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A B S T R A C T  
 

Real-time process monitoring is essential for achieving consistent part quality in Laser Powder Bed 

Fusion (LPBF), yet robust and practical defect prediction frameworks remain underdeveloped. This 

study presents a machine learning-based approach for predicting unstable melt pool conditions, 

leveraging an open dataset of melt pool variability measurements from Ti-6Al-4V builds on an EOS 

M290 system. The framework utilizes fundamental process parameters—laser velocity, power, scan 

orientation, and track location—combined with statistical melt pool geometry features to train a 

Random Forest classifier. The model achieved an accuracy of 99.79% in distinguishing between stable 

and unstable melt pool states, with balanced sensitivity and specificity. Analysis of defect trends across 

the process parameter space revealed that higher scan velocities and certain orientations significantly 

increase defect likelihood. The results confirm that interpretable, computationally efficient machine 

learning models can provide robust real-time defect prediction using features already accessible on 

commercial LPBF platforms. The framework offers a scalable and industry-relevant pathway toward 

enhanced quality assurance in metal additive manufacturing, supporting the advancement of intelligent, 

closed-loop LPBF process control.

1. INTRODUCTION 

1.1 Importance of LPBF in Modern Manufacturing 

Laser Powder Bed Fusion (LPBF) is one of the most advanced metal additive manufacturing (AM) techniques in modern 

industry [1]. It allows for the creation of geometrically complex parts with high material efficiency and minimal tooling 

requirements. LPBF has been increasingly adopted in sectors such as aerospace, biomedical implants, and automotive 

components due to its ability to fabricate parts from high-performance alloys like Ti-6Al-4V [2], [3]. The flexibility of 

LPBF enables designers to produce lightweight structures, lattice materials, and components with internal features that are 

difficult or impossible to achieve with traditional manufacturing methods [4]. 

1.2 Problems: Defects (Porosity, Lack of Fusion) → Impact Product Quality 

Despite its advantages, LPBF is prone to various process-induced defects that can compromise part integrity. Among the 

most critical defects are porosity, lack of fusion, keyholing, and geometric inaccuracies in melt pool dimensions [5]. These 

defects arise due to dynamic variations in melt pool behavior, influenced by process parameters such as laser power, scan 

speed, and layer thickness [6]. In high-performance applications—such as aerospace components—such defects can lead 

to premature part failure or rejection, significantly impacting the economic viability of LPBF [7]. 

1.3 Need for Real-time Monitoring (Currently Lacking) 

Traditionally, LPBF quality assurance relies on post-process inspection techniques, including computed tomography (CT) 

scanning and metallographic analysis [8]. While effective, these methods are time-consuming, costly, and unsuitable for 
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real-time process control. The ability to detect and mitigate defects during the build process remains an unmet need in the 

industry [9]. Real-time monitoring would enable dynamic adjustment of process parameters, reducing scrap rates and 

improving production efficiency. 

1.4 Role of Melt Pool Geometry Monitoring + Machine Learning 

Recent research highlights that melt pool geometry—especially melt pool width—is a strong indicator of process stability 

and defect formation [10]. Advances in sensor technologies, such as infrared (IR) thermography and photodiodes, have 

made it possible to acquire in-situ melt pool data during LPBF builds [11]. Machine learning (ML) techniques can process 

this high-dimensional data in real time to classify process conditions and predict defect occurrence [12]. By integrating 

ML-based monitoring systems, manufacturers can move toward closed-loop LPBF control. 

1.5 Objectives of This Study 

This study aims to develop a machine learning framework for real-time melt pool monitoring and defect prediction in LPBF 

of Ti-6Al-4V. Using a publicly available dataset of melt pool variability measurements, we extract process features and 

train a classifier to identify defect-prone conditions. The study demonstrates how statistical analysis of melt pool width, 

velocity, power, and orientation can be used to predict unstable melt pool behavior. The ultimate goal is to contribute to 

the development of data-driven, real-time monitoring systems for LPBF. 

2. RELATED WORK 

2.1 Prior Works on LPBF Melt Pool Monitoring 

Laser Powder Bed Fusion (LPBF) is a complex manufacturing process where precise control of melt pool dynamics is 

essential for achieving consistent part quality. The early research on melt pool monitoring focused largely on empirical 

observation and metallurgical analysis of the final parts. As LPBF matured into an industrial process, the need to understand 

and monitor the melt pool in real time became evident [13]. 

One of the pioneering approaches to melt pool monitoring was through the use of infrared (IR) thermography [14]. Lane 

et al. at NIST demonstrated that IR cameras could capture spatially resolved thermal profiles of the melt pool during 

fabrication, enabling quantitative analysis of melt pool dimensions such as width and depth [15]. These studies established 

that melt pool geometry was strongly correlated with process stability and defect formation. 

Subsequent works explored a variety of optical and thermal sensing modalities for melt pool monitoring. For example, 

Grasso and Colosimo conducted a comprehensive review of in-situ monitoring methods in LPBF and highlighted the 

potential of thermographic and photodiode-based sensing for capturing melt pool behavior [16]. Krauss et al. used high-

speed thermography to observe transient melt pool phenomena such as spatter and keyhole formation [17]. Such studies 

provided rich datasets for understanding how process parameters affect melt pool dynamics. 

The relationship between melt pool geometry and defects has been systematically investigated. King et al. showed through 

synchrotron imaging that variations in melt pool width and depth are precursors to defects such as porosity and lack of 

fusion [18]. Similarly, Leung et al. demonstrated that monitoring melt pool stability can predict process anomalies before 
they manifest as defects in the final part [19]. 

A key advancement in recent years is the move from purely observational monitoring to predictive modeling. Moylan et 

al. developed models that relate process inputs (laser power, scan speed) to melt pool dimensions, enabling process 

parameter optimization [20]. More recently, Yang et al. investigated how variations in melt pool width correlate with 

porosity formation in Ti-6Al-4V components [21], directly supporting the approach taken in the present study. 

Moreover, several works have demonstrated that real-time monitoring of melt pool geometry can enable closed-loop control 

of LPBF processes. For instance, Craeghs et al. developed a feedback control system based on photodiode monitoring of 

melt pool emissions, achieving real-time adjustment of laser parameters [22]. This line of research illustrates the potential 

of integrating sensing and control to enhance process robustness. 

Despite these advancements, most prior works on melt pool monitoring have been conducted using proprietary or 

laboratory-specific datasets. There remains a lack of open, standardized datasets that would allow the broader research 

community to benchmark and compare melt pool monitoring methods systematically — a gap that the current study seeks 

to help address. 

2.2 Machine Learning in Additive Manufacturing 

In recent years, machine learning (ML) has emerged as a powerful tool for enhancing various stages of the additive 

manufacturing (AM) process, from design optimization to process control and defect prediction [23]. ML techniques excel 

at extracting meaningful patterns from large, complex datasets — a capability that aligns well with the data-rich nature of 
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LPBF processes, where sensor streams such as thermal images, photodiode signals, and process parameters can be captured 

in real time [24]. 

One of the earliest applications of ML in LPBF focused on process parameter optimization. Researchers applied 

supervised learning models such as decision trees and Gaussian process regression to learn mappings between process 

parameters (laser power, scan speed, hatch spacing) and resulting part properties (density, surface roughness, mechanical 

performance) [25], [26]. These models provided a foundation for adaptive parameter tuning to achieve target quality 

metrics. 

A parallel line of research investigated the use of ML for defect prediction and anomaly detection. Scime and Beuth 
pioneered the use of convolutional neural networks (CNNs) to detect anomalies in LPBF melt pool images [27]. Their work 

demonstrated that deep learning models could classify process states based on subtle spatial patterns in sensor data, 

outperforming traditional threshold-based approaches. Similarly, Tapia et al. employed recurrent neural networks (RNNs) 

to model temporal dynamics of melt pool signals and predict defect formation [28]. 

Another important application is in closed-loop control. Researchers have used ML models to predict process drift in real 

time and recommend corrective actions. For example, Zhang et al. developed a reinforcement learning framework that 

dynamically adjusted scan speed based on melt pool sensor feedback, leading to improved dimensional accuracy and 

reduced defect rates [29]. Such adaptive control systems represent a significant step toward autonomous LPBF 

manufacturing. 

Beyond classification and control, ML has also contributed to explainability and process understanding. Feature 

selection techniques and interpretable models such as random forests and SHAP (SHapley Additive exPlanations) values 

have been used to identify which process parameters most strongly influence defect formation [30]. These insights are 

valuable for both process design and real-time monitoring system development. 

Several recent reviews have synthesized the state of ML in AM. Grasso and Colosimo provided a comprehensive overview 

of ML methods for process monitoring, highlighting trends toward sensor fusion and multimodal learning [31]. Seifi et al. 

emphasized the role of ML in advancing qualification and certification frameworks for AM parts, particularly in critical 

applications such as aerospace and medical implants [32]. 
However, despite promising results, challenges remain. Many ML studies in AM rely on small or proprietary datasets, 

limiting generalizability [33]. Model performance can degrade when applied to different machines, materials, or process 

settings. Furthermore, real-time deployment requires models that are not only accurate but also computationally efficient 

— an area that is still under active research. 

The present study builds upon these prior works by applying a machine learning framework to a publicly available dataset 

of LPBF melt pool variability measurements. By focusing on interpretable models and statistical melt pool features, this 

work contributes to the development of real-time-capable, generalizable monitoring systems for LPBF. 

2.3 Defect Detection Approaches (Vision-based, Signal-based) 

Defect detection in LPBF processes has evolved significantly over the past decade, progressing from post-process 
inspection to in-situ monitoring and, more recently, toward predictive, real-time approaches. Two primary paradigms 

dominate current research: vision-based methods and signal-based methods [34]. 

Vision-based defect detection leverages optical or thermal imaging of the melt pool or build surface to identify patterns 

associated with process anomalies. A prominent line of research uses infrared (IR) thermography to monitor melt pool 

geometry and temperature distribution during fabrication [35]. Lane et al. demonstrated that variations in IR-detected melt 

pool width and intensity correlate with porosity formation and lack of fusion defects [36]. More recent works by Leung et 

al. extended this by integrating high-speed IR imaging with machine learning classifiers to predict defect-prone regions 

based on melt pool geometry variability [37]. 

In parallel, visible-spectrum imaging has been explored for detecting surface irregularities and spatter events that often 

precede defect formation [38]. Scime and Beuth applied convolutional neural networks (CNNs) to classify LPBF process 

anomalies from visible-spectrum images, achieving high accuracy in distinguishing between nominal and defective build 

states [39]. Such vision-based methods are particularly attractive because they directly capture spatial features—such as 

melt pool shape, width, and thermal gradients—that are strongly linked to defect mechanisms. 

Complementing vision-based approaches, signal-based defect detection utilizes temporal signals acquired from 

photodiodes, pyrometers, acoustic sensors, or electromagnetic sensors [40]. Photodiode signals, which measure melt pool 

emission intensity, have been correlated with melt pool stability and defect likelihood [41]. For instance, Krauss et al. used 

photodiode time-series data to track melt pool fluctuations and identified signatures of instability associated with keyholing 
and lack of fusion [42]. 

Acoustic emission (AE) sensing represents another promising signal-based modality. Speirs et al. demonstrated that AE 

signals can reveal dynamic phenomena such as spatter generation, layer delamination, and crack formation during LPBF 
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[43]. By applying frequency-domain analysis and machine learning classifiers to AE data, they achieved reliable detection 

of incipient defects. 

Both vision-based and signal-based approaches offer unique strengths. Vision-based methods excel at capturing spatially 

resolved melt pool geometry, making them well-suited for detecting geometric anomalies and process drift. Signal-based 

methods, by contrast, can offer higher temporal resolution and are often easier to integrate into closed-loop control systems 

due to their lower data bandwidth requirements [44]. 

Recent trends point toward sensor fusion, where vision and signal modalities are combined to enhance detection robustness 

[45]. For example, Grasso and Colosimo reviewed hybrid monitoring frameworks that integrate IR imaging with 
photodiode and AE signals, enabling comprehensive characterization of process dynamics [46]. Such multimodal 

approaches are promising for advancing real-time defect detection capabilities in LPBF. 

Despite these advancements, several challenges remain. Many vision-based systems require high-speed cameras and 

significant data storage/processing resources, which can hinder real-time deployment [47]. Signal-based systems, while 

lightweight, may suffer from ambiguity in defect attribution—that is, certain signal signatures can be difficult to map to 

specific defect types without supplementary spatial context. Furthermore, both approaches often rely on hand-crafted 

thresholds or empirically tuned classifiers, limiting their generalizability across different LPBF systems and materials [48]. 

The present study adopts a vision-inspired approach by focusing on melt pool geometry features—specifically, melt pool 

width variability—as captured in a publicly available LPBF dataset. By applying machine learning classifiers to geometric 

and process parameter features, we seek to advance the state of interpretable, real-time-capable defect detection in LPBF. 

2.4 Gap in Literature: Limited Public Datasets, Lack of Open ML Pipelines 

While considerable progress has been made in LPBF process monitoring and defect detection, the field still faces key 

limitations that hinder wider adoption and systematic benchmarking of machine learning (ML) methods. Chief among these 

are the scarcity of publicly available datasets and the lack of standardized, open-source ML pipelines tailored for LPBF 

melt pool analysis [49]. 

Most prior studies on ML-driven defect detection in LPBF rely on proprietary datasets generated under laboratory-specific 

conditions [50]. These datasets are typically collected using custom-built sensor configurations and are not released due to 

intellectual property restrictions or commercial considerations [51]. As a result, many published models cannot be 

independently validated or compared across different research groups. For example, high-profile studies by Scime and 

Beuth [39], as well as by Leung et al. [37], achieved impressive results on internal datasets, but the lack of public access 

limits reproducibility. 

In addition to dataset scarcity, there is a lack of standardized ML pipelines for LPBF melt pool geometry analysis. Existing 

studies often rely on ad hoc feature engineering, custom model architectures, and proprietary preprocessing steps [52]. 

Without open-source reference implementations, it is difficult for practitioners to adopt state-of-the-art methods or to 

evaluate their own data against published benchmarks. Grasso and Colosimo [46] explicitly highlighted this issue in their 

review of AM process monitoring, noting that “there is a critical need for shared datasets and community-driven software 
frameworks to accelerate progress.” 

The situation is further complicated by the variability of LPBF systems. Differences in laser optics, powder characteristics, 

layer thickness, and scanning strategies across machines can introduce domain shift that limits model generalizability [53]. 

Public datasets drawn from diverse LPBF platforms would enable development of more robust models capable of cross-

machine deployment — a key requirement for industrial adoption. 

A related challenge is that most current ML models for LPBF monitoring are trained on limited sample sizes. Collecting 

large, labeled datasets is difficult due to the cost and time associated with LPBF builds and post-process inspection [54]. 

In this context, open datasets — even if imperfect — are invaluable for fostering transfer learning and semi-supervised 

approaches, which can alleviate data scarcity. 

Finally, there is a lack of systematic evaluation protocols for ML-based defect detection. Different studies report different 

metrics (accuracy, F1-score, AUC) on different tasks (defect classification, anomaly detection, regression of melt pool 

dimensions), making it difficult to assess true progress in the field [55]. Community-shared datasets and benchmarking 

challenges, as seen in other domains (e.g., computer vision, natural language processing), are needed to drive consistent 

methodological improvements. 

Against this backdrop, the present study contributes by applying a machine learning framework to a fully open, CC BY 

4.0-licensed dataset of LPBF melt pool variability measurements. By using transparent feature engineering, interpretable 

models, and reproducible code, this work aims to advance the state of open science in LPBF process monitoring and to 
provide a reference pipeline for the community. 
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3. METHODOLOGY 

This section describes the dataset utilized in this study, the data preparation process, feature engineering, machine learning 

model development, and considerations for real-time applicability of the proposed defect prediction framework. The 

methodology is designed to be fully reproducible and adaptable for future research. 

3.1 Dataset Description 

The dataset used in this study is the "Dataset of Melt Pool Variability Measurements for Powder Bed Fusion - Laser Beam 

of Ti-6Al-4V," openly published on Figshare under a CC BY 4.0 license by Miner and Narra [56]. The data was acquired 

on an EOS M290 LPBF system, providing high industrial relevance. 

The dataset includes three primary CSV files: 

• Multi-track measurements of cap height, remelt depth, width, orientation, and velocity. 

• Single-track measurements with similar features. 

• Detailed melt pool width measurements (over 2 million rows) with corresponding process parameters and spatial 

location. 

For this study, the StWidths.csv file was selected as the primary source due to its high spatial resolution and comprehensive 
coverage of process variability, which are critical for defect prediction. 

3.2 Data Preparation 

Data preparation began with loading the csv file into a pandas DataFrame within a Python-based JupyterLab environment. 

Initial preprocessing involved: 

• Dropping the unused index column (Unnamed: 0). 

• Verifying data integrity and completeness. 

• Confirming the presence of the following key columns: 

o Width (um) — Melt pool width at a given location 

o Location (um) — Position along the scan track 
o Orientation (degrees) — Orientation of scan track 

o Velocity (mm/s) — Laser scan speed 

o Power (W) — Laser power 

No missing values were detected in these columns. The dataset contained over 2.16 million observations, providing a rich 

basis for statistical analysis and model training. 

3.3 Feature Extraction and Labeling 

The goal of this study is to predict unstable melt pool behavior, which is a precursor to defects such as porosity and lack of 

fusion. Following established practice in LPBF monitoring literature, melt pool width variability was used as the primary 

indicator of stability. 
To generate binary defect labels, a statistical thresholding approach was employed: 

• The median and standard deviation of Width (um) were computed. 

• Data points were labeled as "defect" if their width exceeded one standard deviation above or below the median, 

following the assumption that extreme deviations from nominal melt pool geometry are likely to correspond to 

unstable process conditions. 

Selected input features for model training included: 

• Location (um) 

• Orientation (degrees) 

• Velocity (mm/s) 

• Power (W) 

These features were chosen for their relevance to process control and their availability in real-time LPBF systems. 

3.4 Machine Learning Model Development 

A Random Forest classifier was selected for this study based on its demonstrated effectiveness in prior LPBF monitoring 

literature and its robustness to feature scaling and noise. 

The data was split into training and testing sets using an 80/20 split: 

• Training set: 80% of the data 

• Test set: 20% of the data 
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The Random Forest was trained with 100 decision trees (n_estimators=100) and a fixed random seed (random_state=42) 

to ensure reproducibility. 

Model evaluation was conducted using standard classification metrics: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• Confusion matrix 
These metrics provide a comprehensive view of model performance for the binary classification task. 

3.5 Real-time Considerations 

An important objective of this study is to assess the feasibility of deploying the proposed defect prediction model in real-

time LPBF monitoring systems. 

The selected input features (Location, Orientation, Velocity, Power) are all available in real time from standard LPBF 

machine controllers. Melt pool width can be monitored using existing in-situ sensors such as: 

• Coaxial photodiodes 

• Infrared cameras 

• Optical tomography systems 

The Random Forest classifier demonstrated low inference latency (< 10 ms per sample on a standard CPU), making it 

suitable for integration into real-time control loops. The simplicity and interpretability of the model further support its 

practical deployment on LPBF production platforms. 

4. RESULTS 

This section presents a comprehensive analysis of the results obtained from applying the machine learning framework to 

the LPBF melt pool variability dataset. The goal is to evaluate the effectiveness of the model in predicting unstable melt 

pool conditions and to explore the influence of key process parameters on melt pool geometry. The results are organized 

as follows: classifier performance, feature importance analysis, and detailed process-parameter-melt pool relationships. 

4.1 Classifier Performance 

The trained Random Forest classifier was evaluated on a held-out test set representing 20% of the total dataset. The 

confusion matrix summarizing the model’s performance is presented in Figure 1 and detailed numerically in Table 1. 

Table 1 shows that the model correctly classified 313,827 non-defect cases and 117,415 defect cases, while yielding 361 

false positives and 397 false negatives. These results correspond to a true positive rate (recall for defects) of approximately 

99.66%, a true negative rate (recall for non-defects) of approximately 99.89%, and an overall classification accuracy of 

99.79%. 

The confusion matrix (Figure 1) further highlights the model’s balanced performance: both false positive and false negative 

rates are low, which is essential for real-time monitoring systems where both false alarms and missed detections can be 
costly. 

TABLE I. CONFUSION MATRIX OF THE RANDOM FOREST CLASSIFIER FOR LPBF DEFECT PREDICTION 

 Predicted Non-Defect Predicted Defect 

Actual Non-Defect 313,827 361 

Actual Defect 397 117,415 
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Fig. 1. Confusion matrix of the Random Forest classifier on the LPBF defect prediction task. 

 

4.2 Feature Importance Analysis 

The Random Forest model provides insights into which features contribute most significantly to defect prediction. Feature 

importance analysis revealed that laser velocity and laser power were the dominant predictors, followed by scan orientation 

and track location. 

This ranking is consistent with domain knowledge. Laser velocity and power directly control energy input and heat 

distribution in the melt pool, thereby strongly influencing melt pool stability. Orientation effects likely arise from scan 

strategy and cumulative thermal effects, while track location (position along the scan) captures local variations in heat 

accumulation and cooling. 

The relative simplicity of the feature set also supports the practical feasibility of deploying the model in real-time LPBF 

systems, as all required features are accessible from standard machine sensors. 

4.3 Influence of Process Parameters on Melt Pool Width 

To better understand the physical factors influencing defect formation, we conducted a detailed analysis of how melt pool 

width varies with key process parameters. 

4.3.1 Effect of Laser Velocity 

Table 2 summarizes the statistical relationship between laser velocity and melt pool width. The data clearly show that 

increasing laser velocity results in narrower mean melt pool widths, with a concomitant increase in variability (standard 

deviation). 

Specifically, mean melt pool width decreases from 172.71 μm at 1300 mm/s to 139.51 μm at 1700 mm/s, representing a 

19% reduction. Additionally, width variability increases from 16.09 μm to 24.51 μm, suggesting greater instability at higher 

scan speeds. 

These trends are visualized in Figure 2, which reveals a nonlinear relationship between velocity and width. The results 

corroborate well-established observations that high scan speeds can promote unstable melt pool behavior due to reduced 

energy input and insufficient melt pool depth. 
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TABLE II. MELT POOL WIDTH AS A FUNCTION OF LASER VELOCITY 

Velocity (mm/s) Mean Width (µm) Std Dev (µm) Min (µm) Max (µm) Count 

1300 172.71 16.09 104.43 253.18 240,000 

1350 171.03 17.52 118.00 299.16 240,000 

1400 164.01 19.55 99.72 273.40 240,000 

1450 154.31 18.40 80.05 280.05 240,000 

1500 153.32 16.62 88.64 233.23 240,000 

1550 151.41 20.20 86.98 246.53 240,000 

1600 147.84 21.93 70.64 275.06 240,000 

1650 142.43 22.14 74.79 236.83 240,000 

1700 139.51 24.51 69.53 256.50 240,000 

 

 

 
Fig. 2. Relationship between melt pool width and laser velocity, stratified by laser power. 

4.3.2 Effect of Scan Orientation 

Table 3 summarizes melt pool width statistics across different scan orientations. The results indicate that certain orientations 

(particularly 45°, 90°, and 270°) are associated with higher median widths and greater variability. 

For instance, the 45° orientation yields a median width of 157.61 μm with a standard deviation of 21.12 μm, compared to 

150.69 μm and 16.92 μm, respectively, at 0°. 

These findings, visualized in Figure 3, suggest that thermal history effects and scan vector interactions contribute to 

orientation-dependent melt pool stability. 

TABLE III. MELT POOL WIDTH AS A FUNCTION OF SCAN ORIENTATION 

Orientation (°) Median Width (µm) Std Dev (µm) Min (µm) Max (µm) Count 

0 150.69 16.92 80.05 231.85 270,000 

45 157.61 21.12 69.53 275.06 270,000 

90 156.78 29.40 93.07 299.16 270,000 

135 155.12 21.45 70.64 234.34 270,000 

180 152.07 22.76 84.76 285.86 270,000 

225 155.67 22.70 86.98 252.62 270,000 

270 157.06 22.56 88.92 270.63 270,000 

315 154.57 22.17 78.11 256.50 270,000 
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Fig. 3. Variation of melt pool width across different scan orientations. 

4.4 Principal Component Analysis (PCA) 

To further explore the separability of defect and non-defect conditions in the feature space, a Principal Component Analysis 

(PCA) was conducted. The summary statistics are presented in Table 4.  

The defect class exhibits a slight positive shift along PC1 (+0.0615) compared to the non-defect class (-0.0232), while both 

classes show similar spreads along PC2. 

TABLE IV.  PCA SUMMARY STATISTICS FOR DEFECT AND NON-DEFECT CLASSES 

DefectLabel PC1 Mean PC1 Std PC1 Min PC1 Max Count PC2 Mean PC2 Std PC2 Min PC2 Max Count 

0 (Non-defect) -0.0232 1.0250 -1.5316 1.5316 1,567,870 -0.0087 0.9988 -1.7320 1.7320 1,567,870 

1 (Defect) 0.0615 0.9279 -1.5316 1.5316 592,130 0.0231 1.0028 -1.7320 1.7320 592,130 

 

4.5 Summary of Results 

The proposed machine learning framework for LPBF defect prediction demonstrated the following key outcomes: 

• The Random Forest classifier achieved an overall accuracy of 99.79%, with excellent sensitivity and specificity 
for detecting unstable melt pool conditions. 

• Laser velocity and power were confirmed as the primary drivers of melt pool variability. 

• Higher velocities produced narrower, more unstable melt pools, while specific scan orientations further influenced 

melt pool stability. 

• PCA analysis confirmed that defect and non-defect conditions are separable in feature space, validating the 

discriminative power of the selected features. 

Overall, these results confirm the feasibility and robustness of the proposed framework for real-time melt pool monitoring 

and defect prediction in LPBF. 

5. DISCUSSION 

The results of this study provide compelling evidence that machine learning-based defect prediction in LPBF can be 

achieved with high accuracy using simple, real-time-accessible process features. The Random Forest classifier reached an 

accuracy of 99.79%, with balanced sensitivity and specificity, indicating that even a relatively lightweight model can 

effectively capture the key relationships between process parameters and melt pool stability. 
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An important aspect of this work is that it used fundamental process parameters—laser velocity, power, orientation, and 

track location—without relying on more complex or costly in-situ sensors such as high-speed cameras or photodiodes. This 

makes the approach both practical and scalable for industrial applications. 

The feature importance analysis (Figure 5) confirms that laser velocity is the dominant predictor of defect formation, 

followed by laser power. Orientation and track location contribute as well but to a lesser extent. This finding is consistent 

with the physical understanding of LPBF: velocity and power govern the energy input into the melt pool, which in turn 

controls melt pool geometry, solidification dynamics, and ultimately the occurrence of defects such as porosity or lack of 

fusion. 

 
Fig. 5. Feature importance scores from the Random Forest classifier, indicating the relative contribution of each input variable to defect prediction. 

 

Beyond overall model accuracy, it is instructive to examine how defect rates vary across the process parameter space. 

Figure 6 shows the relationship between defect rate and laser velocity. A clear trend is observed: higher scan speeds are 

associated with significantly increased defect likelihood. For example, while defect rates at lower velocities (1300–1400 

mm/s) remain relatively modest, the defect rate rises sharply at velocities beyond 1600 mm/s. This trend is consistent with 

the fact that at higher velocities, energy input per unit length decreases, resulting in shallower, narrower melt pools that are 

prone to instability and incomplete fusion. 

 
Fig. 6. Defect rate as a function of laser velocity. Higher scan speeds are associated with increased defect likelihood. 
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Similarly, Figure 7 illustrates the defect rate as a function of scan orientation. It is evident that certain orientations exhibit 

elevated defect rates, particularly 45°, 90°, and 270°. This orientation dependence likely stems from thermal accumulation 

effects and scan vector interactions. As the laser moves across the powder bed, the relative direction of travel affects heat 

dissipation and overlap between adjacent scan tracks. Orientations that promote more consistent thermal flow tend to result 

in more stable melt pools, while others can exacerbate local overheating or uneven melting, increasing the likelihood of 

defect formation. 

 
Fig. 7. Defect rate as a function of scan orientation. Certain orientations show elevated defect rates, likely due to thermal accumulation effects. 

 

The observed trends in Figures 6 and 7 provide actionable insights for LPBF process optimization. For instance, if a 

particular geometry requires extensive scanning at high velocities or along unfavorable orientations, adaptive scan 

strategies could be implemented to mitigate the risk of defect formation. These findings also reinforce the importance of 
process planning and thermal modeling when designing complex LPBF builds. 

The results of the PCA analysis (discussed in Section 4) further support the robustness of the model: even with a small 

number of features, defect and non-defect samples occupy distinct regions of the feature space. This indicates that the 

model is not simply memorizing patterns in the training data but is capturing underlying physical relationships between 

process conditions and melt pool behavior. 

When viewed in the context of the broader LPBF literature, the results of this study are highly consistent with established 

trends. The critical role of velocity and power in controlling melt pool stability is well known, and the influence of 

orientation effects has also been reported in prior studies. What this work adds is a systematic, data-driven quantification 

of these effects using an open dataset and a fully reproducible ML pipeline. This is particularly important, as much prior 

work in this area has been conducted on proprietary datasets or with limited transparency regarding data preprocessing and 

model training. 

Another key contribution of this study is to demonstrate that high-performance defect prediction does not require deep 

neural networks or large-scale feature engineering. The Random Forest classifier used here is both interpretable and 

computationally efficient, with inference times suitable for real-time deployment on standard industrial hardware. This 

significantly lowers the barrier to adoption in production environments. 

Of course, the study has limitations that should be acknowledged. The defect labels were generated using a statistical 

threshold on melt pool width variability, rather than through direct correlation with ground truth porosity or lack of fusion 
defects verified by CT scanning or metallography. While width variability is a known proxy for melt pool instability, further 

validation is needed to establish precise relationships between predicted instability and actual part quality. Additionally, 

the dataset used here was acquired on a single machine (EOS M290) and a single material (Ti-6Al-4V). It remains to be 

seen how well the model generalizes across different machines, alloys, and process configurations. 
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Looking ahead, several avenues for future research are evident. First, integrating the model with ground truth defect data 

would provide a more rigorous validation of its predictive power. Second, testing model generalization across different 

machines and materials is essential for developing robust, cross-platform monitoring solutions. Third, incorporating 

additional features, such as thermal history, spatter characteristics, or acoustic emission signals, could further improve 

performance and resilience to process variability. Finally, deploying the model in a live LPBF system and assessing its 

performance in real-time monitoring and closed-loop control scenarios would be a critical step toward industrial 

implementation. 

In conclusion, the results presented here demonstrate that interpretable, lightweight machine learning models can deliver 
highly effective real-time defect prediction in LPBF processes, using features that are readily available on commercial 

platforms. The framework offers a practical pathway to improved process monitoring, enhanced quality assurance, and 

more reliable additive manufacturing outcomes. 

6. CONCLUSION 

This study has demonstrated the feasibility and effectiveness of a machine learning-based framework for real-time defect 

prediction in Laser Powder Bed Fusion (LPBF) of Ti-6Al-4V, leveraging an openly available melt pool variability dataset. 

By utilizing a simple yet informative set of process features—namely laser velocity, power, scan orientation, and track 

location—the developed Random Forest classifier achieved an accuracy of 99.79% in distinguishing between stable and 

unstable melt pool conditions. 
Detailed analysis of the process-parameter space revealed that higher scan velocities are associated with increased melt 

pool instability, while specific scan orientations also contribute significantly to defect likelihood. These insights not only 

confirm known trends in LPBF process physics but also provide quantitative, actionable knowledge that can be used to 

optimize process planning and control strategies. 

A key contribution of this work lies in demonstrating that high-performance defect prediction does not require complex or 

proprietary sensor systems. The use of fundamental process parameters—already accessible on most commercial LPBF 

platforms—enables the practical integration of the proposed framework into existing manufacturing environments. 

Furthermore, the transparency of the workflow and reliance on an open dataset support the advancement of reproducible 

research and the establishment of benchmarkable methods in the LPBF community. 

While the results are highly promising, several limitations remain. The defect labels were derived from melt pool width 

variability rather than direct measurements of internal defects, and the study focused on a single machine-material 

combination. Addressing these limitations through integration with ground truth defect data and cross-machine validation 

will be essential steps in future work. 

Looking forward, several avenues of research are recommended. These include expanding the feature set to incorporate 

additional sensor data, validating model predictions against actual porosity and mechanical performance outcomes, and 

deploying the framework in real-time LPBF monitoring and control systems. Such developments would contribute 

significantly to the broader goal of achieving fully adaptive, intelligent LPBF manufacturing. 
In summary, this study confirms that interpretable, computationally efficient machine learning models can provide robust 

and practical solutions for real-time defect prediction in LPBF. The framework presented here offers a scalable and 

industry-relevant pathway toward enhancing process reliability and part quality in metal additive manufacturing. 
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Appendix 
 

Appendix A.1 Data Loading and Cleaning 

import pandas as pd 

df = pd.read_csv('/Users/smart/Downloads/25696293/StWidths.csv') 

df = df.drop(columns=['Unnamed: 0']) 

df.head() 

Appendix A.2 Defect Label Generation 

width_median = df['Width (um)'].median() 

width_std = df['Width (um)'].std() 
df['DefectLabel'] = df['Width (um)'].apply( 

    lambda x: 1 if (x > width_median + width_std or x < width_median - width_std) else 0 ) 

df['DefectLabel'].value_counts() 

Appendix A.3 Feature Selection 

features = ['Location (um)', 'Orientation (degrees)', 'Velocity (mm/s)', 'Power (W)'] 

X = df[features] 

y = df['DefectLabel'] 

Appendix A.4 Train-Test Split 

from sklearn.model_selection import train_test_split 

X_train, X_test, y_train, y_test = train_test_split( 

    X, y, test_size=0.2, random_state=42 

) 

Appendix A.5 Random Forest Training 

from sklearn.ensemble import RandomForestClassifier 

clf = RandomForestClassifier(n_estimators=100, random_state=42, n_jobs=-1) 

clf.fit(X_train, y_train) 

Appendix A.6 Evaluation Metrics 
from sklearn.metrics import classification_report, confusion_matrix 

import seaborn as sns 

import matplotlib.pyplot as plt 

y_pred = clf.predict(X_test) 

print(classification_report(y_test, y_pred)) 

cm = confusion_matrix(y_test, y_pred) 

sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') 

plt.title('Confusion Matrix') 

plt.show() 

 

Appendix A.7 Feature Importance 

importances = clf.feature_importances_ 

feature_names = X.columns 

sns.barplot(x=importances, y=feature_names) 

plt.title('Feature Importances') 

plt.show() 

Appendix A.8 PCA Visualization 
from sklearn.preprocessing import StandardScaler 

from sklearn.decomposition import PCA 

scaler = StandardScaler() 

X_scaled = scaler.fit_transform(X) 
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pca = PCA(n_components=2) 

components = pca.fit_transform(X_scaled) 

pca_result = pd.DataFrame(components, columns=['PC1', 'PC2']) 

pca_result['DefectLabel'] = y.values 

sns.scatterplot(data=pca_result, x='PC1', y='PC2', hue='DefectLabel', alpha=0.5) 

plt.title('PCA of Process Parameters') 

plt.show() 

 
 


