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A B S T R A C T  
 

The diagnosis and treatment of Parkinson's disease (PD) is critical to effectively managing this 

progressive neurological disorder, which significantly affects motor and non-motor functions. This 

study presents a deep transfer learning-based algorithm for PD detection. The features are extracted 

from handwritten image datasets using pre-trained convolutional neural networks such as ResNet50, 

VGG19, and Inception-V3. To achieve precise classification, a hybrid classification framework that 

combines a genetic algorithm-optimized k-nearest neighbour (KNN) classifier with a support vector 

machine (SVM) is implemented. The proposed model offers a reliable, scalable, and efficient solution 

for diagnosing Parkinson's disease. The experimental results demonstrate the model's state-of-the-art 

accuracy. AI-driven methodologies are being used in this research to advance automated medical 

diagnostics, reduce diagnostic delays, and improve patient outcomes. 

1. INTRODUCTION 

Due to its effect on both motor and non-motor functions, Parkinson's disease (PD) is one of the most challenging conditions 

in the global healthcare system. To improve patient outcomes, early and accurate detection of PD is essential. Automated 

diagnostic systems are gaining prominence as a result of artificial intelligence and advances in medical imaging. Using pre-

trained deep-learning models, this research aims to provide a reliable, efficient, and scalable method for detecting Parkinson's 

disease early. As a result of this advancement, diagnostic delays will be shortened, quality of life will be improved, and 

diagnostics for Parkinson's disease will be revolutionized. In Parkinson's disease (PD), there is insufficient dopamine in the 

brain, resulting in an incurable neurological disorder. Movement and coordination are controlled by the basal ganglia in the 

brain, which receives dopamine messages. Dopamine levels decrease when the basal ganglia lack dopamine-producing cells. 

Parkinson's disease is characterized by several symptoms, including tremors, slow movements (Bradykinesia), impaired 

balance, poor posture, involuntary movements (dyskinesia), stiff muscles, and changes to speech and language [1], [2]. Due 

to the lack of clinical tests such as blood tests, Parkinson's disease can be difficult to diagnose. Most people with Parkinson's 

disease are over 60, but the disease can begin early and go undiagnosed for a long time. In the early stages of the disease, 

symptoms can be managed more easily, and deterioration can be delayed [3]. At the beginning of the disease, Parkinson's 

disease can cause finger tremors and halts in speech and movement. As a result of finger tremors, Parkinson's patients tend 

to have cramped and small handwriting. Micrographia is one of the most important ways to detect Parkinson's early. The 

presence of micrographic or other deformations in a patient's handwriting can indicate PD. As part of transfer learning, CNNs 

are retrained to work on new use cases, followed by one or more additional layers [4]. Res Nets, Efficient Nets, and Mobile 

Nets are examples of deep learning architectures. Several years have passed since deep learning approaches were used in 
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medicine. Several studies have shown that deep learning algorithms are significantly more effective than other high-

performance algorithms [5], [6]. 

Neurodegenerative diseases damage dopaminergic neurons in large parts of the brain early [7]. Dopaminergic dysfunction, 

as well as non-motor symptoms, causes different kinds of symptoms. It is also possible to experience sweating, pain, slow 

movement, and difficulty walking as additional motor signs. Aside from the symptoms of genitourinary problems, anxiety, 

hysteria, fatigue, and sleep disturbances are some of the other non-motor symptoms associated with it [8]. A wide range of 

ageing-related symptoms affect people's quality of life, both physically and mentally [9]. Early detection, slowing, and 

stopping Parkinson's disease progression are essential during the early stages of the disease. PD cannot be diagnosed with a 

blood test or laboratory test despite efforts to develop economical and readily available biomarkers [10]. Patients with 

Parkinson's disease are diagnosed based on their history and a cognitive evaluation, which includes the mini-mental state 

examination (MMSE) [11]. With transfer learning, deep CNNs can be trained on a limited set of data [12]. Deep CNNs can 

be trained using pre-trained CNN models, and their classification layers can be adjusted to fine-tune the weight parameters 

of the target dataset. The method can enhance efficiency and speed up training despite some shortcomings. The use of data 

augmentation can also enhance the effectiveness of training [13], [14]. MR imaging methods are showing promise as a means 

of detecting Parkinson's disease at an early stage, and they are expected to be more sensitive than usual clinical tests. MRI 

can track brain structural changes to detect significant black iron build-up’s [15]. Structural modifications should enable the 

assessment of disease progression. As a result of the inherent complexity of brain development and slight variations in 

severity, it is difficult to identify neurodegeneration in the brain visually. At present, clinicians interpret these images based 

on human interpretation, and there is a possibility of human error. A study [16], found that medical diagnostics of Parkinson's 

disease had an 80.6% pooled accuracy. 

2. RELATED WORK  

There are numerous datasets that have been used by researchers to diagnose Parkinson's disease. Other symptoms of 

Parkinson's disease include loss of olfactory sensation, problems with speech, handwriting, and walking patterns. A new 

approach to detecting Parkinson's disease based on entropy has been proposed in [17]. Based on the UCI dataset, this 

improved algorithm was compared to existing approaches to estimate its efficiency. The feasibility of improved algorithms 

was verified by comparing KNN (k-nearest neighbours), Random Forest, and Nave Bayes algorithms. Our cross-validation 

scheme consisted of fivefolds [18]. In comparison with traditional algorithms, entropy weights improved the accuracy of 

the improved KNN algorithm  [19]. To categorize the symptoms of Parkinson's disease, an MRI scan was performed. This 

study sought to improve Parkinson's disease detection by using artificial intelligence. It was necessary to perform three 

classification tasks, each focusing on a different stage of Parkinson's disease and a different symptom type. In addition to 

motor skills, clinical stage, and dementia status, symptoms were also assessed. Combining handcrafted textural feature 

engineering, multiple feature selectors, patch-based learning, and IMV techniques, a novel model was created tailored to 

each patient's characteristics. A good performance was achieved by the model for all classification tasks[20]. 

Author [21]  proposes an ensemble of deep learning architectures to detect PD from offline handwriting. A total of two 

datasets were used for this study: the PaHaW data and the New Hand PD data. Transfer learning was considered to improve 

the model's generality. Five CNN models were used to create the ensemble classifier. There are eight separate handwritten 

tasks in the PaHaW dataset, so the prediction accuracy was calculated for each one. Each handwritten task in the PaHaW 

dataset was analyzed to determine the accuracy of the prediction. The authors have developed a number of CNNs to 

diagnose Parkinson's disease. Author [22]  spiral and meander drawings can be used to detect Parkinson's disease using a 

vision transformer (ViT). A pytorch layer (base model), a dropout layer (dropout value = 0.1), and finally, a linear layer as 

a classifier were used in the model. It was based on DeiT, pretrained on ImageNet, and self-supervised with DINO.  The 

author of this study [23] included 22 healthy individuals and several Parkinson's disease patients. In an effort to collect data 

on all subjects except one who is right-handed, we collaborated with the Casa di Cura Le Terrazze Institute. This project 

was in collaboration with Casa di Cura Le Terrazze, which included all but one right-handed subjects. Researchers used 

handwritten data collected from subjects to identify patterns for the diagnosis of Parkinson's disease by using a tablet 

application. On the basis of three different samples of handwritten data, three classification models have been proposed. 

The Mann-Whitney test was used to identify highly discriminatory features [24]. 

The author used electroencephalogram (EEG) signals to detect Parkinson's disease [25]. In comparison with other 

approaches that typically analyze PD using handwritten data, this approach was considerably different. A spectrogram was 

obtained by splitting EEG signals in half and transforming them using Gabor transforms. Each EEG signal was analyzed 

two times, resulting in two spectrograms. 2D-CNNs were employed to classify the spectrogram signals of control, 
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medication-treated, and non-treated Parkinson's disease patients[26]. PD patients and healthy individuals were evenly 

divided into two groups in the study presented in [27]. Seventeen subjects in each group participated in the study. Various 

data from patients were collected using an iPad Pro equipped with a stylus for this study. AlexNet architecture has been 

proposed based on data from writing and drawing tests. Using deep learning networks, their research found 93% accuracy 

in diagnosing Parkinson's disease. As a result of the author's work [28], a low-cost classifier for diagnosing Parkinson's 

disease was developed. Signals recorded for the subject's response to vertical ground forces are included in the VGFR 

dataset. A dataset containing responses to voice impairments can be found in the voice impairment dataset. The Max Little 

University of Oxford has donated a dataset of 91 voice measurements for people with voice impairments. Two Parkinson's 

symptoms are detected using deep learning, namely impairment of gait and impairment of speech. This paper presents a 

two-module model; one identifies distorted walking patterns using VGFR spectrograms, and the other identifies patients' 

speech distortions as a classifier for voice impairment. A sensor reading for each patient is converted into a pattern as part 

of the first module. Spectrograms are made using these signal values to build patterns. 

3. METHODOLOGY  

PD detection model materials and methods are described in this section. The proposed model analyses three models of 

learning: transfer learning, K-nearest neighbour classification, and genetic algorithm optimization. 

3.1.  Transfer Learning 

Pre-trained networks may be able to transfer knowledge to new use cases, reducing resource usage and improving 

efficiency. As a general rule, transfer learning refers to using previously learned knowledge to solve a new, more 

complicated problem. In addition to saving valuable training time, transfer learning can also allow a new model to be 

trained without having to start from scratch. Additionally, this approach is beneficial when there is not enough data. It 

enables a user to solve a completely different problem by using a completely new dataset. Using transfer learning, users 

can adjust other hyperparameters and weights in the pretrained model as well, including the last layer's dimensions. Users 

can also fine-tune other hyperparameters by adjusting the output layer dimensions. Typically, the starting layer in transfer 

learning is fixed or locked and cannot be modified, while the last layer can be modified. 

3.2.   KNN Classifier 

An uncomplicated and straightforward machine learning algorithm, k-NN, is known as k-nearest neighbour. As a result of 

its non-parametric nature, the algorithm achieves its simplicity since no parameters are considered. During the final stages 

of this algorithm, the algorithm acts on the data, which is known as lazy learning. In addition to classification, the algorithm 

is widely used for regression problems as well. Since k represents the neighbouring data points surrounding the new data 

point, understanding and applying the algorithm is straightforward. Data points are compared with their neighbours (k) and 

then grouped based on their similarity [29]. Typically, K is between three and five at the beginning of the algorithm as part 

of the randomness process. Comparing data points based on distances, especially Euclidean distances, will determine 

similarity. Data points that are closest to each other have the least Euclidean distance and are assigned to the least Euclidean 

distance group. 

Currently, no method has been developed to determine the optimal number, so there will be some trial and error involved. 

Generally, k is set at 5, but there may be times when this value must be changed due to certain problems. It is possible to 

get misleading interpretations if the values of k are very small, for example, 1 or 2. Once the feature vector has been 

optimized, KNNs are also used for classification after being used as the objective function during feature optimization. 

3.3.  Genetic Algorithm 

Once the feature vector has been optimized, KNNs are also used for classification after being used as the objective function 

during feature optimization. A genetic algorithm shares a close relationship with evolution theory, much like natural 

selection. Natural selection defines survival as adjusting to new environments and habitats by mutating. It is essential that 

the fittest survive in natural selection. Every generation contains unique individuals, known as populations. Search space 

consists of the points of a population [29]. Additive models consist of five phases: initial population, fitness function, 

crossover, mutation, and selection. GAs follow a basic process, as shown in Figure 1. 
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Fig. 1. Process involving genetic algorithms. 

Let's examine the population's initial phase, which includes all of them. Individuals are represented by unique strings, 

meaning each individual can solve any problem. Following this phase is the fitness function. Individual fitness levels are 

displayed based on the fitness levels of the population. The ability to compete with other individuals is essential for survival 

in one's habitat. Using the fitness function, you can calculate a fitness level score, and based on that score, you can select 

the individuals. The third phase consists of selecting the most fit individuals to pass on their genes. The fitness scores of a 

few individuals are used to select them in this phase. A high fitness score is also associated with a higher chance of 

reproducing offspring for parents. As part of the crossover process, a very significant phase is taking place after the selection 

phase. Genetic material is randomly selected from the chromosomes of both parents and swapped. This offspring then 

becomes a part of the existing population since it has half the genes of both parents. During the mutation phase of the 

genetic algorithm, each newly created offspring's genes are altered slightly. As the environment changes, these changes 

will occur. Because of mutations, the new population can cope with the changes and thrive instead of going extinct as a 

result of not adapting. When there are no mutations in the offspring, the algorithm terminates. 

3.4.  Dataset Description 

Experimental aspects of the study were conducted based on the NewHandPD [30] dataset. Our dataset is entirely composed 

of handwritten specimens that provide useful information for our research. We have published this document. For the 

NewHandPD, images were collected using a smart pen and a tablet. The HandPD dataset has been extended [31]. This data 

set contains 594 images of 160 males and 104 females. There are two types of groups in these data sets: Healthy Groups 

and Patient Groups. In the healthy group, 315 samples were collected, while in the patient group, 279 samples were 

collected. Men and women in each category are sampled based on the drawing they receive; the data are divided into three 
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groups: Circle, Meader, and Spiral. It is possible to represent a group using a circle, in which a member in good health and 

a patient draw a circle around the given area. A comparison of healthy and patient images was made in our study by 

combining images from all groups. In the healthy group, images are included from the three healthy groups; in the patient 

group, images are included from all three patient groups, and examples are included in each group. 

3.5.  Data Preprocessing 

If the images of each group belong to the same category, they are categorized as Healthy and Patient. Transfer Learning 

(TL) models use 256x256 images. For some TL models, image size requirements are set in advance to prevent future 

problems. Since TL models are trained only on coloured images, RGB images must be read for them to work. A 256-bit 

reduction is also performed on the grey values of the image pixels so that they can be reduced from 0 to 1. As a result, deep 

learning models perform best when the value is between 0 and 1. 

3.6.  Feature Extraction 

Three transfer learning models are employed in this study for feature extraction [29]. 

3.6.1. ResNet50 

Using ImageNet, ResNet50 was trained as a 50-layer deep neural network. The network has been trained using more than 

a million images. This network's input shape is 2242243. It was originally designed for computer vision, but it has proved 

useful in other applications as well. 

3.6.2. VGG19 

In addition to ImageNet, VGG19 was also educated on ImageNet. There are 19 layers in the network, and several different 

characteristics were used to train it. Additionally, this network can be used for other image-related tasks, including 

computer vision. 

3.6.3. Inception-V3 

The Inception model uses deep neural networks. The model is comprised of 48 convolutional, pooling, dropout, and 

asymmetric layers. It is more accurate and computationally efficient than its predecessors (v1 and v2). 

Using these transfer learning models, we freeze their training and remove their tops. We have stopped training these models 

and are relying on weights from previous training (ImageNet) to obtain features. For our study, we do not need up to 20,000 

classes in the top set of these models. Our approach was to layer our neural network (top) over each TL model in order to 

employ TL models effectively. A thick layer is layered atop a flattened layer as our top layer. Each model's features are 

extracted from the dense layer by adding nodes. Diagram showing the structure of a model for extracting features from 

input images using individual transfer learning. A diagram showing all three TL models together illustrates the entire 

feature extraction process. 

To determine the final input image format, each TL model extracts 100 features from each input image and layers them 

horizontally on top of each other. The final input image will be formatted as 300 (100 + 100 + 100). We extracted 300 

features from each image in our dataset, which resulted in 594 images after we extracted all their features. 

3.7.  Support Vector machine 

As a discriminative classifier designed by Vapnik for healthcare, it is effective at detecting anomalies in biomedical signals 

because it is capable of analyzing nonlinear and high-dimensional data [32]. Using the training set of some well-known 

data, this classifier differentiates the unknown validation set of data into appropriate classes. 

An optimal hyperplane is constructed for binary classification to differentiate samples. The input sample is represented by 

𝑦 ∈  {+1,−1}, and the class label is represented by 𝑦 ∈  {+1,−1}. Hence, the hyperplane is defined as follows: 

𝑤𝑇 . 𝑥 + 𝑏 = 0                                                                                           (1) 

An orthogonal coefficient vector w is defined in Eq. (1) above. A distance between its points describes a dataset's origin. 

An SVM is primarily used to determine b and w parameters. It is necessary to minimize the hyperplane ||𝑤2|| Under the 

conditions of 𝑦𝑖(𝑤
𝑇 . 𝑥 + 𝑏) ≥ 1 in order to obtain the ideal hyperplane. This leads to the following formulation of the 

optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
1

2
||𝑤2||

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤
𝑇 . 𝑥 + 𝑏) ≥ 1, 𝑖 = 1,2, … . 𝑛

                                                             (2) 

A linear problem is solved by applying Lagrange multipliers. An example of a support vector is a data point that lies on the 

decision boundary. It is, therefore, possible to calculate the value as follows: 



 

 

121 Alsalem et al, Babylonian Journal of Machine Learning Vol.2025, 116–125 

𝑤 = ∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑛

𝑖=1

                                                                                           (3) 

Equation (3) expresses 𝑛 support vectors and 𝛼𝑖 as Lagrange multipliers. Using 𝑤 as a starting point, we can calculate b as 

follows: 

𝑦𝑖(𝑤
𝑇 . 𝑥𝑖 + 𝑏) − 1 = 0                                                                                   (4) 

Based on this equation, we can express the linear discriminant function as follows: 

�̂� = 𝑠𝑔𝑛 (∑𝛼𝑖𝑦𝑖𝑥
𝑇𝑥𝑖 + 𝑏

𝑛

𝑖=1

)                                                                               (5) 

With SVM, a kernel trick is employed to deal with nonlinear problems. Based on this, we can give the decision function as 

follows: 

�̂� = 𝑠𝑔𝑛 (∑𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏

𝑛

𝑖=1

)                                                                           (6) 

An unlabeled input 𝑥 is given the kernel zed label �̂� and the sgn function defines a positive or negative classification. A 

positive definite kernel function, such as 𝐾(𝑥𝑖 , 𝑥) = exp (−𝛾||𝑥 − 𝑥𝑖||
2
 or 𝐾(𝑥𝑖 , 𝑥) = (xT𝑥𝑖 + 𝐼)𝑑, which meets Mercer's 

constraint, is usually acceptable as a kernel function [33]. The purpose of this subsection is to give a brief overview of 

SVM. A comprehensive description of SVM concepts can be found in [34], which provides further reading. 

3.8.  Binary GWO 

Grey wolf optimization is a bio-inspired metaheuristic that was introduced by [35]. Grey wolves are imitated in their 

leadership and hunting behaviours by GWO. The grey wolf belongs to the Canidae family and is a socially dominant 

species. It is well known that they hunt in swarms based on swarm intelligence. Unlike other predators, the grey wolf hunts 

its prey in packs of five to twelve individuals (i.e., a pack). Alphas, betas, deltas, and omegas are the four levels of leaders. 

α(dominant) wolves are the leaders of the cluster, occupying the highest hierarchy. Alpha makes all hunting decisions, 

sleeping locations, wake-up times, and discipline. [35]. All members of the group are required to follow its verdicts. 

The alpha wolf is followed by the beta wolf, who acts as the alpha's adviser and enforces the alpha's orders. The act of 

dominating lower-level wolves is the result of 𝛽 aiding 𝛼 in making decisions and assisting A with other tasks. In the event 

that one of the subleaders in the group becomes very old or dies, betas have the highest likelihood of becoming true wolves. 

As a result, 𝛿 follows. During the chorus, they bow to the wolves of both levels, and they instruct their subordinates to do 

the same (i.e., below-level wolves). A hunter, sentinel, scout, caretaker, or elder falls into this level. The hunters provide 

food for the group and aid in hunting targets. A sentinel protects and ensures the group's safety. Any hazards within the 

search space are reported to the group by the scouts. Wolves are cared for by caregivers when they are injured, sick, or 

weak. In addition, older wolves are experts who were previously 𝛼 or 𝛽. 

At the very bottom of the dominance structure, there are omega wolves. Scapegoats are used. The wolves are always 

subordinated to other wolves at a higher level. Among all the omega wolves, only they are allowed to consume food. 

Despite being a not so important 𝑤 wolf, dropping the wolf causes some complications and internal fighting among the 

cluster. As a result of the fury of all wolves, all frustration and violence has been extinguished. In this way, the hierarchy 

is preserved, and everyone is satisfied. Some groups also include babysitters. 

Additionally, grey wolves hunt in packs, which is a distinctive characteristic. Specifically, [36] specifies a number of steps 

for group hunting: (i) tracking the prey, chasing it, grasping it, enclosing it and harassing it until stability is achieved, and 

(ii) attacking and killing it. Wolf encirclement can be defined by the following equations [35]. 

�⃗⃗� = |𝐾.⃗⃗  ⃗ �⃗� 𝑝𝑟𝑒𝑦(𝑖) − �⃗� 𝑆𝐴(𝑖)|                                                                                   (7) 

�⃗� 𝑤𝑜𝑙𝑓(𝑖 + 1) = �⃗� 𝑝𝑟𝑒𝑦(𝑖) − �⃗⃗� . �⃗⃗�                                                                             (8) 

The current version is specified here. �⃗� 𝑝𝑟𝑒𝑦 vectors represent the position vectors of �⃗� 𝑆𝐴 whereas search agent vectors 

represent the position vectors of search agents. A coefficient vector �⃗⃗�  and a coefficient vector �⃗⃗�   are estimated as follows: 

�⃗⃗� = 2. �⃗⃗� . 𝑎1⃗⃗⃗⃗ − �⃗⃗�                                                                                          (9) 

�⃗⃗� = 2. 𝑎 2                                                                                             (10) 

An arbitrary value for A is in the [0,1] range, and a value for B is in the [0,1] range. Where 𝑎 1 and 𝑎 2 has arbitrary values 

in [0,1]. �⃗⃗�  slowly decreases from 2 to 0 during iterations, acting as a controlling element. As the agents will be able to 

locate the target, they will be able to surround it easily. The alpha wolf directs all tasks. As each wolf hunts, it updates its 

location based on the optimal location of its 𝛼, 𝛽, and 𝛿. Based on the following model, searching agents encircle each 

other. 
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𝑁𝛼
⃗⃗⃗⃗  ⃗ = |𝐾1

⃗⃗⃗⃗ . �⃗� 𝛼 − �⃗� |                                                                                       (11) 

𝑁𝛽
⃗⃗ ⃗⃗  = |𝐾2

⃗⃗ ⃗⃗ . �⃗� 𝛽 − �⃗� |                                                                                       (12) 

𝑁𝛿
⃗⃗ ⃗⃗  = |𝐾3

⃗⃗ ⃗⃗ . �⃗� 𝛿 − �⃗� |                                                                                       (13) 

𝑃1
⃗⃗  ⃗ = |𝑃𝛼

⃗⃗  ⃗ − 𝑀1
⃗⃗⃗⃗  ⃗. �⃗⃗� 𝛼|                                                                                       (14) 

𝑃𝛽
⃗⃗⃗⃗ = |𝑃𝛽

⃗⃗⃗⃗ − 𝑀2
⃗⃗ ⃗⃗  ⃗. �⃗⃗� 𝛽|                                                                                       (15) 

𝑃𝛿
⃗⃗⃗⃗ = |𝑃𝛾

⃗⃗  ⃗ − 𝑀1
⃗⃗⃗⃗  ⃗. �⃗⃗� 𝛾|                                                                                       (16) 

�⃗� 𝑆𝐴(𝑖 + 1) =
�⃗� 1 + �⃗� 2 + �⃗� 3

3
                                                                                (17) 

Agents searching for targets attack only when they have found a stable target. According to �⃗⃗� , the following calculation is 

made for this process.  

�⃗⃗� = 2 −
2𝑖

𝐼𝑚𝑎𝑥

                                                                                           (18) 

The searching agent moves in the direction of the target when moving towards it, while |�⃗⃗� | > 1 deviates from the target 

and looks for a different prey when it deviates from the target. Grey wolves determine what is a good position by combining 

α, β, and δ. In the same way, �⃗⃗�  and �⃗⃗�  determine when the optimization process will go into the exploitation phase and the 

exploration phase. Searching agents can be made to diverge or converge by specifying an arbitrary value for �⃗⃗� . The 

arbitrarily small values of �⃗⃗�  in the range [0,2] are important in preventing local solutions from stagnating. 

It is a challenge for search agents to determine distances between themselves and targets by weighing them on their own. 

A target with |�⃗⃗� | > 1 maximizes its impact, whereas one with |�⃗⃗� | < 1 minimizes it randomly. This course emphasizes or 

de-emphasizes exploitation or exploration processes while �⃗⃗�  and �⃗⃗�  Are tuned cautiously. The algorithm will ultimately 

terminate when a certain condition is met, and the best value for α will be returned. 

It is the original grey wolf optimizer that is used to solve continuous optimization problems. Discrete optimization snags 

require a binary optimizer. This work implements GWO in binary form. According to the proposed BGWO, each searching 

agent is composed of a fag vector whose size is equal to the attribute's size. Using Eq. (17), we can express discrete positions 

of searching agents in the following manner: 

𝐹 = {
1 𝑃𝑖𝑗 > 0.5

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                                                                                        (19) 

In this case, 𝑃𝑖𝑗  represents the location of the wolf in the 𝑗𝑡ℎ 

4. RESULT AND DISCUSSION  

Two approaches were used for Parkinson's Disease (PD) classification: fine-tuning pretrained CNN models and freezing. 

AlexNet, VGG16, and ResNet-50 networks were used to process the enhanced handwriting images. Based on the BGWO 

algorithm, the features of the best-trained network were selected and classified using SVMs. On a 16GB RAM and 512GB 

SSD Intel i7 system, the experiment used holdout (70:30, 80:20, 90:10) and cross-validation methods for performance 

evaluation. 

 

Fig. 2. Classification accuracy was obtained using fine-tuning with different deep-learning models. 

VGG16 was used to extract features, BGWO was used to optimize, and SVM was used to classify the results. Metrics such 

as accuracy, sensitivity, and specificity are used to evaluate a classifier's performance. TPs (True Positives) and TNs (True 
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Negatives) represent correctly classified positives and negatives, whereas FPs and FNs (False Positives) are misclassified 

positives and negatives, respectively. 

 

Fig. 3. Results were obtained after extracting features using VGG16. 

A comparison between the proposed approach and previously published methods is provided in this study. In Figure 4, a 

comparative study of the suggested approach and relevant studies is presented. The proposed approach is benchmarked 

against previously published methods using the same dataset. In comparison with existing approaches, the proposed method 

achieves a slight improvement, possibly paving the way for new advances. Furthermore, the proposed model achieved 

94.7% accuracy, compared to 95.5%, 95.5%, and 83.6% accuracy for other models. 

 

Fig. 4. Comparison to the related work. 

5. CONCLUSION  

By combining deep transfer learning with optimization, this study presents a robust, AI-driven method for diagnosing 

Parkinson's disease. By combining CNN-based feature extraction with SVM classification and genetic algorithm-based 

feature selection, the classification accuracy of Parkinson's disease is exceptionally high. Compared to traditional methods, 

this approach is more accurate and reliable. Compared to traditional methods, this approach is more accurate and reliable. 

A number of further improvements can be made to the framework, such as incorporating larger and more diverse datasets, 

optimizing compute efficiency, and extending its application to other neurological disorders. 
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