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ABSTRACT

This Forward Time Centred Space (FTCS), Richardson, and Dufort-Frankel finite difference methods
for solving the one-dimensional heat conduction equation are examined and compared in this paper.
The goal is to evaluate each method's accuracy, stability, and computational efficiency by analysing the
temperature distribution along a rod. To put the approaches into action, the same starting and ending
points for each were used. Not only is FTCS simple and quick to construct, but the results also show
that it is conditionally stable. Despite its improved accuracy, Richardson is prone to numerical
instability. While the Dufort-Frankel approach is more complicated, it provides better stability. The
results help with thermal simulation application requirements-based method selection.

1. INTRODUCTION

One of the most basic issues in thermal engineering is the transfer of heat through solids. Numerical approaches are
necessary for complicated situations because analytical solutions are only applicable to simple geometries and boundary
conditions. In this paper, three distinct explicit finite difference methods, the FTCS, Richardson, and Dufort-Frankel
approaches, are employed to address the one-dimensional heat conduction problem in a rod. Each approach offers a distinct
compromise between stability, accuracy, and computing demand. Their usefulness and performance in the real world can
be better understood by comparing them. Recognising that the efficacy of numerical methods is contingent exclusively
upon their stability [1]. The stability of numerical schemes for time-dependent problems is influenced by false oscillations,
particularly at discontinuities. a difference scheme must include the physical domain of dependence of the partial
differential equation for convergence [2]. Time-fractional and space-fractional heat equations are the two primary kinds of
fractional-order heat equations. The time-fractional version models long-range interactions and non-local heat transfer by
including a fractional derivative with respect to time; the space-fractional version models memory effects and anomalous
diffusion behaviours by including a fractional derivative in space. In order to resolve space-fractional heat equations,
numerous numerical methods have been suggested in published works [3][4]. Karatay ., and Bayramoglu S. [5] conducted
a study in which they addressed the numerical solution of the time-fractional heat conduction equation by employing the
Crank-Nicolson method. Their research demonstrated how the Crank-Nicolson scheme could be effectively adapted to
fractional-order problems, providing accurate and stable temperature profiles over time. Aswin V. S. et al. [6] presented a
comparative analysis of three distinct numerical schemes developed to approximate the solution of the convection-diffusion
equation, which is commonly encountered in heat and mass transfer problems. By applying these schemes to benchmark
problems, they highlighted the advantages and limitations associated with each approach, offering valuable insights for
selecting appropriate numerical techniques for solving convection-diffusion equations in practical engineering applications.
A et al. [7] investigated the numerical solution of the one-dimensional heat conduction equation using an explicit finite
difference scheme. Numerical solutions for time-fractional advection-dispersion equations involving the Riemann-
Liouville fractional derivative were obtained directly using the Crank-Nicolson approach in works [8][9]. The numerical
analysis is important for many engineering applications, as it can make it easier to simulate and analyze. Improving the
thermal performance of flat plate solar collectors is closely related to understanding the temperature distribution in a one-
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dimensional rod using numerical methods like FTCS, Richardson, and Dufort-Frankel. This is especially important in
regions like Iraq, where solar energy is abundant. To maximise efficiency and power capture, precise simulations of heat
transfer within a solar collector's absorber plate are required [10], [11], [12].

Examining the accuracy, stability, and computing efficiency of three numerical methods, FTCS, Richardson, and Dufort-
Frankel, in solving the one-dimensional heat conduction equation is the main objective of this study. Using consistent initial
and boundary circumstances, the study aims to apply various methodologies and determine their strengths and limits. One
of the main goals is to see which methods work best for representing the heat dispersion in thermally conductive materials,
as the absorber plates of Iraqi flat plate solar collectors. In the context of solar energy applications and heat transfer system
design, the findings are meant to offer researchers and engineers practical advice on choosing the right numerical schemes
for thermal simulations.

2. SYSTEM DESCRIPTION

In the model, the border temperatures of the rod were kept constant. The domain was first subjected to a temperature
distribution. In MATLAB, the simulations were executed with a constant time step and equal grid spacing. A 10-
centimeter-long, one-dimensional aluminium rod is the system under consideration here. The goal is to use numerical
methods to examine the temperature distribution along the rod as it changes over time. The material's thermal conductivity,
as measured in degrees Celsius, is k = 0.49 cal/s.cm.°C.

The spatial and temporal discretization steps are defined as:

e Spatial step Ax = 2cm

e Timestep At = 0.1s

The boundary conditions are fixed for all time steps as:

e T(0cm)=100°C

e T(10cm)=50°C

The material properties for aluminum used in the simulation are:

e  Specific heat capacity C = 0.2174 cal/g.°C

e Densityp =27 g/cm?

3. NUMERICAL ANALYSIS
3.1. FTCS Method

The forward difference and centred difference methods are used to discretise the time derivative and spatial derivative,
respectively, in the FTCS method:

T =T + (T, = 2T + T) o
At
i @

In this context, T is temperature, t is time, x is space, and « is diffusion.
3.2. Richardson Method

The Richardson technique makes use of a space-and time-centered difference
TP = TPt 4 2r(T], — 2T) + T, 3)
In the given context, the symbols Ex . is the exergy of the input water, Ex,, . 1is the exergy of the output water, and

EXSolarin is the input exergy rate of solar.

3.3. Dufort-Frankel Method

Using values from two time levels, this approach alters the FTCS scheme to improve stability.
T+l — (1—2T)Ti"_1+2T(T?+1+T?-1) (4)
t 1+2r

4. RESULTS AND DISCUSSION

Temperature distributions show that all methods predict similar trends, but differ in numerical behavior. FTCS is prone to
instability at higher time steps. Richardson offers better accuracy but shows oscillations under improper conditions. Dufort-
Frankel maintains stability with larger time steps, though with higher computational cost. Error analysis confirmed that
Dufort-Frankel balances accuracy and stability effectively. Despite its apparent simplicity and ease of implementation, the
FTCS technique demonstrated conditional stability. The method's instability became more pronounced at bigger time step
sizes, leading to non-physical or oscillatory temperature readings, especially close to the rod's centre nodes. Long
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simulations take more time to compute since this instability limits the permissible time step to small numbers. The
Richardson approach, on the other hand, used centered differences in space and time to achieve better accuracy. In the
transitory zone in particular, the symmetrical discretisation approach recorded more accurately the small fluctuations in the
progression of temperature. Although the precision was improved, numerical stability was diminished. Inappropriate
selection of time step sizes led to oscillations, suggesting that stability criteria are more important when using Richardson's
approach. To guarantee accurate findings, a tighter regulation of discretisation settings is required. When considering
stability, the Dufort-Frankel technique was exceptional. Greater time steps could be used without experiencing instability,
as the formulation incorporates values from both the previous and current time levels. Because of this, it can be used for
simulations with lengthy time horizons or in situations where computing performance is crucial. The method's implicit
nature and data handling requirements make it computationally demanding and somewhat more complicated to implement,
but it consistently produces physically realistic temperature profiles across the domain that are smooth and realistic. The
results of the error analysis showed that, out of the three methods, the Dufort-Frankel one strikes the best compromise
between stability and accuracy. It eschews both the rigid constraints of FTCS and Richardson's oscillatory tendencies while
keeping in close accord with the predicted theoretical behaviour. This makes it an ideal material for thermal energy storage
systems and solar absorber panels, two real-world engineering uses of transient heat conduction.

TABLE I. FORWARD TIME CENTRED SPACE METHOD

t(s) T (0 cm) T (2 cm) T (4 cm) T (6 cm) T (8 cm) T (10 cm)
0 100 0 0 0 0 50
0.1 100 2.0875 0 0 1.0437 50
0.2 100 4.0878 0.0436 0.0218 2.0439 50
0.3 100 6.0056 0.1275 0.0645 3.0028 50
0.4 100 7.8450 0.2489 0.1271 3.9225 50
0.5 100 9.6102 0.4050 0.2089 4.8052 50
0.6 100 11.3049 0.5930 0.3089 5.6527 50
0.7 100 12.9328 0.8107 0.4264 6.4669 50
0.8 100 14.4973 1.0557 0.5605 7.2495 50
0.9 100 16.0016 1.3260 0.7105 8.0023 50
1 100 17.4487 1.6195 0.8756 8.7268 50
1.1 100 18.8415 1.9344 1.0550 9.4245 50
1.2 100 20.1828 2.2690 1.2481 10.0968 50
1.3 100 21.4750 2.6216 1.4541 10.7450 50
1.4 100 22.7206 2.9908 1.6724 11.3705 50
TABLE II. RICHARDSON METHOD
t(s) T(Ocm) T(2cm) T(4cm) T(6cm) T(8cm) T(10cm)
0 100 0 0 0 0 50
0.1 100 2.0875 0 0 1.0437 50
0.2 100 4.0007 0.0872 0.0436 2.0003 50
0.3 100 5.9321 0.1616 0.0835 2.9660 50
0.4 100 7.6871 0.3248 0.1672 3.8437 50
0.5 100 9.4788 0.4624 0.2436 4.7396 50
0.6 100 11.0899 0.6921 0.3640 5.5456 50
0.7 100 12.7567 0.8828 0.4736 6.3792 50
0.8 100 14.2366 1.1708 0.6277 7.1202 50
0.9 100 15.7918 1.4056 0.7674 7.8984 50
1 100 17.1517 1.7447 0.9520 8.5802 50
1.1 100 18.6075 2.0157 1.1189 9.3092 50
1.2 100 19.8571 2.4000 1.3314 9.9371 50
1.3 100 21.2246 2.7000 1.5228 10.6225 50
1.4 100 22.3726 3.1243 1.7605 11.2012 50
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TABLE III. DUFORT-FRANKEL FINITE DIFFERENCE METHOD

t(s) T(0cm) T(2cm) T(4cm) T(6cm) T(8cm) T(10cm)
0 100 0 0 0 0 50
0.1 100 2.0875 0 0 1.0437 50
0.2 100 4.1750 0.0872 0.0436 2.0875 50
0.3 100 6.1790 0.1761 0.0908 3.0895 50
0.4 100 8.1830 0.3453 0.1781 4.0916 50
0.5 100 10.1104 0.5179 0.2722 5.0554 50
0.6 100 12.0380 0.7643 0.4033 6.0197 50
0.7 100 13.8952 1.0157 0.5441 6.9487 50
0.8 100 15.7528 1.3353 0.7190 7.8786 50
0.9 100 17.5459 1.6610 0.9061 8.7761 50
1 100 19.3395 2.0499 1.1247 9.6750 50
1.1 100 21.0739 2.4460 1.3578 10.5442 50
1.2 100 22.8092 2.9008 1.6201 11.4152 50
1.3 100 24.4902 3.3638 1.8988 12.2591 50
1.4 100 26.1724 3.8815 2.2047 13.1054 50
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Fig. 1. Forward time centred space method.
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Fig. 2. Richardson method.
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Fig. 3. Dufort-Frankel finite difference method.

5. CONCLUSIONS

Every approach has its own set of benefits and drawbacks. Fast time-dependent steady-state simulations are well suited to FTCS.
Although it demands meticulous parameter tweaking, Richardson is beneficial for situations requiring great accuracy. The substantial
stability of Dufort-Frankel for bigger time steps makes it a perfect fit for simulations with lengthy durations. The comparison clearly
shows that while choosing a numerical approach, the problem's requirements, including stability limitations, needed precision, and
available computer resources, should be considered. This study highlights the importance of more robust schemes, such as Dufort-
Frankel, for practical engineering applications that require stability over long simulation periods, as opposed to simpler schemes like
FTCS, which are better suited for training and preliminary analysis. Researchers and engineers can use this thorough review as a roadmap
to select the best thermal analysis method for one-dimensional domains.
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