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A B S T R A C T  
 

The Internet of Things (IoT) as Wireless Sensor Networks (WSNs) holds a significant role in various 

areas: Military surveillance, Industrial automation, Smart housing, Security Systems, Intelligent 

Vehicular Traffic control, as well as Healthcare monitoring. So, the sensor nodes performance and life-

time with limited power, memory and processing capabilities are significant issues to face in the 

network. To overcome these limitations, a wide range of energy-aware packet forwarding mechanisms 

and routing protocols have been proposed to optimize network throughput and lifetime. A WSN's 

performance is strongly dictated by its node deployment approaches, energy consumption profiles, 

communication latency, and data aggregation techniques. Furthermore, as the aspects of the network 

topology (chain-based or cluster-based hierarchical) and the criteria for choosing aggregator nodes to 

further transmit the sensed data to the sink node strongly affect delivery time and energy balance. 

Existing hierarchical routing protocols are well studied by several surveys, for example LEACH, 

PEGASIS, PDCH, CHIRON, CCBRP, CCM, TSCP, DLRP and DCBRP. To do so, it underlines why 

the addition of Artificial Intelligence (AI) to mixed hierarchical topologies is improving decision-

making processes, and adaptive clustering while making WSNs more efficient, scalable and resilient 

in their performance. We further provide a comparative analysis, primarily emphasizing the advantages 

and limitations of different chain-based and cluster-based AI-assisted routing solutions.  
 

 

1. INTRODUCTION 

The As it has found ease of deployment and versatile applicability to real world scenario, Wireless Sensor Networks (WSNs) 
have become a widely popular and continuously evolving area of research. They find applications in a wide range of domains 
such as environmental monitoring, industrial automation, smart cities, security systems, and health care [1,2]. Sensors used 
for monitoring and actuating; WSNs have been gaining interest from the international research community up to this date 
as they have the potential of simplifying daily life and maximizing different industrial processes. Wireless Sensor Networks 
(WSNs) are formed by a large number of spatially distributed sensor nodes capable of monitoring physical or environmental 
parameters and communicating wirelessly to send the data into a sink. Usually, these nodes are resource-constrained with 
limited battery life, low transmission range, storage, and processing capacity [3]. Despite these drawbacks, they are small, 
inexpensive, and can be easily assimilated into a variety of environments: highly desirable features for extensive deployment, 
for example as part of smart lighting, HVAC systems, intrusion detection and emergency alert systems [4]. 

Modern WSNs have two main communication modes: pull (data is retrieved upon request) and push (sensor nodes 
autonomously transmit data to the sink) [5]. Routing is a key challenge as the number of deployed nodes scales. Due to the 
multi-hop flat or hierarchical topology of most WSNs, energy-efficient and scalable routing protocols are required [6]. These 
protocols should address many challenges regarding the asymmetries of communication links, frequent topology changes, 
node failures, and environmental interferences, which make the reliable delivery of data difficult [7]. Recently, some 
hierarchical topologies—especially chain-based and cluster-based models—are becoming popular because of their ability to 
decrease transmission overhead and to balance energy consumption of nodes [8]. In addition, the use of Artificial 
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Intelligence (AI) in routing strategies has created new potential opportunities for network performance optimization. AI 
methods can be applied to assist decisions regarding cluster formation, node choice, and data aggregation, thus promoting 
adaptability, energy efficiency, and fault tolerance [9,10]. 

Given these challenges and opportunities, in this survey we consider mixed hierarchical topologies which leverage AI for 
optimizing routing, extending the lifespan of WSNs, and improving the reliability of communication. It offers comparison 
among multiple popular hierarchical routing protocols and discusses how intelligent algorithms help to overcome the 
limitations of traditional routing and enable novel solutions for next-generation WSN. Figure 1 shows a conceptual diagram 
of the architecture to include Artificial Intelligence (AI) with mixed hierarchical topologies of WSN. The hierarchical model 
of the AIWSN is a representation of hierarchical arrangements of sensor nodes into clusters and chains with associated 
optimized cluster heads. AI is integrated at the cluster head level because it facilitates efficient decisions regarding energy-
aware routing, adaptive node election, and dynamical control of the network [11,12]. Data from individual sensor nodes is 
transmitted to their respective collection points (cluster heads): this is illustrated in the figure below. Cluster heads aggregate 
the information from their network and relay it to a centralized sink or base station. Real world deployments: smart cities, 
environmental monitoring, healthcare, industrial automation. Also, constantly adjusting the internal structure to fit a dynamic 
state, thoroughly designing the structure of the network can also render the whole process scalable and energy efficient [13]. 

 

Fig. 1. Conceptual Overview of AI-Enhanced Mixed Hierarchical Wireless Sensor Networks 

 

 

2. CHALLENGES IN WSN AND THE ROLE OF AI-BASED SOLUTIONS   

Wide-ranging technical and operational challenges in Wireless Sensor Networks (WSNs) greatly impact the 

performance, efficiency, and scalability of WSNs. However, this can be achieved only when these challenges are 

handled by innovative and intelligent solutions. This segment describes the main problems faced by current WSNs, 

and explains how AI and mixed hierarchical topologies can synergistically address them. For a better understanding 

of the main challenges in the WSNs field, as well as, the possible impact of Artificial Intelligence (AI) in 

heterogeneous hierarchical topologies, Table 1 presents a summary of main limitations and the intelligent solutions 

proposed in the literature. It emphasizes the position of AI methods such as machine learning, optimization algorithms, 

and so on, as well as the component where its use can help improve performance, scalability, and versatility across the 

layers of the WSN architecture. 
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TABLE  I.  KEY CHALLENGES IN WSNS AND AI-DRIVEN SOLUTIONS IN MIXED HIERARCHICAL TOPOLOGIES 

Challenge Description AI-Enabled Solution 

Security and Data 

Integrity 

WSNs are prone to data interception, spoofing, 

and unauthorized access due to their open and 

unattended nature. 

AI techniques (e.g., anomaly detection, intrusion detection 

systems, adaptive encryption) enhance threat detection and 

security response. 

Data Aggregation and 

Redundancy 

Dense deployments lead to duplicate data 

collection, increasing energy usage and network 

congestion. 

Machine learning and fuzzy logic algorithms optimize data 

fusion, reduce transmission overhead, and enable efficient 

aggregation strategies. 

Network Coverage and 

Topology Design 
Irregular sensor distribution may cause coverage 

holes or inefficient energy use in CH selection and 

routing. 

AI supports optimal cluster head placement and dynamic 
topology adjustment to maintain balanced coverage and energy-

aware communication. 

Latency and Delay Real-time applications require low-latency data 
delivery; delays impact system performance. 

Predictive AI routing models help identify the shortest energy-
efficient paths, reducing end-to-end delays. 

Scalability and 

Network Growth 

Large-scale WSNs risk performance degradation 

and state management challenges as the network 

grows. 

AI-based routing adapts dynamically to larger node counts using 

learning algorithms that efficiently manage routing updates and 

topology changes. 

Throughput and Data 

Rates 

Inefficient routing and network congestion lower 

data transmission success between nodes and base 

station. 

AI enables intelligent load balancing and congestion prediction, 

improving throughput by optimizing packet scheduling and traffic 

flow. 

3. AI-ENHANCED ROUTING PROTOCOLS IN MIXED HIERARCHICAL TOPOLOGIES 

Routing protocols in Wireless Sensor Networks (WSNs) are fundamental in establishing energy efficiency, data 

transmission reliability, and the network lifetime. Routing mechanisms have a significant effect on the survival of sensor 

nodes and successful data delivery paths from source nodes to BS. Routing Protocols in IOTS (Internet of Things) Because 

of resource constraints like battery life, processing ability, and communication range, the routing protocols, thus, should 

be optimized not only for efficiency but also for adaptability and scalability. Hence, hierarchical routing models, especially 

tree-based, cluster-based, and chain-based topologies, have proven to be an excellent architectural paradigm for energy 

conservation and load balancing [14-18]. 

In tree-based topologies for example those found in the DRINA protocol (Data Routing for In-Network Aggregation), 

sensor nodes send data using a hierarchical tree topology. This design is particularly appropriate for frequent data reports 

to the BS [19]. Parent-child paths are organized and aggregated, but could fail at pivotal nodes with AI managing data and 

re-composing the topologies. On the contrary, using cluster-based approaches have been found to substantially lessen 

WSNs operational time limitations. Protocols such as LEACH (Low-Energy Adaptive Clustering Hierarchy) allow sensor 

nodes to autonomously form clusters in which cluster heads (CHs) supervise intra-cluster communication and aggregate 

data to be forwarded to the BS [20-22]. The BS uses global knowledge such as node energy levels and locations to optimize 

selection of CHs in a centralized form of this protocol, LEACH-C, to obtain better energy efficiency [23-25]. International 

Journal future wireless networks are equipped with advanced computer technology with dynamic learning ability, thereby 

promoting cooperative smart communications among nodes and environmental information, Intelligent CH election and 

energy balance consumption through AI Algorithms. 

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) is an enhancement to the LEACH protocol that 

organizes nodes into chains, rather than into clusters. It is only allowed to exchange information with neighboring nodes 

under bi-directional channels, while the aggregated data to the BS is transmitted by a chosen chain leader [26]. This 

approach unifies the transmission distances and minimizes energy dissipation greatly. Intelligent chain formation, 

leadership roles rotation and optimal routing path prediction can be managed through AI techniques to balance the network 

and so as to prolong the network lifetime [27-31]. However, it has limitations in sending data from a distant chain leader 

to the BS in an efficient way. The phenomena are: To avoid this, many protocols like Distance based energy efficient 

routing protocol (DERP) consist of many pre-chain leaders and relay nodes for multi visited data delivery. AI-based DERP 

can be improved with machine learning to select the relay node and predict the path using dynamic data like throughput 

and latency of the network in real time [32]. 

In these advanced chain-based protocols, DLRP (Direct Line Routing Protocol) reduces redundancies in data transmission 

by choosing chain heads according to energy metrics. These protocols combine advantages of both cluster- and chain-

based architectures. For example, CCM (Chain-Cluster Mixed) uses two-stage communication that aggregates in the chains 

and sends the first one from each CH through the cluster-based layer to a communicated super-head [33]. TSCP and 

DCBRP follow similar principles, working on homogenizing load balancing and energy consumption by establishing a 

structure for communication through multiple stages of chain and cluster respectively [34-36]. 

Recent trends led by AI advancements in Cognitive Radio Networks (CRNs) Porter et al. (2021), wherein intelligent 

Channel (CH) selection, mobility prediction, and energy-aware routing complement these protocols, which on their own 

may produce limited performance. For instance, Multi-hop Deterministic Energy Efficient Routing (MDR) protocol uses 

deterministic and energy-based metrics for CH selection and inter-cluster routing. Abstract AI approaches could extend 
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such techniques through the automatic processing of decisions and adaptive solutions to protocols in a highly changeable 

setting [37]. Lastly, the deployment of nodes also has a significant impact on routing efficiency. Although random 

placements work well in large-scale or emergency situations, deterministic deployments can provide coverage with fewer 

nodes. By leveraging AI algorithms, operators can implement optimal node placement strategies, simulate various 

deployment scenarios, and adapt to changes in the environment in real-time to ensure network stability and performance 

[38–40]. A detailed comparison of the different hierarchical routing protocols and their relative suitability for AI 

integration is shown in Table 2. The following table summarizes the topology type, energy efficiency, scalability, and how 

Artificial Intelligence can improve the different protocols. Utilizing AI in key aspects of WSNs, including cluster head 

selection, energy-aware routing, and adaptive topology control, nearly allows protocols to enhance their performance and 

sustainability. This comparison is intended to emphasize the strengths of traditional protocols as well as how intelligent 

features can mitigate increasing problems within contemporary WSN deployments. 

TABLE II.  COMPARISON OF ROUTING PROTOCOLS WITH AI FEATURES 

Routing Protocol Topology Type AI Enhancement Potential Energy Efficiency Scalability 

LEACH Cluster-based Smart CH selection, adaptive clustering Moderate Medium 

LEACH-C Cluster-based (Centralized) AI-driven energy-aware clustering High High 

PEGASIS Chain-based AI-optimized chain formation and leader rotation High Medium 

DERP Chain-based (Distance-aware) AI-based relay and P-CL optimization Very High High 

DLRP Chain-based (Direct Line) AI-enhanced chain head selection High Medium 

CCM Mixed (Chain + Cluster) Adaptive role assignment via machine learning Very High High 

TSCP Two-Stage Chain AI for load balancing and routing prediction Very High High 

DCBRP Chain-based (Deterministic) Deterministic CH placement via AI models High High 

MDR Chain-based (Multi-hop) Predictive CH election, dynamic path management Very High Very High 

4. AI TECHNIQUES IN WSN ROUTING OPTIMIZATION  

Information about Artificial Intelligence in Wireless Sensor NetworksAI-based approaches are newly developing that can 

improve routing in WSNs in addition to energy management and adaptability in dynamic environments. Traditional 

routing algorithms often depend on static decision-making rules and may not work well in unpredictable network 

conditions or under large-scale deployments. In contrast, AI techniques have the potential to be data-driven and self-

learning, which can support adaptive and intelligent routing decisions in real-time for WSNs. Various AI approaches have 

been effectively employed in WSN routing optimization. These include: 

a) Machine Learning (ML): Predominantly, supervised and reinforcement learning based ML models have been used 

to predict optimal routing paths, energy levels, and traffic patterns. For example, Q-learning has been a candidate 

solution with respect to energy-efficient routing by reducing both packet loss and delay [41]. 

b) Fuzzy logic: There is a rich set of fuzzy-based systems used in cluster head (CH) selection and decision-making 

processes in the domains where crisp thresholds do not work. They consider factors including residual energy, 

degree of node, and distance to sink to select the best CH [42]. 

c) Neural Networks: Load balancing and fault detection have been studied by using Artificial Neural Networks 

(ANNs). In this regard, deep learning models are applied to analyze the data of sensor nodes to discover anomalies 

or predict failures that will enable proactive rerouting strategies [43]. 

d) Reinforcement Learning (RL): RL approaches allow nodes to learn from their interactions with the environment 

and make routing decisions that optimize long-term performance of the network. In dynamic topologies where 

centralized control is not appropriate, algorithms such as Deep Q-Networks (DQN) become especially beneficial 

[44]. 

Figure 2 shows the typical AI techniques implemented in hierarchical topologies to achieve the perception of the role of 

AI in the optimization of wireless sensor network (WSN) routing. These techniques include, but are not limited to, the 

following: Machine Learning (ML), Fuzzy Logic, Neural Networks and Reinforcement Learning (RL), focusing 

independent components of routing such as energy utilization, fault detection, dynamic adaptation and cluster head 

selection. It also enhances the routing mechanism with an overview of its adaptive and robust routing mechanism in IoT-

intensified WSNs. 
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Fig. 2. Overview of AI techniques used in WSN routing optimization within mixed hierarchical topologies. 

 

4.1 Application Areas and Effectiveness of AI in WSN Routing 

Usage of AI techniques in WSNs improves various critical aspects that have a direct impact on the performance and lifetime 

of the network. These tasks consist of CH election, energy balancing, fault tolerance, and intelligent routing. 

a) Cluster Head Election: AI-based algorithms ensure dynamic CH selection by multi-criteria analysis, which 

utilizes node characteristics like residual energy, node density, and distance to sink node. This leads to equal 

energy consumption over the nodes and extends the network lifetime [45]. 

b) Energy balancing — AI techniques allow for energy optimization through predictive learning, allowing to identify 

routes through the most efficient paths and understand the allocation of the network load. This allows sustained 

network operation in dense deployments, preventing early node failure. 

c) Fault Tolerance: Intelligent models have the ability to detect faulty nodes and unreliable links at an early stage. 

This proactive monitoring allows the system to reroute data ahead of time, avoiding any interruptions for 

communication and enhancing the system resilience. 

d) Routing Decision Making: The AI algorithms will continuously have learning from each path and update the next 

hop to minimize all variables They dynamically adjust routing paths for low latency, reduced packet loss, and 

lower energy usage, thereby improving Quality of Service (QoS). 

 Empirical studies on AI in WSN routing demonstrate its applicability in WSN routing. A fuzzy logic-based CH selection 

method, for example, showed a remarkable enhancement in the network's lifespan [46], as opposed to classical LEACH 

protocols. One more study [47] proposed the use of reinforcement learning in large-scale WSNs to improve the routing 

efficiency to achieve less energy consumption and better throughput. These findings further confirm the disruptive potential 

of AI in the development of adaptive, energy-efficient, and resilient WSN infrastructures. Figure 3 shows an overview of 

various AI technique and WSN functionalities improvements. This shows how strategies such as fuzzy logic, machine 

learning, neural networks, and reinforcement learning assist the cluster head election, communication energy balancing, 

fault tolerance, and wise routine, which are essential components to augment the performance and longevity of the system. 

 
Fig. 3. AI-based optimization techniques mapped to core functional areas in Wireless Sensor Networks (WSNs), showing the role of each approach in 

enhancing network performance and resilience. 
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5.  PERFORMANCE METRICS AND EVALUATION CRITERIA  

Performance metrics are essential for assessing the efficiency and reliability of Routing Protocols in the context of Wireless 

Sensor Networks (WSNs), especially those augmented by Artificial Intelligence (AI). These metrics allow for a 

quantitative comparison of conventional routing schemes with AI-based approaches. The following sections summaries 

the most relevant used evaluation criteria in WSN studies, as well as how AI integration enhances the performance results. 

5.1 Key Performance Metrics 

A classic set of performance metrics are widely used to evaluate and compare the performance of Wireless Sensor Networks 

routing protocols, especially when enriched with Artificial Intelligence. These measures encompass key performance 

indicators like energy efficiency, reliability, responsiveness, and network scalability. This section describes the key 

performance indicators and how AI is used for its improvement. Table 3 outlines each metric, its definition, and the 

contribution of AI to improving it. 

TABLE III. KEY PERFORMANCE METRICS IN WSNS AND AI CONTRIBUTION 

Metric Definition AI Contribution 
Energy Consumption The amount of energy used by sensor nodes during sensing, 

processing, and communication. 
AI reduces redundant transmissions and selects 

energy-efficient routes [48]. 
Network Lifetime Time until the first node or a significant portion of nodes 

depletes energy. 
AI balances workload among nodes to extend 

operational life [49]. 
Packet Delivery Ratio 

(PDR) 
Ratio of successfully delivered packets to the total packets 

sent. 
AI dynamically adjusts paths to avoid congested or 

failing nodes [50]. 
Latency Time delay between packet transmission and reception. AI predicts low-delay routes and avoids bottlenecks in 

real time [51]. 
Throughput Amount of data successfully transmitted over the network in a 

given time. 
AI improves traffic management and packet 

scheduling for higher efficiency [52]. 

 

5.2 Impact of AI on Performance 

As the AI has been incorporating in different applications, more directly it has tremendously improved the optimizing 

routing protocol in WSN and thereby affecting the performance metrics (Energy Balanced Routing Protocol energy 

efficiency, reliability and scalability). Though traditional protocols are partially effective, they are limited by the static or 

reactive way they operate. In contrast, AI-enabled models utilize learning and prediction to respond to network conditions 

adaptively and in real time. Energy Efficiency is a key challenge in WSNs, where nodes are mostly powered by non-

renewable batteries. AI techniques like fuzzy systems and Q-learning dynamically optimize routing decisions and cluster 

head (CH) elections. By weighing current network status to find the optimal communication paths for each source [41], 

[46], these approaches greatly reduce unnecessary data transmissions and energy overhead. 

This is achieved by distributing the load intelligently around the network which results in a longer Network lifetime. They 

also do not allow for the premature depletion of energy in critical nodes (e.g., CHs or gateways) that would otherwise 

cause fast fragmentation of the network. By means of intelligent workload balancing and adaptive scheduling, the network 

longevity is preserved even in conditions of high data load [43]. 

Similarly, Reliability and Packet Delivery are improved by AI-based predictive models. These techniques proactively 

reroute anticipating node failures, congestion, or degraded links. The design causes an improvement in the PDR, for 

propelling a more stable and efficient network performance even in unfavorable environments [47]. Reinforcement 

algorithms can be used to minimize latency as nodes will learn low-delay communication paths over time. These 

algorithms respond to topology changes, due to node mobility or energy consumption, by choosing alternative paths that 

minimize transmission delay [44]. 

Then, intelligent congestion control and traffic forecasting increases Throughput. AI Models predict the network load and 

adapt the routing strategies or the data rates. This addresses the higher communication rates and increases the WSN's 

capability to tolerate high-density deployments without degrading performance [45]. This will help us gain insights into 

how the application of AI techniques improve WSN performance; therefore, a summary of the main performance metrics 

and how the AI-based methods contribute to them is given in Table 4. This summary highlights how smart algorithms have 

established themselves as decisive tools to cope with classical routing requirements while improving the overall efficacy, 

robustness, and sustainability of sensor networks. 

TABLE IV.  AI TECHNIQUES AND THEIR IMPACT ON WSN PERFORMANCE METRICS 

Performance Metric AI Contribution References 

Energy Efficiency Optimized CH selection and path planning using Q-learning, fuzzy logic [41], [46] 

Network Lifetime Intelligent workload distribution and adaptive scheduling [43] 

Packet Delivery Ratio (PDR) Predictive rerouting and failure anticipation [47] 

Latency Low-delay routing through reinforcement learning [44] 

Throughput Traffic prediction and congestion-aware routing [45] 
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5.3 Evaluation from Existing Studies 

Many researches have been conducted to experimentally prove the effect of AI on routing performance on WSNs. The 

researchers have proven through comparative analyses and simulations how AI-based techniques outperform significantly 

on the metrics of energy efficiency, packet delivery and fault tolerance. For example, a fuzzy logic-based advanced version 

of LEACH protocol showed 32% increase in network lifetime and 15% in Packet Delivery Ratio (PDR) compared to its 

default implementation [46]. This improvement was mainly attributed to AI's ability to continuously assess the energy 

status of individual nodes and the ambient conditions while selecting the cluster head. 

In a different study, routing protocols based on reinforcement learning were able to do so with a 30–40% increase in 

performance in terms of energy efficiency and latency. These models were applied to large-scale WSNs that have up to 

100 nodes or more, and they adapt to environmental and traffic changes in real-time [47]. The neural network-based routing 

algorithm also showed good fault tolerance, with PDR and throughput remaining close to high levels in the face of high 

node failure. These techniques could predict link failures and reroute data dynamically to maintain communication nodes 

throughout the network [43]. Table 5 summarizes the findings of these studies and provides an overview of the 

effectiveness of AI-based enhancements across various protocols and evaluation metrics. 

TABLE V.  SUMMARY OF AI-BASED WSN PROTOCOL EVALUATIONS FROM EXISTING STUDIES 

AI Technique Used Enhanced Protocol Evaluation Scenario Key Improvements Reference 

Fuzzy Logic LEACH with Fuzzy CH 100 nodes, random 

deployment 

+32% network lifetime, +15% PDR [46] 

Reinforcement 

Learning 

Q-Learning Based 

Routing 

100+ nodes, dynamic 

topology 

30–40% more energy efficient, lower latency [47] 

Neural Networks ANN-Based Fault 

Tolerant 

Varying failure rates, large 

scale 

Maintained high PDR and throughput under 

failure 

[43] 

5.4 Comparative Summary 

In the Table 6, a comparative summary is provided to further consolidate the influence of Artificial Intelligence (AI) 

integration upon Wireless Sensor Network (WSN) performance. The summary gives a snapshot evaluation of the 

performance of multiple AI-based routing protocols via key metrics: energy usage, network lifespan, packet delivery ratio 

(PDR), latency, and throughput. Fuzzy-LEACH, Q-LEACH, RL-Routing, and ANN-WSN are the protocols used for 

comparison, representing different paradigms of AI, including Fuzzy Logic, Q-Learning, Reinforcement Learning, and 

Neural Networks. These techniques have shown differing levels of improvement over classical baseline protocols. 

The proposed Reinforcement Learning based routing (RL-Routing), for instance, performs considerably better in all 

performance indicators. It maintains the highest packet delivery and low latency for stable network traffic under highly 

dynamic conditions. In the same way, Q-LEACH (led by Q-Learning) shows improved performance (energy saving and 

lifetime extension) as a result of its adaptive learning mechanics. 

The other two classes of protocols, Fuzzy-LEACH and ANN-WSN, while somewhat more balanced in terms of 

performance, also utilize advantageous methods. Features such as fuzzy-LEACH for enhanced decision-making in CH 

selection, and ANN-WSN which ensures high throughput and systematic solutions for networks prone to faults. A 

comparison of these different protocols is shown in Table 6 using a qualitative scale. notes that ✓ is moderate 

improvement and ✓✓ is significant improvement over standard routing protocols. 

TABLE VI. COMPARATIVE SUMMARY OF AI-BASED WSN ROUTING PROTOCOLS 

Protocol AI Technique Energy Consumption ↓ Network Lifetime ↑ PDR ↑ Latency ↓ Throughput ↑ 

Fuzzy-LEACH [46] Fuzzy Logic ✓ ✓✓ ✓ ✓ ✓ 

Q-LEACH [41] Q-Learning ✓✓ ✓✓ ✓ ✓✓ ✓ 

RL-Routing [47] Reinforcement Learning ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ 

ANN-WSN [43] Neural Network ✓ ✓ ✓✓ ✓ ✓✓ 

6. OPEN ISSUES AND RESEARCH DIRECTIONS  

No matter how remarkable is the enhanced intelligence provided by AI to WSN routing, this technology still has some 

barriers to overcome in the practice. Although there is substantial theoretical evidence for enhancing energy efficiency, 

adaptability, and fault tolerance, computational overhead, deployment feasibility, security, and scalability problems remain. 

a) Computational Constraints and Complexity: A number of AI models, particularly deep neural networks and 

reinforcement learning algorithms, demand a large amount of computation and memory resources. WSN nodes 

are, however, severely constrained in their processing capability, storage and energy resources. This makes it 

impossible to run such models directly on sensor nodes in the absence of lightweight AI architectures or edge 

computing support [53,54]. 
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b) Real-World Deployment Problems: The majority of the considerations that conduct AI-enhanced routing protocols 

are on simulated conditions of NS-2 or MATLAB. These simulations cannot capture real-world unpredictability, 

such as dynamic environmental factors, hardware constraints, and physical deployment issues [55]. Closing this 

gap between simulation and reality requires strong, adaptive protocols that work under live constraints in 

heterogeneous WSN systems. 

c) Security & Trustworthiness of AI Models: The usage of AI in WSNs brings forth new vulnerabilities including 

adversarial attacks, whaling, and hardware manipulation. Secure learning models are often neglected in current 

protocols. There is an emerging need for developing resilient, security-aware AI algorithms that can 

autonomously detect anomalies, isolate compromised nodes, and protect model integrity [56,57]. 

d) Scalability & Federated Learning (FL): As the sensor network scales, centralized learning becomes impractical 

due to increased communication latency and energy consumption. Federated Learning has proven to be a 

promising model that provides the advantages of decentralized model training at the same time keeping data 

privacy intact. Nevertheless, challenges around model convergence, communication overhead, and 

synchronization must be solved for FL to work in resource-limited WSNs [58,59]. 

e) Edge Computing and Hybrid AI Architectures: Edge computing can help in mitigating issues with latencies and 

processing loads on individual sensor nodes by distributing complex computations to intermediate edge devices. 

This architecture together with AI provides real-time analytics and makes WSN more responsive. Future work 

will involve more intelligent task distribution, load balancing and edge-based learning for efficient decision-

making [60]. 

f) Interdisciplinary Opportunities: AI + Blockchain Integration: Recent studies indicate the integration of blockchain 

technology with AI in WSNs for increased transparency, trust, and decentralized coordination. It can verify routing 

paths, hold tamper-proof logs and enable consensus-based routing decisions in these AI-driven systems. This 

synergy ensures a secure and autonomous WSN infrastructure. 

Table 7 highlights relevant open issues, implications, and future directions for research to gain a clearer insight into the 

range of current challenges and novel solutions in AI-enabled Wireless Sensor Networks (WSNs). The above sidewise 

comparison helps identify in which aspects current protocols do not provide ultimate security and then highlights how 

some emerging technologies like edge computing, federated learning and transportation level security protocols and 

blockchain features can fill these gaps in practical implementations. 

TABLE VII.  SUMMARY OF OPEN ISSUES AND FUTURE DIRECTIONS IN AI-BASED WSNS 

Challenge Description Future Direction 

Computational Overhead AI models require more resources than typical WSN 

nodes can provide 

Lightweight AI, model pruning, edge-assisted 

learning [53], [54] 

Simulation vs. Real 

Deployment 

Simulated environments do not reflect real-world 

challenges 

Field-tested adaptive models [55] 

AI Security Vulnerabilities Risk of adversarial attacks and compromised learning 

models 

Secure, anomaly-aware AI protocols [56], [57] 

Scalability & Federated 

Learning 

Centralized training is inefficient for large-scale networks FL for decentralized learning and reduced bandwidth 

[58], [59] 

Edge Computing Integration Sensors need help processing large AI models in real-time Hybrid AI + Edge architectures [60] 

AI + Blockchain 

Collaboration 

Ensuring trust, integrity, and decentralized coordination Blockchain-enabled secure routing [60] 

7. CONCLUSION  

A comprehensive survey investigating the implementation of AI mechanisms into mixed hierarchical topologies to 

improve the performance, scalability and adaptivity of WSNs. WSNs are extensively deployed in applications like 

environmental monitoring, healthcare, smart cities, and industrial automation, owing to the advancements in technology. 

But they are restrained by a limited energy availability, scalability limitations and fluctuating environmental scenarios. 

Such mechanisms are crucial, yet traditional routing protocols may not suffice in terms how to conserve the use of 

competencies and the network's functional life. The current study presented in handled the other application field of AI, 

including the hybrid architecture based on clusters, a chain-based hierarchical architecture, and performance operational 

attributes of the wireless sensor network (WSN). These include methods like Machine Learning, Fuzzy Logic, Neural 

Networks and Reinforcement Learning and all of these have shown the advantages regarding cluster head selection, load 

balancing, fault tolerance and routing decisions etc. On empirical evaluation and case studies, we show that significant 

improvement can be achieved through the application of AI-based enhancement protocols like LEACH, PEGASIS and 

their derivatives, in energy consumption, packet delivery ratio (PDR), network lifetime and latency and throughput. 

Moreover, the efficiency gain achieved by deploying AI enhances not only the operational performance but also builds 

resilience against individual node failure and communication breaks, as evidenced by various performance metrics 

presented in the paper. However, several challenges still exist around the complexity of deployment, real-time processing, 
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storage awareness, model federated learning, and AI model security and scalability. Next steps, on AI, are to expand 

beyond Edge computing and federated learning to provide appropriate decentralized intelligence and Hybrid frameworks 

interconnecting AI and blockchain configured and trust aware routing. Users are in control of the AI algorithms and 

architecture, which can unlock more functionalities than conventional sensor networks. 
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