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A B S T R A C T 
 

The tiger beetle is a fierce and cunning predator insect that uses deception to hunt its prey. The tiger 
beetle traps and hunts them by digging holes along the path of other insects. This study used a tiger beetle 
hunting strategy to create a tiger beetle optimization (TBO) algorithm. In this algorithm, each solution 
represents the position of a tiger beetle, with the optimal position being the prey's location. Using this 
method, the tiger beetles gradually converge to the optimal solution, creating holes around them and 
searching for them. We evaluate the TBO algorithm's search capability using a series of well-known 
mathematical test functions. Moreover, among the sophisticated forms of malware are polymorphic 
viruses, which are adept at changing their behaviour while maintaining the same essential functions. 
Thus, a machine learning-based malware analysis system utilizing the power of the proposed TBO is 
introduced in this article. TBO handles the escalating issues of efficiently catching and mitigating 
cybersecurity threats in an era where conventional methods suffer from the complexity and volume of 
modern malware. Compared to other optimization methods, the proposed algorithm has shown less error 
in finding the optimal solution when implemented and evaluated on different functions. The tiger beetle 
optimization algorithm has proven helpful in various applications, including image clustering and 
reservoir well placement, where it can identify damaged areas or tissues with greater accuracy. When 
diagnosing lung cancer, the proposed method has shown a sensitivity, validity, and accuracy of 88.63%, 
87.58%, and 89.86%, respectively, when using the EBT, WKNN, ESKNM, and QSVM methods. 

1. INTRODUCTION 

Many of the current challenges we encounter can be categorized as optimization problems. Out of numerous potential 
solutions, only a handful are efficient and can be used to effectively optimize the objective function. These optimization 
problems have countless applications, such as in engineering, image processing, data mining, and computer networks. One 
method employed to address optimization problems is through the use of metaheuristic algorithms [1]. These algorithms 
draw inspiration from natural occurrences and the behavior of living organisms, allowing them to tackle intricate 
optimization problems. The limitations of metaheuristic algorithms include their simplicity and ability to work without 
objective function information requirements. 

There are various techniques, including Darwin's principle-based evolutionary algorithm (DPA), animal group mimic-based 
swarm intelligence algorithm (AGA) and nest-building mechanism-based optimization algorithm (NMA). DPA includes 
genetic programming [3] and genetic algorithms [2]; AGA includes the grey wolf optimizer (GWO) [4], spotted hyena 
optimizer (SHO) [6], Harris hawks optimizer (HHO) [7], water strider algorithm (WSA) [9], black water window 
optimization algorithm (BWO) [8] and whale optimization algorithm [5]. The travelling salesperson problem [12] can be 
solved using the Ant Optimization Algorithm. They present the translation of biological and natural processes into 
computational procedures that guide the complex landscapes of high-dimensional and nonlinear optimization problems. The 
HHO algorithm, motivated by Harris' hawks' collective hunting process and outstanding talent, is a dynamic and adaptable 
method for both exploration and exploitation steps in problem solving. This adaptability is highly influential in determining 
global optima across diverse problem spaces. Additionally, the BWO algorithm derives its efficiency from simulating the 
weird mating traditions and survival tactics of black widow spiders, presenting novel crossover and mutation agents that 
improve its convergence speed and solution accuracy. However, they need help with the possibility of early convergence, 
mainly in complicated landscapes where the algorithms may become stuck to local optima rather than the global optimum. 
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The balance between exploration and exploitation is minimal; excessive exploration can lead to inefficiencies, while 
excessive exploitation might become stuck in suboptimal solutions. 

In computer security, malicious activities carried out by harmful software, scripts, or binary codes aimed at undermining the 
confidentiality, integrity, and accessibility of data are commonly referred to as malware. When this software compromises 
private information or data without the owner's knowledge or consent, it breaches confidentiality. The impact on availability 
occurs when malware disrupts information flow, leading to end users being unable to access data due to server outages or 
network infrastructure issues. Furthermore, modifying information threatens integrity, as malware can potentially alter data 
by introducing hazardous code during periods of vulnerability [47]. 

In cybersecurity, metaheuristics are essential for developing adaptive mechanisms for threat detection and mitigation and 
delivering robust solutions against sophisticated cyber threats. The healthcare industry uses meta-heuristics in medical image 
analysis, improving the accuracy of diagnoses, and in pharmaceuticals, where they revolve the drug finding process by 
swiftly determining potential combinations. Environmental control also involves integrating metaheuristic algorithms, 
mainly in resource sharing and conservation efforts, such as optimizing water use in agriculture or enhancing the efficiency 
of renewable energy bases. Furthermore, they aid in network design and optimization in telecommunications, ensuring 
dedicated and efficient communication infrastructures. 

A nonbiological strategy can be utilized to model some algorithms. Gravity or water waves are examples of these phenomena 
[13]. Furthermore, the human demeanour-based method is another example of such a phenomenon [14],[15],[16],[17]. 

The existing methods used to enhance malware detection face the challenges posed by large datasets, which often include 
redundant or irrelevant features that can increase both the misclassification rate and computational time. To address these 
challenges, malware developers are continually evolving and enhancing their techniques, creating new methods and 
improving existing methods to circumvent security measures. Recognizing that malware poses one of the most significant 
security risks to computer systems, it is imperative to swiftly identify and remove such threats to ensure the safety of these 
systems [48]. The proposed TBO algorithm reduces misclassification rates and computational time, highlighting its feature 
selection efficiency and potential to facilitate detection. 

Optimizing algorithms can be enhanced in several ways. Some algorithms, such as the Harris hawk optimization algorithm, 
may need to be simplified to be more practical. On the other hand, algorithms such as the black widow optimization algorithm 
may have superficial connections and not effectively search the problem space. The atom search optimization algorithm may 
have a high modelling level, but it cannot relate between solutions and does not have an idea about the problem. 

Additionally, classifying populations as worthy and unworthy groups may not be wise, as it can result in poor and rich 
optimization algorithms with incorrect relationships. Algorithms such as the WOA and SHO may look for the optimal 
solution but can become entangled in local optima. A large population may be needed to prevent the AOA from becoming 
entangled in optimal paths. The algorithms are restricted to specific search methods. Thus, new methods are required to solve 
more problems and decrease the shortcomings of known techniques. 

Swarm intelligence (SI) optimization algorithms simulate the behaviour of swarms in nature to discover reasonable solutions 
to complex problems. Each individual in the swarm denotes a candidate solution, and the individuals interact with each other 
to enhance their solutions over time. Swarm intelligence (SI)-based algorithms have played a key role in many valuable 
applications, such as the travelling salesperson problem (TSP). For instance, studies have shown that the ant colony 
optimization (ACO) [18,19] algorithm has a distinctive ability to search for optimal solutions to the TSP. 

The no free lunch (NFL) theorem shows that no single optimization algorithm can be universally suitable for all problems. 
This indicates that while metaheuristic algorithms are very practical and efficient for many optimization problems, there may 
be some problems where they cannot be used to find the best solution. NFL has motivated the development of more effective 
optimization algorithms. To address this challenge, we introduce a new SI-based algorithm called the tiger beetle optimizer 
(TBO). The tiger beetle algorithm is designed to mimic the deceptive and hunting behaviors of these insects, ultimately 
resulting in optimal solutions that can be applied to a range of scenarios. 

To address the multifaceted issues posed by optimization problems across different domains—from cybersecurity to medical 
image segmentation—our study proposes the tiger beetle optimization (TBO) algorithm. Inspired by the complexity of tiger 
beetles, the TBO algorithm is a new algorithm for swarm intelligence that includes five distinct updating rules: hunt area 
selection, hole digging, prey hunting, larvae reproduction, and low-quality hole destruction. These rules collectively facilitate 
the TBO algorithm to guide the search space efficiently, particularly improving the quality of the solutions discovered. 

Our research incidents further theoretical development to practical applications, presenting a machine learning-based system 
for malware detection (ML-TBO) that capitalizes on the TBO's abilities. This system represents the algorithm's ability to 
accurately determine and mitigate cybersecurity threats. Additionally, we involve the TBO algorithm in medical image 
segmentation via a fuzzy C-means clustering process, demonstrating its utility in processing complicated medical data for 
more reasonable diagnostic outputs. In the domain of petroleum engineering, we examine its application in optimizing 
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injector–producer connectivity for reservoir well placement, further showing the algorithm's adaptability and efficacy in 
decoding real-world engineering challenges. The paper's primary contributions include the following: 

 The TBO algorithm, a novel swarm intelligence algorithm inspired by the behaviours of tiger beetles, leverages 

five updating rules to find high-quality solutions: hunt area selection, hole digging, prey hunting, larvae 

reproduction, and low-quality hole destruction. 

 A machine learning-based malware analysis system utilizing the proposed TBO (ML-TBO) is introduced for 

malware detection as a real-world application for the proposed TBO. 

 We present a fuzzy C-means clustering approach based on the proposed TBO algorithm for medical image 

segmentation. 

 Optimizing injector-producer connectivity in Reservoir well placement using the proposed TBO. 

 The TBO algorithm is thoroughly evaluated on a suite of mathematical test functions, and the results demonstrate 

its superior performance compared to that of state-of-the-art optimization techniques. 

 The successful application of the TBO algorithm to several practical engineering design problems demonstrates its 

potential for solving real-world problems. 
The rest of this study is organized as follows: Section 2 reviews and models the tiger beetle algorithm's behaviour. Section 
3 presents the implementation results. Section 4 investigates the abilities of the proposed method. Section 5 shows how TBO 
can solve real-world application problems such as malware detection. Finally, the paper provides a conclusion, and 
conceivable future recommendations are offered in section 6. 

2. MATERIALS AND METHODS 

It is interesting to see how the tiger beetle optimization algorithm can be used to solve optimization problems. By studying 

the behavior of this insect, we have been able to formulate an optimal algorithm. This algorithm can then be applied to 

various optimization problems to find the best solution. 

2.1 Inspiration 

Understanding the different attributes of different insect species is important. Some insects are known for standing hard-
working, while others are described as bloodsuckers. The American beetle, for instance, is known for its strength. 
Nevertheless, TB is widely regarded as the wildest species due to its aggressive and murderous nature. It is known for its 
ferociousness towards its target, no matter which group of insects it belongs to. This beetle species is also one of the quickest 
in the wildlife and is capable of running up to 9 km/h. It can often be seen exploring a hole along its prey's direction and 
striking it as soon as it spots it. Sometimes, the tiger beetle goes directly for its prey and destroys it with its powerful talons. 
Another notable attribute of the tiger beetle is its massive and powerful jaws. 

Figure 1 presents a glance at the tiger beetle and its hunting features, which make it a fantastic hunter. The hunting mechanism 
of this species is unclear and intriguing to survey. 

The tiger beetle (TB) has a special hunting mechanism, as shown in Figure 1 and Figure 2. They drill holes along the way 
of their prey and force different insects into these holes to hunt them. Interestingly, any TB can replicate, and the larvae 
extend in the exact tunnel grid and holes. Larvae are just as hazardous as grown-up TBs. They look around the holes, 
punching their head out to watch their surroundings with a 360-degree view. As the prey arrives, they open the door to the 
bottom of the hole. This permits the hunter to carry the prey into the tunnel and successfully hunt it. 

 

 

 

 

 

 

 

 

 

 

Figure 1: A Tiger beetles. 
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Figure 2: Hiding the tiger beetle in the hole for hunting. 

 

2.2 Modelling the TBO 

Several assumptions are outlined below for modelling the TBO algorithm. 

 The algorithm characterizes each solution by encoding it a tiger beetle. 

 Every hole within the algorithm approximates a distinct region in the objective function, and its fitness is chosen 

by considering the objective function. 

 TB endeavour efforts to exhume holes in regions with a greater possibility of successful hunting. 

 Upon finding a hole, a TB estimates it. After that, considering its fitness, the beetle either examines the 

environment or makes a new hole. 

 Every tiger beetle replicates within its specified hole, depositing larvae in its hole and neighboring holes. 

 Extra holes are dug close to existing ones, concentrating on areas with an increased probability of good hunting. 

This strategy acts as a state of local search near the current solution. 

 

1) Producing the initial population 

The presented method contains several solutions described by TB. This population is rendered randomly in the problem 

space, as shown in Equation (1): 

                                                       𝑇𝐵𝑖
𝑗
= 𝐿 + (𝑈 − 𝐿). 𝑟𝑎𝑛𝑑                                                                                                        (1) 

The inscription 𝑇𝐵𝑖
𝑗
defines the j form of the solution i, approximating the TB. L represents the descending limit further by j, U 

is the upper boundary in this dimension, and "rand" is a random number within the range (0, 1). The initial population of the TB 

in the first iteration can be produced using Equation (2): 

                                                       P =

[
 
 
 
𝑇𝐵1

1 𝑇𝐵1
2 … 𝑇𝐵𝑖

𝐷

𝑇𝐵2
1 𝑇𝐵2

2

⋮
𝑇𝐵𝑛

1
⋮

𝑇𝐵𝑛
2

… 𝑇𝐵2
𝐷

⋮
…

⋮
𝑇𝐵𝑛

𝐷]
 
 
 

                                                                                             (2) 

 

In this context, where n denotes the number of TBs and D is the dimension of each solution, each TB is evaluated based 

on the objective function, represented as F. Equation (3) describes the composition of an array for population evaluation. 

                                                     f(P) =

[
 
 
 
𝑓(𝑇𝐵1

1 𝑇𝐵1
2 … 𝑇𝐵𝑖

𝐷)

𝑓(𝑇𝐵2
1 𝑇𝐵2

2

⋮
𝑓(𝑇𝐵𝑛

1
⋮

𝑇𝐵𝑛
2

… 𝑇𝐵2
𝐷)

⋮
…

⋮
𝑇𝐵𝑛

𝐷)]
 
 
 

                                                                                  (3) 
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2) Digging hole fitness 

The method outlined implicates extemporizing individualized objectives for each TB, seeking to create shelter holes at 

sites with a greater possibility of successful hunting. One strategy involves increasing the number of holes in near-optimal 

solutions. An offered tactic entangles choosing the hole number unearthed around the best area using the exponential 

function e. This is achieved by introducing Equation (4), considering that the goal is to minimize the identified problem. 

Digging is identical to creating possible solutions (holes) where the algorithm can determine optimal or near-optimal 

solutions. The "fitness" of these holes defines the grade of the solutions, navigating the algorithm towards more bright areas 

of the search space. This procedure improves exploration by enabling the algorithm to explore multiple areas and exploit 

by deepening the search in areas with high potential. 

 

                                                          𝐻(𝑇𝐵𝑖) = [1 − 𝑒𝑥 𝑝 (
𝑓(𝑇𝐵𝑖)

𝑓(𝑊(𝑡))
)] . 𝐻𝑚                                                                                   (4) 

 

𝐻(𝑇𝐵𝑖) denotes the number of holes bordering 𝑇𝐵𝑖 . 𝐻𝑚  represents the maximum number of holes that the TB digs into a 

site. The term 𝑓(𝑇𝐵𝑖) represents the value or fitness of a TB, such as 𝑇𝐵𝑖  The parameter H ranges from its maximum value 

associated with the best TB to a minimum value of zero for the worst TB. This indicates that most holes are dug near the 

optimal solution to investigate this region also. 

3) Dig the hole and positioning in them 

In the proposed procedure, each 𝑇𝐵𝑖  can tunnel 𝐻(𝑇𝐵𝑖) holes in its surroundings, driven by Equation (4) and contingent 

on evaluating its fitness. Each beetle can generate offspring in the state of new solutions by making holes, depositing larvae 

within each hole, and awaiting possible prey. The hole function in the proposed method is outlined as follows: 

 Initially, the hole is spread from the central hole with more significant SD, enabling a global search type and 

stopping the algorithm from becoming entangled in fewer local optima. 

 Thereafter, the method transitions slowly to a local search strategy, seeking to underrate computational errors 

associated with optimization. 

A distance function is presented to mitigate the divergence in the standard deviation of the solution's allocation across the 

Tiger Beetle optimization iterations. Equation (5) suggests the utilization of an arctangent function for this objective: 

 

                                                              𝑆𝐷(𝑡) = 𝑆𝐷0 − |
𝑝

𝜋
atan (

𝑝

𝜋
𝑡)|                                                                                          (5) 

 

where p is the scaffold for a coefficient controlling hole reduction and distribution, 𝑆𝐷0 represents the initial standard 

deviation assigned to 1, and t is the algorithm's iteration counter. Figure 3 shows the SD of the TB hole distribution for 

three values of p. Raising p broadens the divergence capacity of the SD to [0.8, 1]. When p is equal to 1, the SD ranges 

between [0.5, 0.9], and for p equal to 0.5, the SD fluctuates within [0.1, 0.65]. To excavate a hole around a given location, 

Equation (6) can be employed: 

 

                                                       𝑇𝐵𝑛𝑒𝑤 = {
𝑇𝐵𝑜𝑙𝑑 + 𝑅. 𝑆𝐷(𝑡). 𝑟𝑎𝑛𝑑 𝑟 ≤ 0.5

𝑇𝐵𝑜𝑙𝑑 − 𝑅. 𝑆𝐷(𝑡). 𝑟𝑎𝑛𝑑 𝑟 > 0.5
                                                                   (6) 

 

In this equation, R denotes the field for breeding the solution and is an arbitrary number within the range [1, 2]. Furthermore, 

rand is a random number within the interval [0, 1]. The variable r is another random number within [0, 1], specifying 

whether the solution is bred on a dimension's left or right side. 
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Figure 3: Distribution of hole reduction for chasing prey according to the number of iterations of the tiger beetle algorithm. 

4) Hunting and elimination of nonqualified solutions 

In the proposed method, holes are tunnelled, and larvae are placed in them. Each hole can catch prey based on its quality, 

and those in irregular regions may yield during hunting. If a tiger beetle cannot catch any prey in a certain hole, that hole 

is left or crushed. Some solutions in each iteration are destroyed due to unsuccessful hunting. For this purpose, a mechanism 

for the chance of survival of a solution is represented through Equation (7) in the context of a minimization problem: 

 

                                                           𝑝(𝑇𝐵𝑖) = 1 −
1

∑
𝑓(𝑇𝐵𝑖)

𝑓(𝑊(𝑡))
𝑛
𝑖=1

×
𝑓(𝑇𝐵𝑖)

𝑓(𝑊(𝑡))
                                                                                     (7) 

 

In this equation, 𝑝(𝑇𝐵𝑖) denotes the probability of a solution. A random number within the intermission [0, 1], indicated 

as r, is used to determine whether to destroy or maintain a TB or hole, following Equation (8). P represents the solutions 

offered by the population used in Equation (8). 

 

                                                             𝑃 = {
{𝑃} + 𝑇𝐵𝑖 𝑟 ≤ 𝑝(𝑇𝐵𝑖)

{𝑃} − 𝑇𝐵𝑖 𝑟 > 𝑝(𝑇𝐵𝑖)
                                                                                         (8) 

 

In this scenario, if 𝑟 ≤ 𝑝(𝑇𝐵𝑖), the hole and the beetle within it would stay in their existing appointment. On the other hand, 

if 𝑟 > 𝑝(𝑇𝐵𝑖), the established beetle will not be considered. 

 

5) Looking in the insect-prone regions 

In the suggested procedure, TBs seek to investigate regions with improved chances of hunting insects and developing more 

holes. A well-designed search function examines the area, including the regions within the population. Equation (9) shows 

the search mechanism of the proposed algorithm within the region delivering the highest probability of obtaining the 

optimal solution: 

                                                           𝑇𝐵𝑖
𝑗
= 𝛼. 𝑇𝐵𝑖

𝑗
+ 𝛽. (𝐵(𝑡) − �̅�). 𝑟𝑎𝑛𝑑                                                                               (9) 

 

In the context of the algorithm, B(t) denotes the role of the best beetle, �̅� represents the solution average, 𝛼 is the reduction 

coefficient for the current location, and 𝛽 is the addition coefficient for the existing area. The weights for 𝛼 and 𝛽 can be 

selected using Equations (10) and (11). Figure 4 shows the divergence of these two parameters, showing a reduction and 

increase over time. 

                                                                   𝛼 = 1 − (
𝑡

𝑀𝑎𝑥𝑇
)2                                                                                                         (10) 

 

                                                                   𝛽 = 1 − 𝛼                                                                                                                     (11) 

 

where MaxT is the maximum number of iterations of the tiger beetle algorithm and t is the number of iterations of the 

algorithm. 
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Figure 4: Increase and decrease in 𝛼 and𝛽 

Towards conclusive iterations, the alpha parameter decreases, reducing the influence of the existing solution. 

Simultaneously, the beta parameter expands, expanding the investigation range between the mean and the weight. 

 

6) Mating 

In the proposed approach, tiger beetles can investigate the problem space in search of appropriate mates. The idea is that 

𝑇𝐵𝑖   denotes a tiger beetle and can transfer towards the positions of 𝑇𝐵𝑙   and 𝑇𝐵𝑘 , which are randomly chosen from the 

population. Mating presents diversity in the population of solutions, assisting in exploration by yielding new solution 

candidates. Equation (12) expresses the direction of the 𝑇𝐵𝑖  beetle in the direction of the two other TBs: 

 

                                                         𝑇𝐵𝑖
𝑗
= 𝑇𝐵𝑖

𝑗
+ (𝑇𝐵𝑘

𝑗
− 𝑇𝐵𝑙

𝑗
). 𝑟𝑎𝑛𝑑                                                                                    (12) 

 

The choice of dual TBs to be tracked by 𝑇𝐵𝑖  the TB affects the behaviour on the one hand and does not become entangled 

in the local optimum on the other hand. 

 

7) Proposed method algorithm 

The pseudocode for the TBO algorithm is given in Algorithm (1). In this proposed strategy, the performance parameters 

are configured and initialized. After that, the objective function is determined, and a population of solutions, defined as 

TB, is generated and arranged within the holes in the objective function space. Each TB is evaluated based on the objective 

function, and the best and worst holes or beetles are identified. Relying on the fitness of each tiger beetle, it can mine 

multiple holes in its existing place. These holes can be used to yield new larvae. A probability is given to each hole, picking 

its likelihood of survival or the survival of the beetle within it. At each iteration, less adept solutions may be destroyed. 

 
Pseudocode of Tiger Beetle Optimization(TBO) Algorithm (1) 

Input: Objective function & Pop & Parameters 

Adjust parameters such as population size(N), number of iterations(MaxT) and number of holes(Hmax) 

for i=1: N  % Initialize the random population: 

       for j=1: Dim      𝑻𝑩𝒊
𝒋
= 𝑳 + (𝑼 − 𝑳). 𝒓𝒂𝒏𝒅 

 

      end for 

end for 

Fill Pop or P Mattix: 𝐏 =

[
 
 
 
𝑻𝑩𝟏

𝟏 𝑻𝑩𝟏
𝟐 … 𝑻𝑩𝒊

𝑫

𝑻𝑩𝟐
𝟏 𝑻𝑩𝟐

𝟐

⋮
𝑻𝑩𝒏

𝟏
⋮

𝑻𝑩𝒏
𝟐

… 𝑻𝑩𝟐
𝑫

⋮
…

⋮
𝑻𝑩𝒏

𝑫]
 
 
 

  

Calculate the fitness values of the population by objective function & t=1, SD0=1; R=2*rand 

while(It<=MaxT) 
       % Calculation of standard deviation of cavities and alpha and beta coefficients in each iteration 

 𝑺𝑫(𝒕) = 𝑺𝑫𝟎 − |
𝒑

𝝅
𝐚𝐭𝐚𝐧 (

𝒑

𝝅
𝒕)| 
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      𝜶 = 𝟏 − (
𝒕

𝑴𝒂𝒙𝑻
)𝟐 &𝜷 = 𝟏 − 𝜶 

     %Calculate the Best and worst tiger beetle(B(t) & W(t)) & Calculate the ability to create holes 

    for i=1: N 

      𝑯(𝑻𝑩𝒊) = [𝟏 − 𝒆𝒙𝒑(
𝒇(𝑻𝑩𝒊)

𝒇(𝑾(𝒕))
)] . 𝑯𝒎 

   end for 

     for i=1: N%, Produce several holes and place the larvae inside them as a new solution 

       for j=1: 𝑯(𝑻𝑩𝒊)  
            if rand>0.5 

 𝑻𝑩𝒏𝒆𝒘 = 𝑻𝑩𝒐𝒍𝒅 + 𝑹.𝑺𝑫(𝒕). 𝒓𝒂𝒏𝒅 

            else 

 𝑻𝑩𝒏𝒆𝒘 = 𝑻𝑩𝒐𝒍𝒅 − 𝑹.𝑺𝑫(𝒕). 𝒓𝒂𝒏𝒅 

            endif  

      end for 

  end for 

    𝑺𝒖𝒎=0 

  for i=1: N%, Calculate the average position of the tiger beetle 

            𝑺𝒖𝒎 = 𝑺𝒖𝒎 + 𝑻𝑩𝒊  
 end for 

 �̅� =
𝑺𝒖𝒎

𝑵
 

 for i=1: N%Search for high-insect areas 

      for j=1: Dim      𝑻𝑩𝒊
𝒋
= 𝜶.𝑻𝑩𝒊

𝒋
+ 𝜷. (𝑩(𝒕) − �̅�). 𝒓𝒂𝒏𝒅 

 

      end for 

  end for 

for i=1: N  %Mating 

    Select random two tiger beetle such 𝑻𝑩𝒌  &𝑻𝑩𝒍 

      for j=1: Dim      𝑻𝑩𝒊
𝒋
= 𝑻𝑩𝒊

𝒋
+ (𝑻𝑩𝒌

𝒋
− 𝑻𝑩𝒍

𝒋
). 𝒓𝒂𝒏𝒅 

 

      end for 

end for 

It=It+1 

end while 

Output 𝑩 or  BestSol 

 

Considering the proposed method, better solutions have a lower probability of being destroyed. Every conceivable solution 

has the chance to explore the region between the existing optimum and the centre of the solution's gravity, as this area is 

more likely to have optimal solutions. A beetle can pick a confidante beetle from the population and follow it for mating. 

Improving the significance of the proposed approach concerns considering that a beetle desires another beetle only if the 

beetle promises more experienced mating. In this approach, each beetle randomly chooses two beetles and transits in their 

directions to improve its exploration ability. 

3. IMPLEMENTATION RESULTS 

The TBO and other algorithms are implemented on a Windows 10 PC with an Intel Core i7 processor and 32 GB of memory 

using MATLAB software. 

3.1 Evaluation criteria 

The TBO algorithm uses multimodal, unimodal, and hybrid evaluation functions.Table 2 and Table 3 delineate the standards for the 

measurement functions based on their domains and optimal worth. To calculate the performance of the tiger beetle optimization 

algorithm, 37 well-known algorithms were utilized (Table 4 to Table 8). These functions were organized into unimodal, multimodal, low-

dimensional, hybrid, and mixed categories. Unimodal functions (f1-f7) emphasize global optimization without local optima, multimodal 

functions (f8-f13) feature considerable local optima, low-dimensional functions (f14-f23) include a fixed number of local optima, and 

hybrid functions (f24-f29) present more random variables. Composite functions (f30-f37) are constructed using subsets of multimodal 

functions. Hybrid and hybrid-composite functions are regarded as more problematic. The effectiveness of metaheuristic algorithms, 

including the tiger beetle optimization algorithm, is evaluated based on their error rates in reaching optimal solutions, with lower error 

rates and decreased trapping in local optima showing higher efficiency in translating optimization problems. Each evaluation function is 

employed as an objective function in the implementation. 
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3.2 Implementation parameters 

Table 1demonstrates the implementation parameters and the evaluation of the proposed algorithm alongside similar 
algorithms. 

Table 1: THE PARAMETERS OF THE PROPOSED METHOD AND OTHER METHODS  

Value Parameter` Value Parameter Algorithm 

2 𝛽𝑚𝑎𝑥 0 𝛽𝑚𝑖𝑛 DE 

0.8 Inertia weight 2,2 c1,c2 PSO 

2,0 
 

𝑓𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛 0.5 A BA 

0.01 
 

a 
 

0.1 
 

c BOA 

0.1 α 0.01 
[2,0] 

c 
a 

GWO 

[0,1] r1,r2,r3 [-2,+2] E WHO 
0.20 𝛽 0.50 α FA 

0.4 
0.44 

𝑝𝑚 
𝐶𝑅 

0.6 pp BWO 
 

0.2 Multiplier weight 
 

50 Depth weight ASO 

1 
 

p 5-7 
0.5-0.9 

Hm 
SD0 

TBO 

 

 
Table 2: UNIMODAL, MULTIMODAL, AND LOW-DIMENSIONAL TEST FUNCTIONS  

Name Function 𝒏 Range 
 

Optimum 
 

Sphere 
𝑓1(x) = ∑ 𝑥𝑖

2
𝑛

𝑖=1
 

30 [−100,100]n 0 

Schwefel 
2.22 

𝑓2(X) = ∑ |Xi|
n

i=1
+ ∏ |Xi|

n

i=1
 

30 [−10,10]n 0 

Schwefel 
1.2 𝑓3(X) = ∑ (∑ Xj

i

j−1
)

2n

i=1

 
30 [−100,100] n 0 

Schwefel 
2.21 

𝑓4(X) = 𝑚𝑎𝑥{|Xi|, 1 ≤ i ≤ n} 30 [−100,100] n 0 

Rosenbrock 
𝑓5(X) = ∑ [100(Xi+1 − Xi

2)2 + (Xi − 1)2]
n−1

i=1
 

30 [−30,30] n 0 

Step 
𝑓6(X) = ∑ ([Xi + 0.5])2

n

i=1
 

30 [−100,100] n 0 

Quartic 
𝑓7(X) = ∑ iXi

4 + random[0,1)
n

i=1
 

30 [−1.28,1.28] 

n 
0 

Schwefel 
𝑓8(𝑥) = −∑ (𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|))

𝑛

𝑖=1
 

30 [−500,500] n −12569.5 

Rastrigin 
𝑓9(𝑥) = ∑ (𝑥𝑖

2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10)2
𝑛

𝑖=1
 

30 [−5.12,5.12] 

n 
0 

Ackley 

𝑓10(𝑥) = −20𝑒𝑥𝑝(−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
) − 𝑒𝑥𝑝 (

1

𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑒 

30 [−32,32] n 0 

Griewank 
𝑓11(𝑥) =

1

4000
∑ (𝑥𝑖 − 100)2

𝑛

𝑖=1
− ∏ 𝑐𝑜𝑠 (

𝑥𝑖−100

√𝑖
) + 1

𝑛

𝑖=1

 
30 [−600,600] n 0 

Penalized 
𝑓12 =

𝜋

𝑛
{10𝑠𝑖𝑛2(𝜋𝑦1) + ∑ (𝑦𝑖 − 1)2[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖 + 1)] + (𝑦𝑛 − 1)2

𝑛−1

𝑖=1
} + ∑ 𝑢(𝑥𝑖 , 10,100,4)

30

𝑖=1
 

30 [−50,50] n 0 

Penalized2 
𝑓13(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)2𝑝[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] + (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥30)]

29

𝑖=1
}

+ ∑ 𝑢(𝑥𝑖 , 5,10,4)
30

𝑖=1
 

30 [−50,50] n 0 

Foxhole 

𝑓14(x) =

(

 
1

500
+ ∑

1

j + ∑ (xi − aij)
6

2

i=1

25

j=1 )

 

−1

 

2 [−65.536, 
65.536] n 

0.998 
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Table 3: HYBRID AND COMPOSITION TEST FUNCTIONS  

 

 

 

 

 

 

 

 

 

Several algorithms have been utilized for comparison, including the differential evolution algorithm and particle swarm 
optimization (PSO) algorithm. We meticulously describe the parameters and operational stages of the TBO algorithm 
alongside different methods. For each technique, vital parameters such as DE's  
𝛽𝑚𝑖𝑛and 𝛽𝑚𝑎𝑥, PSO's cognitive and social coefficients (c1,c2) along with its inertia weight, and the specific characteristics of 
GWO, including its adaptive coefficients (c,a), are distinctly explained. For TBO, parameters such as hunt maturity (Hm), 
the initial search domain (SD0), and the probability of exploration (p) are emphasized to describe the algorithm's fine method 
for balancing exploration and exploitation. These parameters, established on comprehensive experimentation, are essential 
to the operation of each algorithm. 

 

4. INVESTIGATING TBO CAPABILITY 

F1-F7 are unimodal test functions, meaning that they have only one global best solution. They are widely used in the swarm 
intelligence optimization community to evaluate the exploitation capability of algorithms. Table 4 shows the average, rank 
and standard deviation of the fitness values for the TBO algorithm on these functions. Table 4 shows that the TBO algorithm 
outperforms the other seven optimization algorithms on the classical test functions F1-F3, F5 and F7, as measured by the 
average, rank and standard deviation. Specifically, the TBO algorithm's mean fitness value is closer to the theoretical 
optimum than the other algorithms for the mentioned functions, indicating that the TBO algorithm has high exploitation 
ability. While the TBO algorithm does not achieve the best average fitness value for F4 and F6, it still ranks second behind 
the DBO algorithm. 

Kowalik 

𝑓15(x) = ∑ [ai −
x1(bi

2 + bix2)

bi
2 + bix3 + x4

]

211

i=1

 

4 [−5, 5] n 3.075 × 
10−4 

Six Hump 
Camel 𝑓16(x) = 4x1

2 − 2.1x1
4 +

1

3
x1

6 + x1x2 − 4x2
2 + 4x2

4 
2 [−5, 5] n −1.0316 

Branin 
𝑓17(x) = (x2 −

5.1

4𝜋2
x1

2 +
5

𝜋
x1 − 6)

2

+ 10(1 −
1

8𝜋
) 𝑐𝑜𝑠x1 + 10 

2 [−5, 10] × 
[0, 15] 

0.398 

Goldstein-
Price 

𝑓18(x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x1
2 − 14x2 + 6x1x2+3x2

2)] × [30 + (2x1 + 1 − 3x2)
2

(18 − 32x1 + 12x1
2 + 48x2 − 36x1x2 + 27x2

2)]
 

2 [−2, 2] n 3 

Hartman 3 

𝑓19(x) = −∑ 𝑒𝑥𝑝 [−∑ aij(xj − pij)
2

3

j=1
]

4

i=1

 

3 [0, 1] n −3.86 

Hartman 6 

𝑓20(x) = −∑ 𝑒𝑥𝑝 [−∑ aij(xj − pij)
2

6

j=1
]

4

i=1

 

6 [0, 1] n −3.322 

Shekel 5 
𝑓21(x) = −∑ |(X − ai)(X − ai)

T + ci|
−1

5

i=1
 

4 [0, 10] n −10.1532 

Shekel 7 
𝑓22(x) = −∑ |(X − ai)(X − ai)

T + ci|
−1

7

i=1
 

4 [0, 10] n −10.4028 

Shekel 10 
𝑓23(x) = −∑ |(X − ai)(X − ai)

T + ci|
−1

10

i=1
 

4 [0, 10] n −10.5363 

Name Function 𝒏 Range Optimum 

𝑓24(x) Hybrid Function 1(𝑁 = 3) 30 [−100,100]n 1700 

𝑓25(x) Hybrid Function 2 (𝑁 = 3) 30 [−100,100]n 1800 

𝑓26(x) Hybrid Function 3 (𝑁 = 4) 30 [−100,100]n 1900 

𝑓27(x) Hybrid Function 4 (𝑁 = 4) 30 [−100,100]n 2000 

𝑓28(x) Hybrid Function 5(𝑁 = 5) 30 [−100,100]n 2100 

𝑓29(x) Hybrid Function 6 (𝑁 = 5) 30 [−100,100]n 2200 

𝑓30(x) Composition Function 1 (𝑁 = 5) 30 [−100,100]n 2300 

𝑓31(x) Composition Function 2 (𝑁 = 3) 30 [−100,100]n 2400 

𝑓32(x) Composition Function 3 (𝑁 = 3) 30 [−100,100]n 2500 

𝑓33(x) Composition Function 4 (𝑁 = 5) 30 [−100,100]n 2600 

𝑓34(x) Composition Function 5 (𝑁 = 5) 30 [−100,100]n 2700 

𝑓35(x) Composition Function 6 (𝑁 = 5) 30 [−100,100]n 2800 

𝑓36(x) Composition Function 7 (𝑁 = 3) 30 [−100,100]n 2900 

𝑓37(x) Composition Function 8 (𝑁 = 3) 30 [−100,100]n 3000 
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Table 4: COMPARISONS OF RESULTS FOR UNIMODAL FUNCTIONS 

ASO BWO WHO GWO BOA FA DE PSO BAT TBO Metric F 

3.45E−12 1.55E−8 2.69E−7 7.33E−8 1.22E−4 5.82564 1.0069 5.23E−4 1.06E−4 1.46E−14 AVG F1 

8.28E−6 1.12E−6 2.95E−6 1.72E−4 8.23E−3 2.99856 0.8753 7.55E−4 2.88E−4 4.56E−7 STD 

2.14 3.17 4.87 4.53 5.86 9.52 7.69 6.92 6.85 1.27 RANK 

5.12E−10 6.33E−10 5.29E−11 3.91E−9 0.02569 5.7523 1.8536 2.83E−4 9.5682 2.86E−12 AVG F2 

5.07E−8 6.54E−6 4.39E−8 6.03E−5 4.11E−3 0.5692 0.7853 3.72E−4 5.1568 1.06E−9 STD 

2.74 3.78 2.18 4.53 6.72 8.16 7.82 5.86 9.34 1.12 RANK 

83.6954 9.68531 0.09920 0.09025 0.00898 36.0263 28.8536 185.1475 15.6952 0.007625 AVG F3 

52.6986 0.96635 0.001563 0.008632 0.086473 12.6359 5.75863 120.4269 5.00258 0.563227 STD 

7.76 6.42 4.18 3.77 2.84 8.07 7.53 8.23 6.97 2.19 RANK 

2.65E−08 7.76E−09 6.56E−10 2.39E−06 0.008631 1.00691 1.230064 12.14402 1.003695 3.83E−09 AVG F4 

9.16E−06 2.56E−07 6.55E−07 8.23E−03 7.49E−03 0.22653 0.52392 10.75263 0.058625 6.73E−05 STD 

2.65 1.83 1.28 3.67 4.55 5.93 6.75 7.53 5.89 1.16 RANK 

22.5863 28.8536 24.14362 26.0334 160.61 82.0983 189.3269 113.8531 121.6963 21.823 AVG F5 

0.86953 0.68532 0.4568 2.22361 120.8543 156.057 144.112 136.8314 132.4621 0.40369 STD 

2.73 3.76 2.92 3.88 6.84 5.36 7.06 5.79 6.23 2.26 RANK  

2.56E−19 2.56E−18 1.66E−18 6.59E−16 1.50265 26.48632 21.0961 0.09522 12.02631 1.08E−19 AVG F6 

6.74E−11 5.88E−12 1.24E−12 1.77E−11 0.02365 5.63409 1.44603 0.002387 0.88237 9.23E−11 STD 

2.18 2.54 2.77 3.82 5.56 7.42 7.18 4.88 6.16 2.34 RANK 

0.039526 0.02632 0.02963 0.03056 0.076329 0.01169 0.079362 0.077362 0.039856 0.01153 AVG F7 

0.014269 0.01526 0.04436 0.086234 0.028623 0.86392 0.013652 0.016026 0.086362 0.00914 STD 

4.29 3.23 3.25 4.16 5.19 2.97 5.68 5.34 4.66 2.62 RANK 

 

Table 5: COMPARISONS OF RESULTS FOR MULTIMODAL FUNCTIONS 

ASO BWO WHO GWO BOA FA DE PSO BAT TBO Metric F 

−7432.18 −7521.66 −7521.66 −5672.37 −5583.14 −5414.83 −5032.9

8 

−5207.4

4 

−5680.93 -9273.23 AVG F8 

157.1483 488.98 388.16 533.98 486.07 563.53 703.18 506.16 632.11 286.265 STD 

1.88 2.39 2.24 3.88 5.69 5.86 6.41 6.12 3.67 1.63 RANK 

1.47E−8 4.12E−16 1.86E−10 2.57E−10 6.17E-

12 

3.93E-6 1.44E-3 3.37E−9 4.03E-4 5.03E−1

6 

AVG F9 

5.66E−4 3.76E−5 9.11E−4 5.92E−3 6.09E−0

4 

1.3621 5.53E−0

3 

7.91E−3 8.16E−0

2 

4.08E−6 STD 

4.64 1.26 3.92 3.96 3.72 5.83 6.82 4.37 6.69 1.22 RANK 

2.95E−11 9.11E−6 3.93E−9 6.81E−9 6.33E−8 0.00892 0.05369 5.79E−7 0.00439 4.63E−1

3 

AVG F10 

4.69E−7 8.16E−5 7.44E−7 6.86E−8 9.06E−5 0.94627 0.80261 2.64E−4 0.08615 6.73E−5 STD 

2.17 4.84 3.18 2.76 3.83 6.18 6.26 4.65 5.83 1.98 RANK 

9.16E−9 8.54E−5 8.94E−15 8.23E−9 0.01683 364E−8 0.01793 8.94E−1

0 

3.64E−6 8.94E−1

6 

AVG F11 

2.08E−6 5.11E−3 3.14E−12 1.92E−6 0.96315 1.29E−5 0.05636 8.63E−5 8.76E−3 6.18E−1

0 

STD 

2.44 4.09 1.75 2.48 6.83 2.83 5.66 2.09 3.64 1.67 RANK 

5.14E−23 6.08E−20 2.44E−22 2.78E−11 6.08E−11 9.01E−9 1.29836 0.22457
3 

0.036982 3.78E−2

4 

AVG F12 

6.54E−17 2.16E−16 5.02E−18 6.11E−8 2.59E−6 5.69E−5 0.36952 0.51036

9 

0.864231 2.44E−1

6 

STD 

1.74 3.42 2.43 3.86 4.11 4.84 6.73 6.16 5.66 1.86 RANK  

6.16E−22 8.92E−23 8.32E−21 5.88E−16 6.86E−15 0.07362 0.33582 0.18693 0.039206 8.16E−2

3 

AVG F13 

6.67E−15 9.74E−11 5.16E−20 6.94E−11 2.08E−11 0.06695 0.77361 0.89032 0.001755 8.41E−1

2 

STD 

2.21 1.36 2.93 3.23 3.49 4.81 6.93 5.38 4.63 1.48 RANK 

 

We prioritized three required parameters—computation error, standard deviation, and algorithm rank—each of which 
provides a unique understanding of algorithm performance. Computational error, calculated as the conclusive distinction 
between the algorithm's output and the known optimal solution, is a straightforward measurement of accuracy, emphasizing 
the algorithm's precision in determining optimal solutions. The standard deviation, which is derived from the variability in 
results across numerous runs, distinguishes the algorithm's consistency and reliability under various initial states. Finally, 
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the algorithm rank determined via a comparative analysis of performance metrics across all algorithms under consideration 
feeds a hierarchical positioning that recalls each algorithm's general efficacy in solving optimization problems. These 
parameters collectively suggest a multifaceted evaluation framework highlighting quantitative performance and facilitating 
a qualitative comparison among competing algorithms. 

We approximate the performance of different optimization algorithms, including TBO, across standardized unimodal 
functions. The effectiveness of each algorithm is quantitatively evaluated via parameters such as the average computation 
error (AVG), standard deviation (STD), and algorithm rank (RANK) for each function (F). The AVG computation error 
provides insight into the algorithm's accuracy, demonstrating its proximity to the optimal solution. The STD contemplates 
the consistency of the algorithm's performance, conveying an awareness of its reliability across numerous runs. Finally, the 
RANK algorithm, resolved via a comparative analysis of these metrics, shows a significant difference, with lower values 
indicating excellent performance. This systematic evaluation emphasizes the TBO algorithm's outstanding precision and 
robustness, as evidenced by its highest ranks and smallest computational errors. It also highlights the importance of these 
metrics in discerning each algorithm's nuanced capabilities within the landscape of optimization challenges. 

Table 6: COMPARISONS OF RESULTS FOR LOW-DIMENSIONAL FUNCTIONS 

ASO BWO WHO GWO BOA FA DE PSO BAT TBO Metric F 

0.997632 1.022847 1.08526 4.2631 2.8957 3.8756 1.6852 1.4832 16.35 0.998692 AVG F14 

7.40E−11 6.76E−15 0.92654 3.5769 1.6695 2.1836 0.9862 0.4886 6.6352 1.63E−10 STD 

1.18 1.98 2.24 5.06 4.55 4.86 3.46 3.27 6.48 1.08 RANK 

5.88E−05 6.17E−04 2.95E−04 1.12E−03 6.19E−03 7.56E−04 5.54E−

03 

2.99E−

04 

3.46E−

02 
4.11E−06 AVG F15 

4.95E−04 6.99E−04 1.09E−04 9.01E−03 5.77E−03 1.61E−03 2.33E−

03 

5.46E−

03 

3.97E−

03 

6.17E−05 STD 

2.59 3.28 2.96 4.18 4.29 3.44 4.83 3.11 6.18 2.73 RANK 

−1.03163 −1.03163 −1.03103 −1.03E+
0 

−1.03E+0 −1.03E+0 −1.0E+
0 

−1.03E
+0 

−6.67E
−1 

−1.03163 AVG F16 

3.55E−1

5 

1.83E−15 7.93E−15 8.61E−16 9.02E−15 1.03E−15 1.15E−

14 

1.86E−

03 

0.8962 6.14E−16 STD 

1.28 1.22 1.39 2.14 3.18 4.66 3.73 4.74 5.02 1.16 RANK 

0.397892 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−01 3.98E−
01 

4.00E−
01 

3.98E−
01 

0.397844 AVG F17 

0 9.63E−08 6.19E−12 6.77E−15 4.66E−15 8.06E−15 1.14E−

8 

7.01E−

06 

5.44E−

5 

0 STD 

2 4.12 3.89 3.42 3.18 3.58 4.18 4.25 4.73 1 RANK 

3.00E+0

0 

3.00E+00 3.00E+00 3.03E+00 3.00E+00 3.00E+00 3.00E+

00 

3.10E+

00 

1.26E+

01 

3.00E+00 AVG F18 

5.68E−18 0 0 5.66E−08 0 0 0 2.98E−
03 

23.58 0 STD 

1.54 1.76 1.34 1.68 1.19 1.23 1.17 5.63 6.94 1.06 RANK  

−3.86341 −3.862 −3.8619 −3.8608 −3.8626 −3.8641 −3.861 −3.861 −3.844 −3.86442 AVG F19 

3.92E−12 0.00586 5.43E−04 5.98E−04 8.16E−03 3.16E−15 4.11E−

13 

4.52E−

04 

0.14826 5.23E−11 STD 

1.14 4.96 4.53 4.66 3.87 3.42 3.19 2.27 2.44 1.28 RANK 

−3.322 −3.322 −3.322 −3.322 −3.24922 −3.27088 −3.268

2 

−3.140

5 

−3.264

4 
−3.322 AVG F20 

2.17E−14 6.08E−14 8.07E−14 6.11E−15 0.028146 0.008292 6.98E−0
5 

9.01E−0
6 

5.44E−0
7 

2.01E−15 STD  

1.32 1.87 1.58 1.37 3.52 2.33 2.54 4.81 2.67 1.46 RANK  

−8.78362 −10.126 −10.1688 −8.78265 −7.82056 −8.53264 −9.636

29 

−5.885

6 

−4.440

6 

−9.61698 AVG F21 

2.47263 0.43586 0.072561

4 
3.85649 4.32156 2.0895 1.08873

3 
1.28655 1.6692 0.23682 STD  

−10.1532 1.83 1.57 2.72 3.42 2.86 2.19 3.96 4.52 2.91 RANK  

−10.4029 −10.4011 −10.4018 −10.4022 −8.90265 −9.78226 −9.880

36 

−7.530

61 

−6.005

1 
−10.4029 AVG F22 

6.52E−13 7.37E−8 1.03695 1.04E−4 9.01E−4 1.08621 0.98025 2.66381 14.5621

4 
2.76E−14 STD  

2.34 2.87 2.44 2.38 −9.152336 3.38 3.24 4.09 5.88 2.17 RANK  

−10.5317 −10.0344 −10.5361 −10.0986 −8.58233 −9.88263 −10.50
18 

−6.635
84 

−6.120
6 

−10.5365 AVG F23 

6.17E−14 0.927655 0.00526 0.084623 1.869422 2.86234 3.07E−

10 

3.84726 4.33156 5.02E−12 STD  

1.46 2.62 1.42 2.71 4.05 3.83 2.86 4.28 4.92 1.33 RANK  
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Table 7: COMPARISONS OF RESULTS FOR HYBRID FUNCTIONS 

ASO BWO WHO GWO BOA FA DE PSO BAT TBO Metric F 

406.746 397.7826 399.189 484.592 411.125 469.661 429.558 751.367 1286.36
5 

396.17 AVG F24 

15.6321 69.23594 82.694 141.026 66.7068 249.366 61.872 72.586 148.568 43.862

5 

STD 

2.43 1.66 1.87 476.1256 2.83 3.62 3.31 5.38 7.61 1.28 RANK 

910.305 912.782 910.08 985.635 946.9825 951.526 916.026 1026.44 1262.36 908.15
9 

AVG F25 

3.92E−12 8.03E−06 9.15E−07 25.6215 24.2569 12.8423 0.98264 21.038 48.621 5.11E

−05 

STD 

1.85 2.09 1.97 3.84 4.08 3.26 2.67 5.61 6.78 1.63 RANK 

1911.82 910.982 910 962.218 924.068 938.89 912.26 1105.81 1476.02
3 

910.85
3 

AVG F26 

0.62581 0.025916 0.00658 20.4193 18.9026 12.004 0.51236 28.153 38.1406 0.0068
21 

STD 

2.77 2.41 1.42 4.11 3.92 4.38 2.85 5.09 6.81 1.27 RANK 

910.143 914.521 910 929.8034 927.4602 946.6695 916.122 1188.23
1 

1436.84
1 

910 AVG F27 

8.07E−16 2.77E−09 6.82E−14 9.03E−04 0.00623 10.03652
6 

0.00186
4 

16.5213
8 

58.5626 2.27E
−16 

STD 

1.89 2.21 1.38 3.14 2.69 4.51 2.58 4.78 5.11 1.24 RANK 

874.0214 862.819 860.2561 1411.368 1403.811 988.5241 1501.63
1 

1706.36
9 

1988.54
52 

861.25
6 

AVG F28 

0.02401 0.69531 0.862357 59.5463 14.5217 185.369 55.317 21.2586 545.326 0.0264
4 

STD 

3.05 2.89 1.24 4.63 4.51 3.83 5.84 6.67 6.88 1.38 RANK  

558.8863 558.7703 559.0268 1898.561 1806.641 1952.361 1811.44
1 

2088.14
3 

2202.86
1 

558.10
23 

AVG F29 

0.088712 0.53621 12.06842 11.2576 4.8513 6.8418 8.9513 32.4156 25.6214
7 

0.0574
6 

STD 

1.74 1.46 2.09 4.83 3.87 5.12 4.51 6.14 6.74 1.25 RANK 

 

Unlike unimodal functions with one global best solution, multimodal functions have many local minima, making them 
difficult to optimize. As the dimension of the search space increases, the number of local optima in multimodal functions 
grows exponentially. Therefore, multimodal functions are useful for evaluating the exploration ability of optimization 
algorithms. Table 4 shows the results of the TBO algorithm on six multimodal test functions. For fixed-dimensional 
multimodal functions, the performances of all the algorithms are similar, but the TBO algorithm remains competitive. 

4.1 Time complexity analysis 

The computational complexity of the TBO algorithm is affected by three primary operations: the generation of the initial 

population, the evaluation of solution fitness, and the updating of the TB' state. Considering that N, T, and D represent the 

initial population size, maximum number of iterations, and number of dimensions, respectively, the sophistication of 

population generation is provided by N×D. In the updating phase across straight iterations, the complexity is represented 

as O(T×(4×N×D+N×D×𝐻𝑚𝑎𝑥)). It is essential to emphasize that coefficient 4 is utilized because the population experiences 

at least four differences in each iteration. The term O (N× D) can be missed, resulting in the computational complexity of 

the TBO algorithm being marked as O (T× (4×N×D+N×D×𝐻𝑚𝑎𝑥)). 

 

4.2 Evaluation of error and convergence 

A preferred evaluation function can experience judgments pursued by implementing TBO and other metaheuristic 

algorithms. The resulting average optimal computation error rates across iterations are then shown in the output. Figure 5 

(a-f) illustrates the application of the proposed algorithm and other metaheuristic algorithms on representative evaluation functions. 

These graphs consider uniformity in the population size, number of dimensions, and iteration number, which are set at 3, 10, and 100, 

respectively. Furthermore, each experiment was iterated 30 times. The graphs show six representative evaluation functions, permitting 

a comparison of the optimal computation error rates over iterations between TBO and other metaheuristic algorithms. Notably, the results 

indicate that the average global error rate of the optimal estimation for the tiger beetle algorithm is consistently lower than that for the 

alternatives. Further analysis indicated a significant reduction in the optimal estimation error rate within the TBO. 

A straight reduction in the error rate implies that the TBO efficiently instructs solution populations towards the optimal 

solution with less iteration and acceleration. Especially significant is the observation that the TBO algorithm's error rate in 
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the last iteration is less than that of most of the approximated algorithms. In specific combined metaheuristic algorithms, 

such as Ackley, the deduction slope of the error rate is moderately satisfactory. This tolerable squeeze can be attributed to 

some experiments entangling the algorithm to local optima. The unique attribute of the TBO, wherein it permanently lowers 

the error slope across different functions, offers its strength against being trapped in local optima. This highlights its ability 

to bypass local optima and its high brightness in guiding optimal solutions. 

 

4.3 Statistical tests 

For the statistical analysis of the TBO and further approximated algorithms, three parameters are used: the computation 

error of the global optimum on average, the standard deviation (SD) of tests, and the algorithm's rank in discovering the 

optimal solution. The results for low-dimensional, unimodal, and multimodal test functions and combined functions are 

presented in Table 4 and Table 5. Each investigation strengthens a population size of ten and spans 100 iterations, with the 

average error rate describing the global optimal estimation error in the last iteration of the algorithms. A lower average 

error rate indicates more unrealistic accuracy, and the proposed TBO produces a lower error rate for 29 out of 37 evaluation 

functions. This suggests that the TBO shows a lower error in 78.37% of the cases when corresponding to other algorithms. 

Regarding the standard deviation, a vital metric for algorithm evaluation, the TBO always has a lower standard deviation. 

A more minor standard deviation indicates a more stable algorithm for finding the optimal solution. The discussion on 

reducing the standard deviation in the TBO for evaluating its strength is magnified further in the subsequent sections. The 

Wilcoxon rank test is used in the investigations to evaluate the algorithms. 

 

In this examination, when the propensity of the chosen number is 1, the algorithm minimizes errors in most experiments. 

Accordingly, the TBO always ranks first in most evaluation functions. For functions 1-7 (Table 4), the TBO surpassed the 

others in 85.71% of the cases. For evaluation functions 8-13 (Table 5), the proposed algorithm achieved the best ranking in 

66.66% of the cases. For functions 14-23 (Table 6), the proposed method ranks 60% more reasonably than the other methods. 

Finally, for functions 24 to 29 (Table 7), the proposed algorithm achieved the highest performance in 66.67\% of the cases 

compared to the other algorithms. 

 

The TBO algorithm consistently shows lower standard deviations, highlighting its stability and reliability in choosing 

optimal solutions across repeated tests. The reduction in standard deviation with TBO, which is expressive of its robust 

performance, is examined in depth in later sections. According to the Wilcoxon rank-sum test for algorithm comparison, 

the TBO algorithm consistently outperforms the other algorithms in 85.71% of the cases for functions 1-7 and 66.66% for 

functions 8-13 and maintains strong performance across all the considered functions. This analysis highlights the 

effectiveness of TBO in different scenarios and its potential as a reliable and accurate tool for overcoming optimization 

challenges. 

 

The results highlight the exceptional precision and robustness of TBO for hybrid functions. It consistently outperforms 

other algorithms with the lowest average error rates and standard deviations, highlighting its excellent optimization ability 

in complex landscapes. TBO performed the best on functions F24 and F25, demonstrating its exceptional performance in 

guiding multimodal functions with complex global and local optima. 

Similarly, TBO exhibited outstanding performance in the composition functions, mainly in functions F30 and F31. Its 

average scores and tiniest standard deviations emphasize its significance in solving composition challenges, which are 

known for their complexity due to mixing several benchmark functions into a single optimization problem. 

 

For functions 30-37 (Table 8), the suggested algorithm achieves better rankings in more than 50% of the cases. Across 

evaluation functions 1-37, the TBO algorithm always shows higher accuracy than the atom search algorithm. Although 

Black Widow outperforms the suggested algorithm in terms of obtaining the optimal solution in several examples, a 

comprehensive examination and investigation of the ranks of these algorithms across dimensions would help evaluate the 

stability of the proposed algorithm and other algorithms. 

 

In Figure 6, the average rank of the presented algorithm across three dimensions (50, 100, and 200) is displayed regarding 

the mean error index compared to other algorithms. Figure 7 further depicts the rank of the proposed algorithm and different 

metaheuristic algorithms established on the standard deviation index. An all-around investigation of the graphs indicates 

that the presented algorithm always achieves an outstanding rank in computing errors and standard deviations across 50, 

100, and 200 dimensions. The higher rank of the suggested algorithm in the average optimal mistake represents its improved 

accuracy. Moreover, its superior ranking in standard deviation highlights the embellished stability of TBO when handling 

problems within multidimensional spaces. 
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The statistically significant p values acquired from t tests—0.0012 for cybersecurity and data protection, 0.004 for medical 

image segmentation, and 0.012 for reservoir well placement—show that the TBO algorithm significantly improved the 

ability to solve real-world optimization problems across these domains. These results characterize the outstanding 

performance of TBO over traditional algorithms and highlight its applicability and usefulness in specific and critical fields. 

The low p values suggest that the advancements attributed to the TBO algorithm are highly unlikely due to random chance. 

This highlights its potential as a universal and effective tool for tackling complex cybersecurity, medical image analysis, 

and energy resource management optimization challenges. 

 

 
Table 8: COMPARISONS OF RESULTS FOR COMPOSITION FUNCTIONS 

ASO BWO WHO GWO BOA FA DE PSO BAT TBO Metric F 

2608.651 2537.895 2539.548 2651.156 2751.05

8 

3412.18 2557.52

6 

2697.56

8 

2841.3 2536.4

12 

AVG F30 

1.14621 1.05864 0.05132 1.14236 16.5421 19.5628 0.85962 18.8146 25.6791 0.5236

1 

STD 

1.97 1.77 1.86 2.84 3.65 5.06 2.29 4.37 5.66 1.64 RANK 

2633.171 2598.654 2601.667 2855.695 2658.51

4 

2792.34 2873.66 2644.68

1 

2705.68

4 

2598.1

405 

AVG F31 

2.66530 0.12074 0.09842 4.25902 0.9806 6.67026 12.086 9.8065 12.0984 0.0588

36 

STD 

1.62 1.54 1.68 6.09 2.53 4.26 5.82 2.49 3.86 1.86 RANK 

2701.453 2703.145

2 

2704.006 2711.016

2 

2708.85

3 

2720.81

6 

2725.61

8 

2726.69

05 

2882.14

2 

2702.5

41 

AVG F32 

1.0981 0.99563 2.6582 2.08433 1.5257 2.56148 1.8362 9.0048 1.2514 0.0154

8 

STD 

1.48 1.77 2.29 3.68 2.93 4.11 4.68 4.73 5.38 1.59 RANK 

2701.089 2709.542 2701.453 2704.493 2728.18 2711.25

61 

2716.50

4 

2708.51

7 

2788.56

1 

2700.0

12 

AVG F33 

0.90654 3.71695 0.069523 1.9832 9.0145 2.5247 3.6614 12.5873 14.5913 1.5843 STD 

1.72 3.1435 2.06 2.44 2705.84

2 

2.17 2.76 4.25 5.06 1.89 RANK 

3124.164 3134.443 3136.982

6 

3332.943

2 

3416.02

57 

3236.67

15 

3297.15

36 

3377.94

6 

3253.47

16 

3142.1

627 

AVG F34 

28.6217 10.2546 1.6527 8.2657 3.67452 16.8463 33.3541 18.2098 35.5493

3 

12.542

3 

STD 

2.07 2.71 2.14 2.09 3.69 3.18 3.47 4.58 5.61 2.24 RANK  

4795.1736 3866.145

2 

3845.324 3888.264 3872.21

45 

5544.84

32 

5028.42

61 

7045.57

8 

6238.52

3 

4001.9

84 

AVG F35 

286.4972 15.5432 98.2545 88.64215 153.541

26 

1596.64

125 

207.465

3 

251.374

5 

63.3584 121.54

63 

STD 

3.83 1.26 1.22 2.51 2.48 4.87 4.69 6.85 5.12 2.44 RANK 

7367.5803 7451.716

3 

7446.026

7 

8859.482

6 

8984.36

94 

10087.3

64 

14023.8

42 

13774.36 12125.8

02 

7365.2

53 

AVG F36 

112.543 83.2564 62.3478 134.5843 124.548

6 

96.6745 102.564 152.264 186.945 52.461

8 

STD  

2.57 3.42 2.88 3.83 4.52 4.88 5.52 6.87 6.93 2.18 RANK  

12012.96 1499.433 18247.94

1 

16364.15

3 

22715.3

6 

15966.3

4 

34563.80

6 

148895.

36 

16446.62

1 

11734.6

8 

AVG F37 

1597.264 1605.34 1352.49 599.842 2594.36 486.341 2543.145 1705.67 1563.412 856.32

1 

STD  

2.58 3.23 4.86 3.77 4.48 3.24 5.98 6.38 6.79 2.47 RANK  

 

 

4.4 Iteration-based search analysis 

One of the essential approaches for evaluating metaheuristic algorithms, including the tiger beetle algorithm, is the 

utilization of history diagrams. Figure 8 displays the behaviour of the tiger beetle algorithm in the first and middle iterations 

for evaluation functions F1, F9, F10, and F11. In the first iteration, population members are dispersed in the random 



 

  

 

32 Saihood et al, Mesopotamian Journal of Cybersecurity Vol.2024, 17–46 

problem space. In the next iterations, the tiger beetle algorithm approaches the global optimum at the coordinates x = 0 and 

y = 0. In complex functions such as F9, F10, and F11, the algorithm recognizes local optima and instructs the population 

toward the global optimum solution. 

 

 
 

 

 

 

Figure 5: Output of implementing the proposed method on several evaluation functions in 3D mode. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5: Output of implementing the proposed method on several evaluation functions in 3D mode. 
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Figure 6: Evaluation of the presented algorithm's ranking in terms of error estimation relative to other algorithms. 

 
Figure 7: Place of the solution in the initial iteration (left) and its place in the middle iteration (right). 
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Figure 8: Initial iteration solution place (left) and place in succeeding middle iterations (right). 
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4.5 Analysing the worst solution 

The iteration-based trajectory acts as a worthwhile index for assessing metaheuristic algorithms. Figure 9 shows the trajectory 
index [37] across iteration processes for evaluation functions F1, F9, F10, and F11. Examining the trajectory graphs 
demonstrates an advancement in the rate of the worst members and solutions within the Tiger Beetle algorithm. The space 
between the worst solution and the actual optimum decreases as the number of iterations increases. The convergence of the 
trajectory graph in a linear manner with zero ramps implies that the members of the worst population in the tiger beetle 
algorithm are strategically decreasing their distance from the optimal solution. 

4.6  Analysis of fitness of the whole population 

Figure 9 depicts the average fitness of the population associates across iterations in the TBO for evaluation functions F1, F9, 
F10, and F11. The investigation of middle fitness diagrams for all populations in the algorithm indicates a uniform decrease 
in movement, revealing a straight decrease in the average fitness. Since the objective function is of the minimization kind, 
the critical movement in this diagram illustrates progress in the algorithm's fitness. 

Reducing the average error of the population members within the TBO recommends that the population effectively guide its 
members toward the global optimum, slowly reducing their distance from it. 

5. REAL-WORL APPLICATION PROBLEMS 

5.1 Cybersecurity and Data Protection 

Among the sophisticated forms of malware are polymorphic viruses, which are adept at changing their behaviour 

while maintaining the same essential functions. We propose implementing a machine learning-based malware 

analysis system to counteract these evolving threats. This system comprises three integral modules: data 

processing, feature extraction, and malware detection. By leveraging machine learning capabilities, this 

approach aims to enhance the efficiency and accuracy of malware identification and mitigation strategies. 

In contrast to the machine learning approach based on MPSO utilized in [49], our study opted for the proposed 

TBO to assess its performance in terms of accuracy, detection rate, and response time. We employed both 

honeypots deployed in real-world scenarios and publicly accessible benchmarked datasets to validate the 

proposed model utilized in [49]. 

In this study, we utilized TBO's fitness function to select the optimal number of features from each group. The 

main goal was to reduce errors in classification by calculating the balanced accuracy. With this in mind, the 

algorithms at the core of our study were utilized to perform the statistical analyses. Our primary focus was to 

evaluate the efficacy of the proposed TBO model compared to that of other modern models through 

experimentation. A specialized detection algorithm was designed to identify malware and was tested against 

both current and improved models. In Table 9, the performance metrics of our approach are compared to those of 

existing methods. 

 
Table 9: PERFORMANCE METRICS OF THE PROPOSED METHOD COMPARED TO THOSE OF EXISTING METHODS  

Detection Method Detection Rate Task Completion time Accuracy 

ML-MPSO [49] 84.3 98 89 

ACO-LSTM[50] 89.1 101 87.9 

RBBO[54] 82.7 98 90.7 

Deep Learning [52] 88.1 106 92.5 

ANN [53] 87.4 103 91.2 

ML-TBO (Proposed) 91.8 87 93.8 

 

According to Table 9, the ML-TBO method outperforms other detection methods in accurately identifying malware. With 

an impressive detection rate of 91.8%, it successfully targets a considerable number of malware instances, exhibiting its 

exceptional efficacy. This surpasses the performance of widely used methods such as ML-MPSO, ACO-LSTM, RBBO, 

deep learning, and ANN. 

This approach is quite efficient since this task is processed in a very short duration of 87 seconds, hence signalling rapid 

and efficient processing. ACO-LSTM had shorter task completion times than did RBBO, deep learning, and ANN. 

Furthermore, ML-TBO achieves a very high accuracy of 93.8%, indicating its ability to classify malware samples with a 

very high proportion of precision. The proposed method outperforms the ML-MPSO, ACO-LSTM, RBBO, deep learning, 

and ANN methods in terms of accuracy. 
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5.2 Medical Image Segmentation 

A quintessential application within the domain of medical image segmentation is the use of metaheuristic algorithms. 

Clustering methods have been reported that use these algorithms to interpret diseases such as brain tumors and breast 

cancer. Fuzzy clustering (FC) is used for segmentation. Its accuracy is appropriate for the selection of the number of cluster 

centers or the shape of clusters. However, there still has to be definite processes proposed for this selection. Clustering 

methods, including fuzzy clustering, surround direct clustering and insensitivity to image noise, have significant benefits. 

Unlike neural networks, these methods do not have a training phase. 

 

A critical challenge in the FC algorithm for medical image segmentation of fibs is the optimal selection of cluster depths. 

The accuracy of medical image segmentation employing fuzzy clustering can be significantly improved by optimally 

selecting cluster centers. The nature of this optimization lies in the optimal selection of the fuzzy algorithm. Preparing 

medical image segmentation with fuzzy clustering as an optimization problem involves specifying the objective function 

as the error rate in image segmentation. 

 

In this study, the TBO algorithm is employed to determine the optimal membership matrices to identify cluster centers in 

the fuzzy clustering algorithm for chest image segmentation. In this proposed method, specific membership matrices are 

ministered as solutions and considered members within the population of the tiger beetle algorithm. The algorithm 

endeavors to optimize the arrays within the membership matrices, employing the tiger beetle optimization algorithm to 

select more effective cluster centers. The proposed segmentation method is anticipated to exhibit increased accuracy by 

optimizing cluster center selection, enabling the identification of unhealthy tissue edges with reduced errors. In this method, 

each membership matrix is treated as a tiger beetle, as specified in Equation (13): 

 

                                                                           𝑇𝐵𝑖 = [𝑈𝑛.𝑐]
𝑖                                                                                                       (13) 

 

 

The membership matrix consists of n rows illustrating pixels, while c represents the number of columns or clusters. In 

fuzzy clustering, the membership matrix is associated with  𝑇𝐵𝑖  and dined as a member within the tiger beetle population. 

Equation (14) describes the membership matrix as a population member in TBO: 

 

                                                                       𝑇𝐵𝑖 = [

𝑢1,1
𝑖 … 𝑢1,𝑐

𝑖

𝑢2,1
𝑖 … 𝑢2,𝑐

𝑖

…
𝑢𝑛,1

𝑖
…
…

…
𝑢𝑛,𝑐

𝑖

]

𝑛×𝑐

                                                                                 (14) 

 

 

Each set of values in this matrix represents a fuzzy number, distinguishing the extent of a pixel's dependence on a cluster 

centre in similarity terms. The TBO algorithm and its interrelated equations focus on updating the membership matrices 

during each iteration. Utilizing a membership matrix or TB allows for the computation of interrelated cluster centers, as 

depicted in Equation (15). 

 

                                                                           𝑐𝑖 =
∑ 𝜇𝑖𝑘

𝑚𝑛
𝑘=1 𝑥𝑘

∑ 𝜇𝑖𝑘
𝑚𝑛

𝑘=1
                                                                                                    (15) 

 

Every membership matrix or TB is assessed based on the existing condition of cluster centers utilizing the objective 

function of FC, as demonstrated in Equation (16) [25],[26]: 

 

                                                         𝑓(𝑇𝐵𝑖) = ∑ ∑ (𝑢𝑖𝑘)
𝑚𝑐

𝑖=1
𝑛
𝑘=1 𝑑(𝑥𝑘 , 𝑐𝑖)                                                                               (16) 

 

In this equation, 𝑑(𝑥𝑘 , 𝑐𝑖) denotes the similarity of a pixel 𝑥𝑘   to a cluster centre 𝑐𝑖. The similarity increases as the contrast 

in their light intensities decreases. Table 9 provides a visual representation of the flowchart for the proposed modified FC 

algorithm. 
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Figure 9: Solution position in the first iteration (left) and position in the middle iterations (right). 
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Figure 10: Suggested segmentation flowchart for image segmentation. 
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In the second stage of the proposed algorithm, the TBO algorithm was combined with fuzzy clustering for medical image 

segmentation. The segmentation algorithm can extract injured areas in medical imaging tissues, and preprocessing the 

image is needed before implementing the algorithm. After preprocessing, the segmentation algorithm can be used. In this 

context, two medical images, one showing brain tumors and the other showing lung CT scans, were considered. 

 

1) Samples of medical images 

This study employs two sets of images of brain tumors and breast cancer to implement the proposed image segmentation 

method. Figure 11 shows two samples of the brain tumor's medical images, and Figure 12 also displays a sample of breast 

cancer images. The images are gray, their light intensity channel is set between 0-255, and cancerous areas are also 

prominent. 

  
Figure 11: Sample medical images of magnetic resonance images of the brain. 

2) Preprocessing medical example images 

Brain magnetic resonance images are sensitive to noise, which can adversely influence image quality [38],[39]. To improve 

the accuracy of the segmentation method, it is crucial to first decrease noise before devoting the segmentation procedure. 

Noise reduction is vital because it maintains the precision of image segmentation, confirming that the tumor area is 

extracted with minimal error. 

 

To reduce noise, a hybrid of two filters, namely, average and median filters, can be used, as delineated in Equations (17) 

and (18), respectively [28]: 

                                                                𝑓 =
1

𝐾
∑ 𝑀𝑎𝑡𝑟𝑖𝑥𝐼𝑚𝑔𝑖(𝑖, 𝑗)

𝑘
𝑖=1                                                                                      (17) 

                                                           𝑓 =
𝑚𝑒𝑑𝑖𝑎𝑛
(𝑖, 𝑗) ∈ 𝐾

{𝑀𝑎𝑡𝑟𝑖𝑥𝐼𝑚𝑔(𝑖, 𝑗)}                                                                                (18) 

 
Figure 12: Sample medical images of magnetic resonance images of the lung. 

Here, k denotes the number of pixels neighboring the central pixel, MatrixImg indicates the medical image with noise, and 

f represents the coordinates of the image after the noise reduction procedure. The experimental results suggest that the 

median filter achieves better noise elimination within this algorithm. 

 

3) Diagnosis using the tiger beetle algorithm 

In Figure 11and Figure 12, the presented algorithm is shown via two magnetic resonance imaging samples for brain tumor 

diagnosis and two images for identifying damaged regions in lung tissue. The consequent output is a binary image, with 

the white areas displaying the damaged tissues. 
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Figure 13: Segmented image of a brain tumor. 

  

  
Figure 14: Segmented image of lung cancer. 

Therefore, the proposed algorithm successfully pulls brain tumours or harmed lung tissue and accurately determines them 

in concurrence with the fuzzy clustering algorithm. The dataset from [30] can be employed to evaluate the efficacy of the 

proposed method in diagnosing lung cancer. The results of the proposed method for diagnosing lung cancer and the 

techniques used in this article are compared according to Table 10 and Figure 15. 

 
Figure 15: Evaluation of the proposed algorithm compared to existing lung cancer diagnosis methods. 
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Table 10: COMPARISON OF THE PROPOSED ALGORITHM WITH LUNG CANCER DIAGNOSIS METHODS 

Algorithm Sensitivity Accuracy Precision 

EBT 86 86 86.6 

WKNN 84.5 85 85.5 

ESKNM 80.5 80.5 81.4 

QSVM 72.5 80.5 77.1 

CoKNN 87.0 82.5 83 

TBOFCM 88.63 87.58 89.86 

The proposed method is compared in terms of accuracy, sensitivity, and accuracy with lung cancer diagnostic methods. 

The sensitivity, accuracy, and precision of the proposed method are 88.63%, 87.58%, and 89.86%, respectively, and the 

proposed method performs better in diagnosing lung cancer than do the other methods. 

 

5.3 Reservoir well placement 

Well placement optimization is the process of determining the optimal locations for new wells in a reservoir. The goal of 

well placement optimization is to maximize the economic value of the reservoir by increasing oil and gas production. The 

PUNQ-S3 case, a synthetic reservoir model based on a real field, was selected to perform the required reservoir simulations 

for well placement optimization [46]. 

The net present value (NPV) is an objective function used to optimize well placement. The NPV can be calculated using 

the following equation (Equation (19)): 

 

                                                              𝑁𝑃𝑄 = ∑
𝑄𝑜𝑃𝑜−𝑄𝑤𝐶𝑤−𝑂𝑃𝐸𝑋

(1+𝐷)𝑖
− 𝐶𝐴𝑃𝐸𝑋                                                                   (19)𝑇

𝑖=0  

 

The NPV of a well placement project is calculated by discounting the future cash flows from the project to the present day 

using a discount rate that reflects the time value of money and the risk of the project. The future cash flows are calculated 

based on the cumulative oil production (𝑄𝑜), cumulative water production 𝑄𝑤), oil price (𝑃𝑜), cost per unit volume of 

produced water 𝐶𝑤), operational expenditure (OPEX), and capital expenditure (CAPEX). The NPV is then used to optimize 

the well placement by finding the placement that maximizes the NPV. 

 

The TBO consists of the following steps in terms of well placement optimization: 

 Initialize the population as tiger beetles. 

 Encode the holes dug in Equation (4) as wells. 

 The hole positioning is performed through Equation (5). 

 Update the hole's positions and kill the nonqualified tiger beetles via Equations (7) and (8). 

 Iterate the algorithm optimum solution reached or maximum iteration number. 

 Select the optimum solutions. 

Optimization algorithms were used to maximize the NPV of the optimal placement of production wells. For all population-

based algorithms, the initial population size was fixed at 25 tiger beetles and individuals. The parameter settings are adopted 

from [46]. Metaheuristic algorithms are powerful tools for solving complex optimization problems, but they are not 

guaranteed to converge to the global optimum. In most cases, metaheuristic algorithms can only find local optima. 

 

However, if the algorithm is well designed and implemented, it is likely to find a good solution to the problem, even if it is 

not the global optimum. We compared the developed TBO algorithm with a recently proposed metaheuristic algorithm 

called DBO. Additionally, we compared TBO with PSO regarding the reservoir well placement problem. Figure 16 shows 

the general improvement in the NPV over successive iterations using TBO, PSO, and DBO. In all the algorithms, each 

iteration consists of 25 reservoir simulations. TBO is able to reach the optimal solution. 
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Figure 16: Convergence plots for TBO, DBO and PSO 

6. CONCLUSIONS  
In computer science, metaheuristic methods are utilized to solve problems. The behavior of living creatures and natural 

phenomena often inspires these algorithms. Tiger beetles, for instance, exhibit an intelligent hunting mechanism, making 

them an interesting subject of study. This research aimed to generate a metaheuristic method by emulating the behavior of 

tiger beetles. The result is the tiger beetle optimization algorithm, a population-based algorithm that mimics the search for 

prey or the optimal position of tiger beetles. 

 

Through investigations with evaluation functions, it has been determined that the proposed algorithm excels in accurately 

specifying the global optimum approximated by various similar algorithms, including differential evolution, moth-flame, 

particle swarm, firefly, bat algorithm, gray wolf, black widow, Harris hawk, atom search algorithms, and the recently 

introduced DBO. Among its counterparts, the TBO algorithm always ranks first in most evaluation functions for finding 

optimal solutions. The advanced intelligence embedded in the tiger beetle algorithm ensures a reduced error rate and lower 

standard deviation (SD) when determined with alternative methods. Our suggested algorithm considerably benefits in 

maintaining robustness and precision, even when confronted with more challenging problems. 

 

This study evaluated the error and convergence of recently presented metaheuristic algorithms for decoding a complex 

optimization problem. We found that the TBO algorithm had the best overall performance, with a lower average error and 

the fastest convergence rate. The DBO algorithm showed good performance but needed to be more accurate and efficient 

than the TBO algorithm. The results of the tests showed that the best overall time complexity was achieved by the TBO 

algorithm, followed by the PSO and DBO algorithms. 

 

All the times in the presented table depend on the problem's size, and the TBO algorithm was the most scalable among the 

three. From our determinations, it is evident that the TBO algorithm is a very good solution for complex optimization 

problems, particularly with regard to accuracy and efficiency. However, there is still more work to be done to understand 

how TBO algorithms work from a wider view of issues and to develop new improved TBO algorithms. 

 

From the statistical analysis of the results, it is concluded that the TBO algorithm is the most productive metaheuristic 

algorithm in comparison to PSO and DBO for solving the problem at hand. The reason for this is the search space and local 

optima conditions from which the TBO algorithm can properly escape. 

 

Its good substantial devotion will encourage machine learning in malware detection with ML-Tjsonbo. The ML-Tjsonbo 

model yielded good performance metrics in terms of detection rate, completion of studies efficiently, and accuracy. ML-

TBO can adapt to changes in malware, especially against conditions such as polymorphic viruses, making ML-TBO a 

strong solution in cybersecurity. Therefore, the results clearly indicate that ML-TBO has potential for improving the 

accuracy and efficiency of malware detection systems. This, in turn, leads to very valuable assets in the fight against 
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unwinding cyber threats. Additional research and implementation of ML-TBO are affirmed to capitalize on its stability and 

contribute to the ongoing improvement of cybersecurity measures. 

 

We also assessed the performance of the TBO algorithm for decoding two real-world applications: image segmentation 

and reservoir well placements. We found that TBO outperformed the other algorithms in terms of accuracy and efficiency. 

As a practical application of the proposed method, the tiger beetle algorithm is used to optimize the fuzzy clustering 

algorithm in medical image segmentation. Furthermore, experiments have shown that the use of the tiger beetle algorithm 

combined with the fuzzy clustering algorithm results in highly accurate diagnoses of brain tumours and lung cancer. Our 

proposed method's sensitivity, accuracy, and precision in diagnosing lung cancer are 88.63%, 87.58%, and 89.86%, 

respectively, which surpasses the accuracy of lung cancer detection algorithms such as EBT, WKNN, ESKNM, QSVM, 

and CoKNN. In the future, we plan to use deep learning methods and tiger beetle optimization algorithms to diagnose lung 

cancer and achieve even greater accuracy. For reservoir well placements, TBO achieved a mean NPV of 2.6 million, while 

the other algorithms achieved NPVs of 2.4-2.5 million. 

 

Our findings suggest that TBO is a promising algorithm for solving real-world problems, especially those where accuracy 

and efficiency are important. Some future research directions are as follows: 

 The hybridization of TBO with other optimization algorithms is examined to improve its exploitation and 

exploration abilities. 

 The application of TBO to other real-world problems, such as logistics and reserve chain optimization, renewable 

energy approach design, and cutting-edge material engineering, should be improved. Examining its performance 

in these disciplines can provide a more profound understanding of its applicable utility. 

 Generate adaptive mechanisms for TBO parameters to enhance its robustness across various problem landscapes. 

Future research could concentrate on self-adaptive processes that dynamically change parameters in reaction to 

the optimization method, decreasing the demand for manual tuning. 

On the high-dimensional multimodal functions F8 and F9-F13, the TBO algorithm outperforms the bat algorithm (BAT), 

PSO, WOA, BOA, and DBO algorithms, exhibiting better search ability. In fact, the TBO algorithm finds the global 

optimum on these functions. For function F8, the TBO algorithm ranks fourth after the WOA, DBO and HHO algorithms 

but still achieves competitive results compared to the BAT, PSO, WOA, BOA, and DBO algorithms. On function F13, the 

HHO algorithm outperforms the TBO algorithm, but the TBO algorithm remains competitive compared to other SI-based 

approaches. 

Comparisons of results for low-dimensional functions are a valuable benchmark for testing new optimization algorithms 

and identifying promising candidates. Table \ref{table 6} shows the results of the TBO algorithm on low-dimensional 

functions, and it is notable that TBO performs well on F14-F18 and F20-23. 
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