4 

1 0.016 3.478×10-5 3.995×10-3 1.995×10-4 

 

Example 5.2. Consider the problem of solving the following linear system of FPIDEs:  

𝐷𝑡
𝛼1

0
𝐶 𝑢1(𝑥, 𝑡) = −0.81637 𝑡2.75 𝑥2.5 + 1.12837 𝑡0.5 𝑥 + 𝐼𝑥

𝛽1
𝑎

 𝐼0
 

𝑡
𝛾1[(𝑥𝑡)(𝑢1(𝑥, 𝑡) +  𝑢2(𝑥, 𝑡))]                                (25) 

𝐷𝑡
𝛼2

0
𝐶 𝑢2(𝑥, 𝑡) = −0.50499 𝑡2.3𝑥3.3 + 2.25675 𝑡0.5 𝑥 + 𝐼𝑥

𝛽2
𝑎

 𝐼0
 

𝑡
𝛾2 [(𝑥2𝑡)𝑢1(𝑥, 𝑡)]                                                      (26) 

with initial conditions:  

𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 0                                                                                                                                                (27) 

where 𝛼1 = 0.5, 𝛼2 = 0.2, 𝛽1 = 0.5, 𝛽2 = 0.25, 𝛾1 = 0.75 and 𝛾2 = 0.3, for all (𝑥, 𝑡) ∈ [0,1] × [0,1]. For comparison 

purpose, the exact solutions are given by 𝑢1(𝑥, 𝑡) = 𝑥𝑡 and 𝑢2(𝑥, 𝑡) = 2𝑥𝑡. Now, by applying the VIM, and by using with 

the initial approximate solution defined by: 

𝑢1,0(𝑥, 𝑡) = −0.81637 𝑡2.75 𝑥2.5 + 1.12837 𝑡0.5 𝑥   

and 

𝑢2,0(𝑥, 𝑡) = −0.50499 𝑡2.3𝑥3.3 + 2.25675 𝑡0.5 𝑥 

Then, the first and second approximate solutions of Eq. (25) which are denoted by 𝑢1,1(𝑥, 𝑡) and  𝑢1,2(𝑥, 𝑡), respectively 

while the first and second approximate solutions of Eq. (26) which are denoted by 𝑢2,1(𝑥, 𝑡), 𝑢2,2(𝑥, 𝑡), are evaluated. The 

approximate solutions are computed for 𝑥 = 0.5, 𝑡 ∈ [0,1], ∆𝑡 = 0.1. Also, comparison is then made with the exact 

solutions where the values are listed in Table V. From the results of Table V, the convergence and the accuracy of the 

obtained results between the exact and approximate solutions may be seen.  

Also, Table VI, presents for comparison purpose the absolute errors between the approximate and the exact solutions for 

different values of 𝑥 and 𝑡. 
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TABLE V.  THE EXACT AND APPROXIMATE SOLUTIONS OF EXAMPLE 5.2 

𝑡 𝑢1(𝑥, 𝑡) 𝑢1,1(𝑥, 𝑡) 𝑢1,2(𝑥, 𝑡) 𝑢2(𝑥, 𝑡) 𝑢2,1(𝑥, 𝑡) 𝑢2,2(𝑥, 𝑡) 

0 0 0 0 0 0 0 

0.1 0.05 0.050074 0.0500001 0.1 0.100427 0.1000001 

0.2 0.1 0.10046 0.100001 0.3 0.201474 0.200001 

0.3 0.15 0.151286 0.150008 0.3 0.302937 0.300008 

0.4 0.2 0.202589 0.200026 0.4 0.404692 0.400028 

0.5 0.25 0.254334 0.250067 0.5 0.506674 0.500071 

0.6 0.3 0.306423 0.300141 0.6 0.608861 0.60015 

0.7 0.35 0.358698 0.350265 0.7 0.711279 0.70028 

0.8 0.4 0.41094 0.400453 0.8 0.813993 0.800474 

0.9 0.45 0.46287 0.450724 0.9 0.917109 0.900744 

1 0.5 0.514143 0.501094 1 1.020776 1.001095 

TABLE VI.  THE ABSOLUTE ERRORS OF EXAMPLE 5.2. 

𝑡 |𝑢1(𝑥, 𝑡) − 𝑢1,1(𝑥, 𝑡)| |𝑢1(𝑥, 𝑡) − 𝑢1,2(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,1(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,2(𝑥, 𝑡)| 

0 0 0 0 0 

0.1 7.417×10-5 7.751×10-8 4.266×10-4 6.845×10-8 

0.2 4.597×10-4 1.439×10-6 1.474×10-3 1.419×10-6 

0.3 1.286×10-3 7.903×10-6 2.937×10-3 8.165×10-6 

0.4 2.589×10-3 2.632×10-5 4.692×10-3 2.781×10-5 

0.5 4.334×10-3 6.651×10-5 6.674×10-3 7.092×10-5 

0.6 6.423×10-3 1.41×10-4 8.861×10-3 1.504×10-4 

0.7 8.689×10-3 2.646×10-4 0.011 2.804×10-4 

0.8 0.011 4.535×10-4 0.014 4.744×10-4 

0.9 0.013 7.245×10-4 0.017 7.439×10-4 

1 0.014 1.094×10-3 0.021 1.095×10-3 

 

Similarly, if we choose other values for 𝛼1 and 𝛼2 such as 𝛼1 =  𝛼2 = 1, and substitute this value in Eq. (22), we can get 

the value of 𝑔(𝑥, 𝑡) and Eq. (22) will be: 

𝐷𝑡
𝛼1

0
𝐶 𝑢(𝑥, 𝑡) = 𝑥2 − 0.64784 𝑡2 2.33 𝑥3.6 + 𝐼𝑥

𝛽1
𝑎

 𝐼0
 

𝑡
𝛽1[(𝑥𝑡)(𝑢1(𝑥, 𝑡) +  𝑢2(𝑥, 𝑡))]                                                            (28) 

and 

𝐷𝑡
𝛼2

0
𝐶 𝑢2(𝑥, 𝑡) = 2𝑥2 − 0.26192 𝑡 1.45 𝑥3.8 + 0.27083 𝑡2 2.45 𝑥2.8 + 𝐼𝑥

𝛽2
𝑎

 𝐼0
 

𝑡
𝛾2 [(𝑥2𝑡)𝑢1(𝑥, 𝑡)]                               (29) 

with the initial condition 

𝑢1(𝑥, 0) = 𝑢2(𝑥, 0) = 0                                                                                                                                               (30) 

where, 𝛼1, 𝛼2 = 1, 𝛽1 = 0.5, 𝛽2 = 0.25, 𝛾1 = 0.75, and 𝛾2 = 0.3 for all (𝑥, 𝑡) ∈ [0,1] × [0,1]  
For comparison purpose, the exact solutions are given by 𝑢1(𝑥, 𝑡) = 𝑥𝑡 and 𝑢2(𝑥, 𝑡) = 2𝑥𝑡. Now, by applying the VIM, 

and by using with the initial approximate solution as follows: 

𝑢1,0(𝑥, 𝑡) = −0.64784 𝑡2.33 𝑥3.6   

and 

𝑢2,0(𝑥, 𝑡) = −0.26192 𝑡1.45  𝑥3.8 + 0.27083 𝑡2.45 𝑥2.8 

Then, the first and second approximate solutions of Eq. (28) which are denoted by 𝑢1,1(𝑥, 𝑡) and  𝑢1,2(𝑥, 𝑡), respectively 

while the first and second approximate solutions of Eq. (29) which are denoted by 𝑢2,1(𝑥, 𝑡), 𝑢2,2(𝑥, 𝑡), are evaluated. The 

approximate solutions are computed for 𝑥 = 0.5, 𝑡 ∈ [0,1], ∆𝑡 = 0.1. Also, comparison is then made with the exact 

solutions where the values are listed in Table 5.7. From the results of Table VII, the convergence and the accuracy of the 
obtained results between the exact and approximate solutions may be seen.  

Also, Table VIII presents for comparison purpose the absolute errors between the approximate and the exact solutions for 

different values of 𝑥 and 𝑡. 
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TABLE VII.  THE EXACT AND APPROXIMATE SOLUTIONS OF EXAMPLE 5.2 

𝑡 𝑢1(𝑥, 𝑡) 𝑢1,1(𝑥, 𝑡) 𝑢1,2(𝑥, 𝑡) 𝑢2(𝑥, 𝑡) 𝑢2,1(𝑥, 𝑡) 𝑢2,2(𝑥, 𝑡) 

0 0 0 0 0 0 0 

0.1 0.05 0.049993 0.05 0.1 0.099991 0.1 

0.2 0.1 0.099908 0.1 0.2 0.199914 0.2 

0.3 0.15 0.149576 0.15 0.3 0.299671 0.3 

0.4 0.2 0.198746 0.199999 0.4 0.399139 0.399998 

0.5 0.25 0.24709 0.249995 0.5 0.498177 0.499992 

0.6 0.3 0.294201 0.299984 0.6 0.59662 0.599975 

0.7 0.35 0.339598 0.349958 0.7 0.694279 0.699937 

0.8 0.4 0.382718 0.399902 0.8 0.790939 0.799858 

0.9 0.45 0.422922 0.449792 0.9 0.886355 0.899708 

1 0.5 0.459484 0.499594 1 0.98025 0.999445 

TABLE VIII.  THE ABSOLUTE ERRORS OF EXAMPLE 5.2. 

𝑡 |𝑢1(𝑥, 𝑡) − 𝑢1,1(𝑥, 𝑡)| |𝑢1(𝑥, 𝑡) − 𝑢1,2(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,1(𝑥, 𝑡)| |𝑢2(𝑥, 𝑡) − 𝑢2,2(𝑥, 𝑡)| 

0 0 0 0 0 

0.1 6.853×10-6 2.043×10-10 8.639×10-6 4.777×10-10 

0.2 9.246×10-5 1.565×10-8 8.562×10-5 3.171×10-8 

0.3 4.245×10-4 2.002×10-7 3.293×10-4 3.695×10-7 

0.4 1.254×10-3 1.228×10-6 8.609×10-4 2.113×10-6 

0.5 2.91×10-3 5.024×10-6 1.823×10-3 8.178×10-6 

0.6 5.799×10-3 1.592×10-5 3.38×10-3 2.474×10-5 

0.7 0.01 4.224×10-5 5.721×10-3 6.314×10-5 

0.8 0.017 9.848×10-5 9.061×10-3 1.423×10-4 

0.9 0.027 2.079×10-4 0.014 2.917×10-4 

1 0.041 4.06×10-4 0.02 5.547×10-4 

 

6. CONCLUSIONS  

In this article introduced efficacious technique for solving linear system of two dimensional FPIDEs utilizing the VIM. 

The VIM for solving linear system of two dimensional FPIDEs is formulated and the correction functional involved is 

determined. From there, convergence theorem of the sequence of approximate solution to the exact solution is provided 

and proved depending on the error function. The obtained results of the considered of the illustrative examples shows the 

reliability an applicability of the VIM for solving complicated differential equation. 
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