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A B S T R A C T  

 
The Routing Protocol for Low-Power and Lossy Networks (RPL) routing protocol is utilized in the 
Internet of Everything (IoE) is highly vulnerable to various collaborative routing attacks.  This attack can 
highly degrade network performance through increased delay, energy consumption, and unreliable data 
exchange. This critical vulnerability necessitates a robust intrusion detection system. This study aims to 
enhance a Collaborative Intrusion Detection System (CIDS) for detecting and mitigating joint attacks in 
the RPL protocol, focusing on improving detection accuracy while minimizing network delay and energy 
usage. A series of algorithms and techniques are implemented, including Queue and Workload-Aware 
RPL (QWL-RPL) for congestion reduction, weighted random forward RPL with a genetic algorithm for 
load balancing, fuzzy logic for trust evaluation, and Light Gradient Boosting Machine (GBM) for attack 
detection. Additionally, Q-learning with a trickle-time algorithm is used to classify and manage joint 
attacks effectively. Numerical analysis indicates that the proposed approach performs better than existing 
methods in multiple metrics, including accuracy, energy consumption, throughput, control message 
overhead, precision, and computing time. By integrating these diverse techniques, the proposed CIDS 
offers a scalable and efficient solution to improve the security and performance of RPL-based networks 
in IoE environments, outperforming current approaches in detection accuracy and resource optimization.

1. INTRODUCTION 

The Internet of Things (IoT) is a vast network of linked modules with minimal power consumption that serve as crucial 
elements in different industries, such as healthcare, public transit, manufacturing processes, and domestic automation [1], 
[2]. The Internet of Things is a ubiquitous network of various items such as sensors, cameras, and robots. These objects can 
communicate with each other using protocols from the Internet or other protocols' address systems [3]. Due to the inadequacy 
of technology and standards, the Internet of Things faces several obstacles. One of the most fundamental concerns is to 
provide and maintain the dependability of routing and information sharing [4]. The phrase IoE was invented to reference 
people's connection via a network, procedures, data, and objects in more semantic and useful ways than before. Although 
the IoT is a dynamic worldwide infrastructure focused on things, IoE builds an upper foundation above the IoT and deals 
with smart connections to networks and technology [5]. The IoT has become the most essential technology in recent years 
because of its low power & low-cost sensor technologies. The IoT simplifies everyday tasks such as home automation, smart 
healthcare, and smart transportation, among others. In which the IoT comprises resource-constrained sensor devices that 
have been connected over low-power wireless protocols which are Low-Power and Lossy Networks (LLN), in which the 
LLN has limited capacity and great latency due to its communication patterns [6]. RPL-based networks are subject to attacks 
on routing that are common in Wireless Sensor Networks (WSNs), as well as attacks that use RPL-specific features such as 
node rank & version number. Attacks on the RPL protocol that exploits network bandwidth waste reduce the efficiency of 
IoT networks [7]. The RPL protocol allows code updates to regulate network traffic, energy consumption [8], etc. Some 
explorers reveal strategies to extemporize network competency using the RPL interface for connected devices [9][23]. 
Security in information communication has been a long-standing concern. Considering the development of wireless 
technology and its wide adoption due to its simple and rapid implementation, as well as the inexpensive cost of actual network 
platforms, security flaws in the technology itself, and the potential for phishing and fraudulent activities by providing 
strategies to counteract such assaults [10]. However, transmitting RPL messages is critical to the network's performance. 
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Some research has indicated that increasing fairness between nodes in terms of the transmission of RPL signals can increase 
network performance, such as route creation [11]. IDSs spontaneously monitor network traffic with a variety of frameworks 
and methods. They categorize the network traffic as normal or abnormal using various models and approaches. Regarding 
computer safety and non-violent support, users can be notified about network dangers using recognition and prediction 
systems. Upon receiving these alerts, the structure takes the necessary action on the other organizations [12]. Routing attacks, 
which are prevalent in WSNs, can affect RPL-based networks. Additionally, attacks that utilize RPL-specific attributes such 
as version numbers and node ranking can be used against them. Attacks against the RPL protocol for routing cause network 
congestion and affect the effectiveness of the IoT network [13][30]. In this regard, RPL is especially intended to reduce 
energy use. This procedure, which has been defined by the Internet Engineering Task Force Working Group, picks the most 
effective routes based on some specific criteria integrated into Objective Functions (OBF) [14]. It focuses on constructing 
the most efficient pathways among every other node and one or more root nodes. RPL is an anti-looping distance vector. It 
generates a Destination-Oriented Directed Acyclic Graph (DODAG) using node and link parameters such as Hop count 
(HC), Expected transmission count (ETX), energy, and Link Quality Level (LQL). These metrics are used to build an OBF. 
It is worth noting that the OBF is responsible for determining the node's chosen parent. As a result, the nodes proceeded to 
choose the optimum route until they reached their target. RPL has 2 standard OBFs. The principal is the Objective Function 
Zero (OBF0), which uses HC as a routing metric, and the second is the Minimum Rank with Hysteresis Objective Function 
(MRHOBF), which uses ETX as a travel measure [15]. As a result, IDS is used to defend information and communication 
networks [16]. The main issue with the RPL protocol is that it is susceptible to several routing attacks and does not take into 
account network layer security [17]. Because the RPL protocol has limited memory and resources, it was designed with basic 
security measures [18][34]. The purpose of the study is to improve the collaborative intrusion detection system (CIDS) to 
identify joint assaults in the RPL routing protocol inside the IoE, with an emphasis on enhancing detection accuracy while 
decreasing network delay and energy usage. 

The main objective is to improve the CIDS to identify joint attacks in the RPL routing protocol within the Internet of 
everything that takes into account security issues, classification issues, network delay, etc. The primary objectives are to 
develop the trust calculation mechanism for neighboring nodes to improve the accuracy of intrusion detection in the RPL 
routing protocol. Furthermore, the analysis and investigation of strategies is to overcome the detrimental effects of increasing 
traffic volume and node density on protocol performance and maintaining throughput. 

1.1 Motivation 

The primary reasons for this study are listed below. 

• As the use of IoT devices increases, network protocols must be safe and effective. 

• Routing attacks can affect latency, energy efficiency, and data dependability in RPL (Routing Protocol for Low-Power 

and Lossy Networks). 

• In complex IoE networks, current intrusion detection systems (IDS) have difficulty striking a balance between 

scalability, resource efficiency, and detection accuracy. 

1.2  Challenges 

The main challenges of this research are given below 

• Traffic Congestion: Increased latency and energy usage are caused by high network traffic. 

• Load Imbalance: Certain nodes experience resource loss as a result of uneven demand caused by an unequal node 

distribution. 

• Complexity of trust evaluation: It can be difficult to determine a node's level of trustworthiness in dynamic networks. 

• Detection accuracy: It is challenging to identify cooperative assaults in RPL with few false positives. 

• Energy and latency restrictions: To preserve network performance, energy consumption and latency must be 

decreased. 

1.3 Research Contributions 

The main aim is to enhance the performance of the collaborative IDS to identify joint attacks in the RPL routing protocol on 
the Internet of Everything. The main contributions of this research are given below.  

• To dynamically control traffic congestion, this study presents QWL-RPL, a unique protocol that integrates 

workload and queue information at the node level. In contrast to conventional RPL, which frequently has problems 

with traffic distribution and load balancing, QWL-RPL efficiently balances network load by using workload 

measurements and queue status in conjunction to make routing decisions. This is especially beneficial for high-

density IoE systems, as it uniformly distributes traffic around the network, lowering average network latency, and 

increasing throughput. 
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• The work uses a genetic algorithm in conjunction with the WRF method to overcome the drawbacks of fixed-

parent selection in RPL. By dynamically allocating communication demands, this combination improves network 

stability and avoids congestion at certain nodes. The system ensures that communication channels are selected as 

efficiently as possible by allocating weights according to each node's load and remaining capacity. For IoE 

networks that need reliable performance, this strategy in conjunction with genetic optimization enables the 

network to adjust to changes and maintain a balanced data flow. 

• A fuzzy logic-based trust evaluation technique is incorporated in this work as a recognition of the intricacy of trust 

computations in dynamic IoT contexts. To provide a more precise trust score for each node, the fuzzy logic system 

evaluates several characteristics, including context information (CI), quality of communication (QoC) and quality 

of service (QoS). The system can more accurately identify possibly malicious nodes thanks to this strategy, which 

takes into account the inherent uncertainty in node behavior. In settings with frequent contacts with nodes and 

mobility, the result is a strong trust mechanism that improves the reliability of the detection. 

• A strong yet computationally efficient model that is appropriate for resource-constrained IoT devices, the GBM 

algorithm is included in the research to effectively identify a variety of assaults (including rank and wormhole 

attacks). By prioritizing high-gradient data and ignoring less relevant data, the GBM method ensures minimal 

energy consumption and faster processing times, in contrast to standard detection models that may result in 

substantial computational and memory overhead. This enables real-time threat detection by the CIDS without 

putting undue strain on the constrained resources of IoT devices. 

• To use the trickle-time method in conjunction with a Q-learning-based reinforcement learning model to tackle the 

problem of identifying joint assaults, including version number manipulation. Because of this combination, 

network behavior can be continuously learned, allowing the system to recognize and adjust to questionable 

patterns linked to coordinated assaults. By adjusting the frequency of message distribution, the trickle-time 

algorithm enables quick identification of network irregularities without taxing network capacity. The network's 

resistance to complex multi-vector assaults is increased by this integration, which also maintains a low overhead 

while greatly increasing the classification accuracy for coordinated attacks. 

• Using several measures, including accuracy, energy consumption, throughput, precision, control message 

overhead, and calculation time, the study thoroughly evaluates the suggested CIDS. The results of simulations 

using the Cooja simulator on Contiki-3.x show that the suggested CIDS works better than current models, 

including SMTrust-RPL and SecRPL-MS, over a range of node densities. In addition to confirming the CIDS's 

exceptional accuracy and efficiency, these experimental validations demonstrate its suitability for high-density 

IoE situations with demanding security and performance standards. 

1.4 Objectives 

The following list the primary objectives of this study. 

➢ To provide a scalable and reliable CIDS for RPL that reduces energy usage and network latency while improving 

detection accuracy. 

➢ To improve load balancing and traffic control in RPL networks. 

➢ Integrate criteria for trust assessment that increase the precision of detection. 

➢ To efficiently categorize and counteract coordinated assaults without using up too many network resources. 

1.5 Significance 

The following lists the main significance of this work. 

➢ The suggested solution fortifies IoE networks against coordinated and focused attacks. 
➢ To maintain LLN installations in IoE, the system reduces energy consumption and latency. 

➢ Shows robustness under growing network size and applies to a range of IoE applications (smart cities, healthcare, 

etc.). 

➢ Extends device life and guarantees steady network performance by balancing network load and reducing control 

message overhead. 

1.6 Paper organizations 

The rest of this paper is divided into the following sections: Section 2 contains a review of the literature on previous 

research that is more relevant to our study. In addition to the primary issue statements addressed in earlier publications, 

the statements are enumerated. Section 3 contains a protocol, a mathematical representation, a pseudocode, and the 

research technique for the proposed study. The experimental findings and an evaluation of the ongoing and planned 

projects are provided in Section 4. In Section 5, the conclusion of the research is included.  
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2. LITERATURE SURVEY 

This section provides a review of the literature on intrusion detection for joint attacks in the RPL routing protocol in IoE. 

The article [19] utilizes low-power loss networks for the multicast protocol for low-power and lossy networks (MPL) in 

this post before going into great detail to point out its functional flaws. Then, they offer many solutions that focus on 

various topics to solve such restrictions. The effectiveness of the suggested MPL enhancements was investigated through 

a comprehensive series of realistic modeling and tests. The collected findings demonstrate that their ideas perform better 

than the MPL protocol in end-to-end latency and retain the same level of DPR dependability while also outperforming it 

in terms of resource usage. However, in their research, they face challenges regarding security threats and the need to 

consume significant computing time and resource-constrained nodes.  

The article in [20] presents verification and secure trust-based RPL routing in the mobile sink-supported Internet of Things 

(SecRPL-MS): proposed in this study. Initially, all IoT nodes within the system register with the safety entity through an 

enrollment procedure carried out by SecRPL-MS. In this study, the network's mobile sink is deployed to mitigate the IoT 

nodes' frequent deaths. Every grid member (GM) node that wishes to send data to the grid head (GH) node has to go through 

an authentication procedure. In RPL, secure routing is implemented using the sailfish optimization algorithm. Before 

sending its detected data to the GH node, each GM node encodes it using the prince method. The technique known as the 

quantum-inspired neural network (QINN) is used to choose the moving points to represent the mobile sink. However, in 

their research, they need to suggest a trust-based safe routing method based on an RPL-based IoT network and identify 

other security threats. They must identify additional security threats in RPL-based IoT networks and recommend a trust-

based secure routing strategy in their study. 

In this article [21] rank and black hole attacks in RPL while taking into account stationary and mobile IoT nodes. The 

carefully selected trust criteria and measurements, particularly movement-based metrics, are the foundation of the 

suggested Security, Mobility, and Trust-Based Model (SMTrust). Through simulated studies, the suggested approach is 

evaluated, and the results demonstrate that SMTrust outperforms current trust-based approaches in protecting RPL. 

However, in their research, they need to enhance power consumption and analyze end-to-end delay. The article [22] 

proposes RPL, the foundational technology for most IoT devices, and the Clone ID attack, a rarely studied identity attack. 

As a result, a strong AI-based security framework is proposed to combat identity theft attacks, which traditional applications 

tend to misidentify. Using samples from the RPL network as a baseline, unsupervised pre-training approaches are used to 

choose important features. After that, a dense neural network (DNN) is skilled in optimizing deep feature engineering to 

enhance classification outcomes and ward off malevolent traceability efforts. However, in their research, they want to 

improve the classification accuracy related to RPL attacks. This article [24] addresses identifying intrusions; this article 

combined the hierarchical semantic method with the neural network algorithm group method of data handling (GMDH). 

The detection of breaches may be greatly affected by the hierarchical semantic method, which is based on translating 

infiltrate values into interpretable numerical values and the identification of key variables in IoT infiltration. Another 

framework based on a neural network with hidden layers is generated via the GMDH algorithm. It also picks up lessons 

from the past and recognizes possible future invasions. The results of various techniques were contrasted with the results 

of the suggested model. However, in their research, the attack detection accuracy is low in the RPL protocol environment. 

The article [25] raises the security of the RPL routing system; this work builds an intelligent and lightweight IDS model 

called RPL Attacks based on Intrusion Detection for Efficient Routing (RAIDER). To address the lack of security around 

RPL, RAIDER uses simulation to study the effects of four RPL assaults. It also integrates an automata framework with the 

IDS nodes to examine the behavior of the nodes and minimize the influence of such attacks. Based on finite automata 

theory, the IDS nodes intermittently transplant the observed data as multiple states while keeping an eye on the network. 

RAIDAR identifies RPL attacks by basing its attack judgments on the context-aware attack making choices system's pre-

estimated threshold for state changes. RAIDER maximizes the efficiency of RPL routing while using the least amount of 

energy. However, in their research, effective intrusion detection is detected, but not security attacks in the RPL network. 

The article [26] offers to improve the security of the RPL protocol, this study develops 

 an IDS based on deep cellular learning automata and semantic hierarchy. To make attack characteristics meaningful, a 

semantic hierarchy is used, and Deep Cellular Learning Automata (DCLA) is used to make the RPL protocol more secure. 

Five attack-related datasets have been employed in this instance: Darknet, version number, NSL-KDD, botnet, and 

distributed denial of service (DDoS). The suggested approach performs better than its alternatives, according to a 

comparison of the findings obtained from five data sets. However, in their research, they have challenges with resource 

constraints and decreasing data processing time.  

The combination of fuzzy logic-based trust evaluation for enhanced detection reliability and queue and load-aware RPL 

(QWL-RPL) for dynamic traffic management, which are not frequently integrated into current RPL protocols. Furthermore, 

a unique method for managing resource limitations and detection accuracy in IoE networks is demonstrated by the use of 

light gradient boosting machine (GBM) for low-overhead attack detection and Q-learning with trickle-time algorithms for 
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real-time joint attack categorization. This set of methods, which are particularly designed for the RPL protocol in IoE, is 

both unique and significant improvement over earlier research that mainly focused on resource consumption optimization 

or single-attack identification.  

 

2.1 Problem Statement  

In this part, the explicit existing works and their solutions is compiled. This study also offers research solutions to the 

mentioned problems.  

Specific Problem Definition: The article [27] presents a trust-based safe routing protocol and is suggested based on 

mobility. SMTrust aims to defend against black hole and RPL Rank attacks. Three distinct scenarios are used to evaluate 

the suggested protocol, including stationary and mobile nodes in an IoT network. The default RPL objective function, 

SecTrust, Dynamic Trust Calculation Mechanism (DCTM), Mobility and Residual Trust Support (MRTS), Minimum Rank 

with Hysteresis Objective Function (MRHOBF) and SMTrust are all contrasted. The primary concerns are discussed in 

greater detail below.  

➢ However, in their research, they need to calculate the trust values of neighboring nodes. 

The article [28] has presented a technique called RI-RPL, which is based on the creation of the RPL routing protocol and 

leverages RL to address them. RI-RPL is intended to be achieved in three broad steps. Routers are in line to optimize the 

RPL protocol in the initial stage, with an emphasis on the Q-learning algorithm. Deviations in the parental learning in 

various network settings receive assistance in the following phase, which is based on learning and convergence. 

Adjustments in leadership and oversight are coordinated during the third stage. This method was selected due to its ability 

to efficiently handle the intended problems without using excessive network resources for computations. The following is 

a list of the problems with this work. 

➢ The throughput has shown a rising tendency as nodes and traffic rates rise; at traffic volume and a certain number of 

nodes, the throughput even begins to decline. The detrimental effects of more traffic and nodes on protocol performance 

are the cause of this problem. 

This article [29] has provided a detailed analysis of rank assault, one of those dangers to RPL. A lightweight and effective 

strategy to reduce and localize the rank attack is proposed and evaluated, taking into account the limited resources of IoT 

devices. In particular, their method computes and verifies the validity of the advertised rank by using a new Echelon Metric-

Based Objective Function (EMBOBF) instead of the standard RPL. In the RPL network architecture, the echelon value is 

decided additively by the root node and the accompanying parent node(s). Their method not only finds the assailant node 

or nodes, but also detaches them immediately. The primary concerns are discussed in greater detail below. 

➢ However, in their research, their work will increase network delay and energy consumption during attack detection.  

Article [31] offers an arrangement for network node placement based on the Multi-Sink Routing Protocol for Low-Power 

and Lossy Networks (RPL). The following is a list of problems with this work. 

➢ It has been noted that the participating nodes are not uniformly distributed across the sink. Although some sinks have 

fewer nodes than others, other sinks have more. As a result, the load balance will increase in their research. 

This article [32] presented that feedforward, and fuzzy neural networks are used to create a unique IDS that can identify 

routing attacks in WSNs. Research results show that, in contrast to other methods such as support vector machine (SVM), 

decision tree (DT), and random forest (RF) designs, the suggested model achieves an average detection rate and the highest 

detection accuracy. The primary concerns are discussed in greater detail below. 

➢ However, in their research, the accuracy of attack detection is poor, and it has a rather lengthy computation time.  

2.2 Research solution 
The fuzzy logic used to calculate trust levels takes into account uncertainty, which is one of the most essential intrinsic 

qualities of trust. The innovative QWL-RPL protocol will minimize network congestion while improving average 

throughput latency. Light gradient boosting is used to identify rank and wormhole assaults in RPL, as well as Energy and 

Delay Aware Data Aggregation to reduce network latency and energy usage. Combining energy-aware data aggregation 

with light-gradient boosting allows for the detection of assaults with little latency and energy cost. The weighted random 

forward algorithm RPL protocol with Genetic algorithm might consider load balancing over RPL to disperse 

communication and messages to prevent congestion on one chosen parent, hence improving performance. The Q-learning 

strategy is used to spot the malevolent nodes in a version number assault. It detects and reduces overhead on RPL network 

nodes accurately. The trickling-time approach is employed to increase the attack detection accuracy. The combination of 

Q-Learning and trickle time allows for more accurate detection of version number attacks.  

 



 

 

256  Abdulkareem et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 251–277 

3. PROPOSED METHOD 

The goal of the project is to enhance the overall performance of CIDS for joint attacks in the RPL routing protocol in the 

IoE. Fig. 1 represents the overall architecture of the proposed architecture. The Collaborative Intrusion Detection System 

(CIDS) for the RPL protocol in Internet of Things applications is shown in this picture with its tiered design. IoT nodes are 

at the base of a DODAG structure (Destination-Oriented Directed Acyclic Graph), sending data to specified parent nodes. 

The system incorporates cutting-edge protocols, including a Weighted Random Forward (WRF) mechanism for effective 

load balancing and Queue and Workload-Aware RPL (QWL-RPL) for traffic management. The system optimizes data 

routing according to node load and energy capacity using a genetic algorithm in conjunction with WRF. This is crucial in 

high-density Internet of Things networks. Fuzzy logic for trust assessment and light gradient boosting (GBM) to improve 

attack detection precision without taxing computer power further strengthen this configuration. This architectural design 

ensures that network security is improved, energy consumption is minimized, and traffic loads are dynamically balanced. 

The risks and demands unique to IoT networks are immediately addressed in real-time by this tiered approach, especially 

in the face of high traffic and a variety of attack vectors. 
Important steps are taken as part of this process, including the following. 

1. Traffic Congestion 

2. Load Balancing 

3. Trust evaluation 

4. Joint Attack Classification  

5. Network Delay and Energy Consumption  

6. Classification of Joint Attacks 

3.1 Traffic congestion 

Initially, tree topology is constructed. This is the base structure that allows for efficient routing of data from numerous nodes 
to the central root node. Observing the behavior of the RPL protocol in numerous congested environments, it becomes 
obvious that traditional routing approaches struggled to maintain efficiency under high traffic volumes. To overcome this 
challenge, the novel queue and workload-aware RPL (QWL-RPL) is introduced. This novel protocol incorporates 
information from the queue and workload in the node-wise environment into its routing decisions, effectively distributing 
the traffic evenly across the network.  Implementing QWL-RPL results in significant reductions in average throughput delay 
and overall network delay that demonstrate the efficiency of managing traffic congestion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Architecture of proposed collaborative intrusion detection system (CIDS). 
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3.1.1 Queue-and workload-aware RPL 

In a variety of diverse network environments, the problem of load-traffic imbalance is resolved by the QWL-RPL enhanced 
routing protocol algorithm. Therefore, it is not appropriate for different network load traffic situations to maintain load and 
traffic balancing using the routing topology subtree. In this scenario, the workload and overhead statistics must be used for 
continuous traffic on each device or node. Because the network queue's memory is so small, a node or scheme's queue can 
only hold a maximum of 4 packets at once. When this packet or data is compared to each device's workload and overhead 
information, it is noticeably extremely small. Because of its subtree, which consists of all of its offspring nodes, each device 
or node's workload, and overhead information include control information and the real traffic load. Workload information 
and the number of traffic flows for each node are provided every ten seconds (numty). According to this notion, the node's 
workload is calculated from the total number of packets transferred over a 10-second transmission period. It also takes into 
account the type of packet that each node receives from its subtree and calculates the number of packets that the parent 
node generates. The workload calculation is defined by Algorithm 1. The workload and overhead information are used 
with the queue information that has a weight value as stated in Equation 1. 

𝑅𝑎𝑛𝑘 = 𝑅𝑎𝑛𝑘(𝑞) + 𝑊𝐿𝑀𝐴𝐶𝑡𝑦+ ∝ 𝑄𝑏𝑢𝑓𝑙𝑒𝑛                                                                 (1) 

Where 𝑄𝑏𝑢𝑓𝑙𝑒𝑛 is a list of packets in the waiting buffer queue, 𝑅𝑎𝑛𝑘(𝑞) is the rank of the parent device or node, and 

𝑊𝐿𝑀𝐴𝐶𝑡𝑦 is the total quantity of data or packets delivered or received at the physical layer throughout the most recent 

period. Next, as previously mentioned, the Predictable Transmission Count (PTC) node distributes control packets to every 

device or node at a predetermined, regular interval to verify the quality of the connection or link. The getting device or 

node then distributes the same control or probe packet to every device or node again, which causes the network to become 

more congested and causes a delay. 
 

Algorithm 1: workload measurement 

1. Start 

2. Transmission of packet(numty) 

3. Provide the last transmission clock time  

4. Set event timer of 10 clock seconds 

5. Workload ← workload + numty 

6. If (event timer expired), then  

7.  workload← 0 

8.  reset event timer 

9. end 

10. Move to step 5  

 

3.2 Load balancing 

Following the mitigation of traffic congestion, the main goal is to improve the load balancing within RPL networks. By 

using the weighted random forward (WRF) algorithm RPL protocol with a Genetic algorithm can distribute communication 

and messages more efficiently and that prevents congestion at any single preferred parent node. The WRF algorithm 

considers multiple potential forwarders and assigns weights based on their current load and capacity, which ensures that 

the network communication load is balanced. This technique mitigates the risk of overloading specific nodes, which leads 

to a more stable and effective network performance. The Genetic algorithm is employed to optimize the selection of 

forwarders by evolving the weight distribution principles over time. This dynamic approach continuously improves the 

network's adaptability to changing conditions, and additionally enhances load balancing and overall network stability. 

3.2.1 Weighted random forward algorithm  

In high-traffic and high-data-demand situations, constrained sensor networks must operate at full volume to manage and 

complete the activities required by their design. As a result, the RPL protocol is designed for low data rate situations in 

which sensors exhibit persistent slumber since they do not require regular job processing. Thus, in high-demand situations, 

this protocol poses serious problems with managing and allocating the data load that the network experiences. In this kind 

of scenario, while the node's buffer capacity, energy consumption, network lifetime, and packet success rate, amongst other 

factors, are pretentious to a certain scope, it is necessary to address techniques to improve the operability of the WSN. 

For these and other details, the WRF-RPL protocol is suggested using various message channel methods to load 

distribution, ensuring the effective use of the sensor network's energy. Candidate parents that are on the best path to connect 

the exchange of messages to an endpoint can be evaluated based on a measure that takes into account the energy remaining 
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of a node and the number of parent nodes it has. This characterization enables the weighted random choice method, which 

is integral to the proposed scheme, where each node is assigned a score that determines its significance in the network. 

The contributions and issues raised are salvaged for the suggested load-balancing strategy, which defines a novel network 

performance, concerning WRF-RPL operation. This measure is selected to take into account the candidate node's current 

energy values and its available delay options, as stated in Equation 2, which combines both principles. 

𝑚𝑒𝑡𝑟𝑖𝑐𝑒𝑣𝑎𝑙𝑓 = 𝑄(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑛𝑒𝑟𝑔𝑦)(%) ∗  (𝑄(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡)) .                                                 (2) 

 

Q is defined as the element representing the current parent under analysis in Equation 2 of the metric calculation. Its 

attributes are 𝑄(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑛𝑒𝑟𝑔𝑦), which the node’s remaining energy percentage is, and 𝑄(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡), which is the 

number of candidate parents a node has. Because the neighbor node studied has many paths to the sink, appropriate load 

distribution between the associates in the message tree may result from considering the 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡 value. Regarding 

a node's energy consumption, the configuration of this value is left up to the researcher's judgment because the energy 

ceiling may change based on the node's capabilities. To evaluate potential parents and find upstream pathways, changes 

must be made to the DIO message that is broadcast. Information about the investigated node can be stored based on shared 

metrics, as explained. Regarding a node's energy consumption, the configuration of this value is left up to the researcher's 

judgment because the energy ceiling may change based on the node's capabilities. To locate upstream routes, changes to 

DIO message transmission are required due to the implementation of a new metric to evaluate prospective parents. As 

mentioned in Algorithm 2, it is feasible to save data related to the investigated node based on shared metrics. 

 

Algorithm 2: Parent Set Construction 

Data: node of parent Q related to a message DIO 

Outcome:  

Arrangement 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡, 𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑡 𝑧, 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑠𝑒𝑡  
updates 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡  
  ∪ 𝑄 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑠𝑒𝑡 ∪ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒(𝑠𝑒𝑔𝑠) 

𝑄 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ←  𝑄(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡) ∗ 𝑄(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑒𝑛𝑒𝑟𝑔𝑦) 

𝑤𝑒𝑖𝑔ℎ𝑡 𝑠𝑒𝑡 ∪ 𝑄 𝑤𝑒𝑖𝑔ℎ𝑡  

 

Algorithm 2 explains the initial steps of the protocol upon receiving a DIO message and before examining potential parent 

candidates (Q). The retrieved attributes of the message are explained, including the arrival time and the value corresponding 

to the weight selection metric, which matches the selection metric of the assembled candidate parent in the array weight 

set. Equation 3 also explains how the protocol determines the value of the RANK, a parameter of the RPL execution. 

 

𝑅𝐴𝑁𝐾 (𝑚) = ℎ𝑜𝑝𝑠(𝑚) + 1                                                                                     (3) 

 

In Step 3, a node's rank (m) is calculated, which is the number of hops among its current position, and the sink node, which 

is the root of the RPL instance. Let hops be the number of nodes needed to exchange data with the gateway node n to 

exchange information with the gateway node, as shown in the equation hops(m)). In Algorithm 3, the steps for how a node 

uses the WRF protocol for next-hop selection are specified. The preferred parent in the WRF protocol is identified, covering 

the steps and choices made by a node participating in the RPL instance during the WRS process. 

 

Algorithm 3: Weighted Random Selection  

Input: parent set, weight set, arrival set, t: current time constant for parent selection 

Output: preferred parent: chosen parent node for the net-hop transmission 

Subsequent Event for Jump Selection 

𝑆 ← Choose a random number between 1 and 100 to find the % of your choice. 
𝑒𝑣𝑒𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 ← Addition of all weights in the “array 

Weight set” 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑖𝑚𝑒 ← Analysis of time, according to the clock system. 

𝑃𝑟𝑒𝑣 ←  0 Selection probability of preceding counts.  

For each 𝑄𝑖 ∈ 𝑝𝑎𝑟𝑒𝑛𝑡 𝑠𝑒𝑡, 
𝑊𝑖 ∈ weight set, 𝑎𝑖 ∈ arrival set do 

       If ∆ 𝑡 ≥ (current time - 𝑎𝑖) then 

            If (
𝑊𝑖

𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠∗100
) + 𝑝𝑟𝑒𝑣 ≥ 𝑅 ≤ 𝑝𝑟𝑒𝑣  then 
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                 Preferred parent ← 𝑞𝑖 
                 Returned preferred parent 

            Else 

                  Prev ← 𝑝𝑟𝑒𝑣 + 
𝑊𝑖

𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑠∗100
  

          End 

       End 

End  

Return 𝜃 

These steps can be used to delimit Algorithm 3: 

Step 1: Investigate and evaluate the potential parents who satisfy the at ∆𝑡 requirement. Following this filter, each parent's 

weight is determined by adding together all of the potential parents' metrics and dividing it by their proportion of impact. 

Step 2: A weighted random selection will be carried out after the parents' weights are known. To make this choice, a 

random coefficient is created that, when a candidate parent's range of impact is compared to the whole sum of its weights, 

indicates which percentage the candidate parent falls into. 

Step 3: After the selected candidate parent is selected, it is kept on file for upcoming correspondence until the parent sets 

elements are received. 

Through the distribution of the likelihood of choice among potential parents, the concept mitigates congestion caused by 

an inadequate load distribution. The convergence of choosing alternate routes with enough energy and a higher load 

relaying option (higher𝑄(𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡),) is the desired outcome. Regarding the actions that characterize the operation of 

the WRF-RPL protocol, Figure 2 illustrates the progression of the procedures that underpin the analysis and choices made 

by a sensor node when receiving a packet. 

Figure 2 shows how crucial it is to receive the DIO packet and choose the chosen parent afterward. The flow chart illustrates 

how the WRF algorithm in the RPL protocol makes decisions, with the nodes selecting the parent nodes in real time 

according to their proximity to the destination and residual energy. The process begins by receiving DIO packets and 

using weights based on the traffic load, distance (rank), and current energy of each candidate node to choose possible parent 

nodes. Nodes occasionally re-evaluate the optimal parent in an iterative process to preserve routing efficiency. The 

connection strength (based on DODAG measurements) and the residual energy of each candidate are important parameters 

that affect the weighted random selection procedure. The latter procedure adheres to the condition that has a direct impact 

on the exchange of control messages over the network's lifetime. To choose the global parent and notify it via DAO 

messages, conditional involves determining whether, among the candidate's parents, a parent has been selected with a 

greater weight or importance utilizing Algorithm 3. If the contrary is true, the WRF-RPL protocol does not take any further 

action because the selected preferred parent will be based on interior information rather than topology. Compared to the 

published route, this uninformed trip is regarded a local or alternative route. Unlike the path described by the DODAG, 

which resembles a method of global data, this uninformed hop is regarded as an alternate or local route. To assist 

neighboring nodes in choosing the best parent based on parameters such as residual energy (RER), the DODAG root 

broadcasts a DODAG information object (DIO). By ensuring that nodes with greater energy reserves are selected, this 

energy statistic increases the lifespan of the network. Nodes use methods that optimize for both energy efficiency and low 

hop distance to determine their rank depending on how close they are to the root, taking into account energy and hop 

count. In this stage, the data packets from the child nodes are aggregated using compressed sensing (CS) theory at the 

parent node. The aggregated parent nodes send data in the direction of the DODAG root. By reducing duplicate data 

transmissions, this aggregation process, which is outlined in the text using formulas, ensures energy conservation and 

network latency reduction. The aggregated data is compiled by the DODAG root to provide a comprehensive representation 

of network information. 
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Fig. 2. Workflow of weight random forward (WRF) algorithm in RPL. 

 

Increased network resilience and energy efficiency are made possible by this load-balancing technique. The WRF method 

extends the network lifetime and reduces latency while guaranteeing a high-quality, balanced traffic distribution by 

constantly adapting to network load and node availability. 

3.2.2 Genetic algorithm 

The structure and layout of the GA components for the distributed load-balancing clustering problem (DLBCP) are covered 

in this section. Genetic representation, population initialization, fitness function, selection scheme, crossover, and mutation 

are the main parts of GA procedures. To effectively execute GA, the GA components is designed using our domain 

expertise. In this study, the customized GA for the DLBCP is created. One feature of the clustering problem is that different 

Ch selection sequences will result in different clustering outcomes. This characteristic has been used in genetic 

demonstration to greatly improve the capacity of GAs for exploration. Since the DLBCP is a combinatorial optimization 

issue, the population initialization took this property into account. The number of members of the cluster and the degree of 

the node are used as parameters in the fitness function. Other environmental factors do not have a bearing on either of the 

two characteristics. As a result, the algorithms may function effectively in practical settings. Additionally, the crossover 

and mutation are precisely constructed so that, after operations, the chromosome does not include any duplicate node IDs. 

In conclusion, the development of GAs in this work has taken into account the domain expertise of the clustering issue. 

a. Genetic representation  

Our methods generate solutions that represent Ch, which are chosen from among all nodes in the network. To produce a 

random set of cluster heads, a random permutation (RP) of node IDs will be helpful. In this paper, a chromosome by RP of 

node IDs is represented. It is crucial to confirm that every chromosome has a unique node ID. Every chromosomal node 

ID is referred to as a gene. 

b. Population Initialization  

Every chromosome in a GA represents a possible solution. A specific number p, of chromosomes makes up the original 

population P. The appropriate permutation of the node IDs for every chromosome is chosen at random in our methods to 

investigate the variation in genes. The following process is used to create the first population. 

1. Start(k=0) 

2. Develop a chromosome𝐶ℎ𝑟𝑘: To determine the appropriate Chk cluster headset, randomly permute the node IDs. 

3. K is equal to  𝐾 +  1. Proceed to Step 2 if 𝑘 <  𝑝; if not, quit. 

 



 

 

261  Abdulkareem et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 251–277 

Consequently, 𝑃 =  {𝐶ℎ𝑟0, 𝐶ℎ𝑟1, . . . , 𝐶ℎ𝑟𝑝−1} is the initial population. A combinatorial optimization issue with a discrete 

search space has been under investigation. As a result, it is extremely difficult, if not unbearable, to forecast the regions in 

which ideal solutions are most likely to occur. It is appropriate to initialize the population at random. 

c. fitness function 

It is important to appropriately assess the quality of a solution (fitness value), which is established by the fitness function. 

Our methods seek to identify the set of cluster heads that, when combined, can form a load-balanced cluster structure, 

meaning that each cluster head has the same cluster head degree, or serves an equal number of cluster members. The 

standard deviation of the cluster head degrees serves as our main yardstick for evaluating the quality of the solutions. 

Therefore, the option with the lowest standard deviation is selected from a group of potential solutions. The fitness value 

𝐸 (𝐶ℎ𝑟𝑖), which stands for chromosome 𝐶ℎ𝑟𝑖 (which represents the cluster head 𝐶𝐻𝑖), is as follows: 

 

𝐸(𝐶ℎ𝑟𝑖) =  (𝜎𝐶𝐻𝑖)
−1
= √

1

𝑛
 ∑ (𝑓𝑙 − 𝑓𝐶𝐻𝑖

̅̅ ̅̅ ̅)
2𝑛

𝑙=1

   −1

  .                                                             (4) 

 

d. Selection scheme 

Selection contributes significantly to population quality by transferring high-quality chromosomes to the next generation. 

The fitness value is used to pick the chromosome. The straightforward and efficient pairwise choice of the tournament 

method without replacement is used.  

e. Crossover and mutation 

Two key genetic operators are crossover and mutation. With crossover, two-parent chromosomes can become two offspring 

chromosomes. Every gene found on each offspring chromosome comes from a separate location on each of the two parent 

chromosomes. A mutation modifies the values of several genes to produce an offspring chromosome from a single parent 

chromosome. 

3.3 Trust evaluation  

Once load balancing is achieved, the next step is to ensure the integrity of the network through trust evaluation. Trust 

calculation in RPL networks is inherently uncertain and challenging. Fuzzy logic is employed to overcome this issue. The 

fuzzy logic allows for more flexible and refined trust assessments by accommodating the inherent uncertainties in 

evaluating the node behavior and interactions. These results in more accurate and reliable trust metrics that help to identify 

and isolate potentially compromised nodes, thus improving the overall security of the network. 

3.3.1 Fuzzy logic  

A multistage fuzzy model called FDTM-IoT is used to assess the reliability of IoT devices. FDTM-IoT computes 

trustworthiness in three dimensions at the first fuzzy stage. Contextual data, QoS, and peer-to-peer communication quality 

(QPC) are taken into account. The model is comprehensive and dynamic due to the consideration of dimensions and 

methods of calculation and evaluation. The development of FDTM-IoT followed a tiered framework.  

Each dimension therefore has a sub-dimension of its own. This arrangement results in a dynamic model. It is simple to add 

and remove more dimensions and subdimensions from this dynamic model. A separate fuzzy inference system is suggested 

for every dimension. The final fuzzy inference system receives input from fuzzy inference systems in all dimensions in the 

second fuzzy stage. 

3.3.2 fuzzy inference system 

Multiple input variables can be transformed into one using a fuzzy inference method. The idea that a variable may belong 

to a set that is between true and false is fundamental to fuzzy inference systems. Linguistic variables can be used by a fuzzy 

inference system. When words or sentences are used as input or output variables rather than numbers, they are known as 

linguistic variables. There are multiple steps in the fuzzy inference system. 

▪ Fuzzification: Fuzzification is the process of transforming linguistic variables into explicit variables. The fuzzy 

specification specifies the degree of membership in fuzzy sets for the input variables. 

▪ Fuzzy inference: Using inference methods, the inference engine assesses and infers the rules. Fuzzy inference 

computes the outcome after performing fuzzified input combinations. 

▪ Aggregation: At this stage, the unification has been completed. Put another way, all values are united into one if an 

output is dependent on many rules. 

▪ Defuzzification: The defuzzification unit transforms the output into an explicit or numerical value. 

 



 

 

262  Abdulkareem et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 251–277 

3.3.3  Trust Dimension 

The quality of communication (QC) between two objects is assessed in this domain. This dimension evaluates the 

success rate of B in the relationship with A from the point of view of A, regardless of the outcome. This dimension is 

used to calculate and evaluate trust and takes into account the most recent direct QC observation, previous QC 

information, and indirect QC information (recommendations). The trust level derived from direct observations and 

information is known as the last direct QPC. Eq. (5) is used to compute the direct QC. Eq. (5) uses the terms 𝑐𝑖 (belief 

rate), V (uncertainty), and D (certainty from A to B). 

 

{
 
 

 
 𝐷𝑖𝑟𝑇𝑞𝑐

𝐴,𝐵(𝑦) =  (𝑇𝑞𝑐1 , … . , 𝑇𝑞𝑐𝑘 , 𝑣 )

𝑊ℎ𝑒𝑟𝑒
𝑇𝑞𝑐𝑖 = 𝑐𝑖 × 𝐷

𝐴,𝐵(𝑦)

𝑣 =  𝑉𝐴,𝐵(𝑦) = 1 − 𝐷𝐴,𝐵(𝑦)

       .                                                              (5) 

 

The device's trust level, or historical QC, is determined by past data. Equation (6) is used to calculate the historical 

QC. 

 

(𝐷𝑖𝑟𝑇𝑑
𝐴,𝐵)

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑎𝑙𝑄𝐶
= 

{
 
 
 
 

 
 
 
 ∑ 𝑒

−
𝑡
𝑔×(𝐷𝑖𝑟𝑇𝑑

𝐴,𝐵)
ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑎𝑙𝑄𝐶𝑡

𝑚
𝑡=1

∑ 𝑒
−
𝑡
𝑔𝑚

𝑡=1

𝑊ℎ𝑒𝑟𝑒
𝑛 = 3  𝑓𝑜𝑟 𝑑𝑒𝑣𝑖𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑛𝑒𝑑

𝑛 = 5 𝑓𝑜𝑟 𝐼𝑜𝑇 𝑑𝑒𝑣𝑖𝑐𝑒𝑠 

𝑛 = 7 𝑓𝑜𝑟 𝑝𝑜𝑤𝑒𝑟𝑓𝑢𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠
𝐺 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 

                                                  (6) 

 

Eq. (6) states that the trust level in the nth most recent relationship is(𝐷𝑖𝑟𝑇𝑑
𝐴,𝐵)

ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑎𝑙𝑄𝐶𝑡
. G is used to provide the 

greatest significance and influence on the most current messages. The degree of trust acquired through referrals from 

neighbors is known as indirect QC. Recommendations are filtered using Equation (7) to eliminate harmful suggestions. 

Following the selection of the suggestions, Eq. (8) from my most recent publication is used to compute the indirect 

QC.  

 

{
 
 
 
 
 

 
 
 
 
 

𝑖𝑓 (𝑑𝑖𝑠 ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑅𝑒  𝑑
𝑅𝑒 𝑖𝑠 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒

𝑒𝑙𝑠𝑒
𝑅𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒

𝑊ℎ𝑒𝑟𝑒

𝑑𝑖𝑠 =  (𝐷𝑖𝑟𝑇
𝑞𝑐𝐵
𝐴 ≠ 0) ? | 𝑅𝑒 𝑑𝑇𝑞𝑐

𝑎,𝐵,𝑅 − 𝐷𝑖𝑟𝑇𝑞𝑐
𝐴,𝐵  |:

|𝑅𝑒 𝑑 𝑇𝑞𝑐
𝐴,𝐵,𝑅 − 

∑ 𝑅𝑒𝑚
𝑅=1   𝑑𝑇𝑞𝑐

𝐴,𝐵,𝑅

𝑚
|

𝑎𝑛𝑑
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑅𝑒  𝑑 = 0.2; 𝑅𝜖{𝑟𝑒𝑐𝑒𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑟};
𝑚 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 

                                                  (7) 

 

  𝑅𝑒𝑑𝑇𝑞𝑐
𝐴,𝐵,𝑅  =  {

∑ 𝑤𝑅 × 𝑅𝑒𝑑𝑇𝑞𝑐
𝐴,𝐵,𝑅𝑚

𝑟=1

∑ 𝑤𝑟
𝑚
𝑟=1

𝑤ℎ𝑒𝑟𝑒 𝑤𝑟𝜖[0,1] , 𝑤𝑟 = 𝐷𝑖𝑟𝑇
𝐴,𝑅

  .                                                                    (8) 

 

𝑅𝑒𝑑𝑇𝑞𝑐
𝐴,𝐵,𝑅

 in Eq. (8) denotes entity R's proposal to entity A about entity B. wr represents the credit assigned to each 

of the suggested entities by their track record and effectiveness. The value of one represents the complete and absolute 

trust that entity R has, and 𝑤𝑟 is in the range of 0 and 1. 
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a) Quality of Service (QoS) 

The term quality of service refers to the general assessment of a thing's total services rendered about its intended use. This 

dimension can be altered according to how trust is to be determined. Various QoS parameters are offered in the literature. 

b) Contextual Information (CI) 

Status and abilities that are acquired from context are referred to as contextual information. This dimension assesses the 

given data. The IoT ecosystem provides a wealth of contextual information. Among these, the most crucial information is 

regarding the movement of objects. One of the most crucial CIs that is dynamically generated in real-time is security 

capabilities. The intelligence of the device is another CI. Risk circumstances, energy status, environmental risk, and 

temporal status are further areas of corporate intelligence. The right parameters must be taken into account to calculate CI 

trust, depending on the purpose and context of the trust calculation. 

c) Final trust  

The final trust fuzzy inference system combines the computed trust in each dimension (the outputs of fuzzy systems in each 

dimension) to determine the final trust value. For this reason, as inputs enter the final fuzzy system, the outputs of fuzzy 

systems in every dimension are used. Fuzzy inference is then used to establish the final trust value. 

3.4 Joint Attack Classification  

➢ Network Delay and Energy Consumption  

With trust evaluation placed, the attention turns to detecting joint attacks like rank attacks and wormhole attacks that affect 

the network delay and energy consumption. Consequently, light gradient boosting (LGB) was proposed to detect attacks 

effectively. The LGB is a machine learning capability that ensures the identification of the malicious with minimal 

computational overhead. Additionally, to minimize network delay and energy usage, energy and delay-aware data 

aggregation is integrated into the system. This technique involves two key processes.  

• Parent Selection: The first process is the selection of parents, which utilizes the residual energy of the routing metric 

(RER) to select the most energy-efficient parent node for data transmission. This ensures that nodes with higher energy 

reserves are preferred, which persists in the overall network lifespan. 

• Data aggregation: After the parent selection data aggregation takes place, which employs the compressed sensing (CS) 

theory at the parent node to efficiently associate the data packets from child nodes. It reduces the volume of transmitted 

data conserves energy and reduces the delay.  

3.4.1 Light-Gradient Enhancement 

This research proposes a multiclass classification approach to counteract rank and wormhole assaults in an RPL-based 

Internet of Things network. The dataset's benign, rank, and wormhole target classes” are classified using multiclass 

classification using the light gradient boosting machine model. Microsoft created the model in 2016 as a simplified version 

of the gradient boost technique for binary classification, incorporating exclusive feature clustering and 1-side sampling. By 

giving the high-gradient data instances a great priority and eliminating the inadequate gradient data instances, the one-side 

sampling technique known as Gradient-based One-Side Sampling (GOSS) achieves and preserves the precise data gain. 

The GOSS function's mathematical form is shown in equation (9). The estimated variance gains in the 𝐴 ∪ 𝐵 subgroup, 

described by 𝐴𝑙, is represented by �̂�𝑘. 𝐴𝑟, 𝐵𝑙 , and 𝐵𝑟in the formula, and 1 −  𝑎/𝑏 denotes the gradient sum's normalization 

coefficient.  

The �̂�𝑘 (d) is applied to discover the optimal split point for smart data set sampling, focusing on cases with notable 

gradients to improve model accuracy. This also helps to simplify things. 

 

�̂�𝑘(𝑑) =  
1

𝑚
 ((∑ 𝑔𝑖𝑦𝑖𝜖𝐴𝑙

+ 
1−𝑎

𝑏
 ∑ 𝑔𝑖𝑦𝑖𝜖𝐵𝑙

) ^2
𝑚𝑙
𝑘(𝑑)⁄ + (∑ 𝑔𝑖𝑦𝑖𝜖𝐴𝑟

+ 
1−𝑎

𝑏
 ∑ 𝑔𝑖𝑦𝑖𝜖𝐵𝑟

) ^2
𝑚𝑟
𝑘(𝑑)⁄ ) .                         (9) 

Second, by combining unique features into a single feature, the exclusive feature-bundling technique, or EFB, reduces 

complexity. The model's histogram-based techniques reduce memory usage and speed up training, which is beneficial for 

LLNs like the Internet of Things. As a result, this model is used to perform multiclass classification, which is then followed 

by fine-tuning and hyperparameter optimization. 

3.4.2  Energy and Delay-Aware Data Aggregation 

The Selection of the Suggested Energy and Delay Conscious Parent and Data Aggregation are the two steps involved in 

the Data Aggregation of RPL (EDADA-RPL). The residual energy (RER), a routing parameter, is used in the parent 

selection process to decide the optimal parent for data exchange. Data packets from the child nodes are combined by the 

data aggregation process in the parental node using the CS theory. Ultimately, the combined information travels from a 

parent that is lower to the DODAG root, or sinks. To get the original data, the DODAG root compiles the combined 

information and performs the reconciliation procedure. 

 



 

 

264  Abdulkareem et al, Mesopotamian Journal of Cybersecurity Vol.4,No.3, 251–277 

a. Selection of parents  

The DODAG Information Object (DIO) in EDADA-RPL is broadcast by the DODAG root node to the network's 

neighboring nodes. The participant node sends the DODAG Advertisement Object (DAO)communication to the parent or 

DODAG root. During the trickling interval, the child node receives the signal of the DODAG Advertisement Object-

Acknowledgment (DAO-ACK) from the DODAG root or parent node. Depending on the remaining metric energy (RER) 

routing at the DODAG node level, the participating node selects the parent node. The RPL router's current energy 

availability is displayed as residual energy. The RER calculates the discrepancy between the node's present energy 

consumption and its initial energy consumption. Equation (10) provides the formula to calculate the remaining energy. 

 

𝑅𝐸𝑅(𝑀𝑖) =  
𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙− 𝐹𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑

𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙
  .                                                                           (10) 

 

b. Parent Rank Calculation 

The rank shows the distance between the participant's node and the root of the DODAG. The parent node(y) rank and its 

value, Rank Increase Value, are used to calculate the node "y" rank. The residual energy and MinHop rank increase values 

are computed using the Rank Upsurge value. The rank calculation's default value for the MinHop Rank Increase variable 

is 256. Equations (11) and (12) provide the rank calculation. 

 

𝑅𝑎𝑛𝑘(𝑦)  =  𝑅𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒(𝑦))  +  𝑅𝑎𝑛𝑘 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒                                                (11) 
𝑅𝑎𝑛𝑘 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 =  𝑅𝐸𝑅 +  𝑚𝑖𝑛 ℎ𝑜𝑝 𝑟𝑎𝑛𝑘 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒                                                    (12) 

 

Algorithm 4 provides the EDADA-RPL parent selection algorithm. 

 

Algorithm 4: “EDADA-RPL parent selection” 

Input: DIO-DODAG Information Object message containing routing information, DAO-DODAG Advertisement Object 

sent from child to parent, DAO-ACK-Acknowledgment of DAO received from parent, DIO_RER-Residual Energy 

Routing metric from DIO message 

Output: Optimal Parent- Selected parent node for efficient energy 

1. For the preferred ParentNode parentNode list, do 

2. Calculate RER 

3. 𝑅𝐸𝑅(𝑀𝑖) =  
𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙− 𝐹𝑑𝑒𝑝𝑙𝑒𝑡𝑒𝑑

𝐹𝑖𝑛𝑖𝑡𝑖𝑎𝑙
 

4. compute the Rank(m) 

𝑅𝑎𝑛𝑘(𝑦) =  𝑅𝑎𝑛𝑘(𝑝𝑎𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒(𝑦)) + 𝑅𝑎𝑛𝑘 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑉𝑎𝑙𝑢𝑒 
5. Calculate the Rank-Upload Value 

𝑅𝑎𝑛𝑘 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑣𝑎𝑙𝑢𝑒 =  𝑅𝐸𝑅 +  𝑀𝑖𝑛𝐻𝑜𝑝 𝑟𝑎𝑛𝑘 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 
6. If Best Parent Node>= Preferred Parent Node Then 

𝐵𝑒𝑠𝑡 𝑃𝑎𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 = 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝑃𝑎𝑟𝑒𝑛𝑡𝑁𝑜𝑑𝑒 
7. End 

8. While preferred Parent Node==Best Parent Node, 

Source node=Preferred Parent node 

9. End 

10. End 

11. Return Optimal Parent 

 

3.4.3 Using CS Theory Data Aggregation in Parent Node 

The data 𝑒 =  {𝑒1, 𝑒2, . . . 𝑒𝑛}𝑇  is transmitted by the sensor nodes to the parent node throughout the data aggregation 

process. The data are collected and aggregated by the parent node PN1, which then forwards the combined data packets to 

the DODAG root. A sparse matrix, or weighted sum of the random number multiplied by the sensor data 'e', is sent to each 

parent node.  

Path 1 The values generated by node 𝑃𝑁 1 are 𝑟11  × 𝑒1, as stated in Equation (13).  

 

𝑃𝑁 1 = 𝑟11  × 𝑒1 ,                                                                                             (13) 

 

where 𝑒1the parent node 1 is(𝑃𝑁1) aggregate information, and 𝑟11 denotes the 𝑃𝑁 1 Value selection. Initially, the 

aggregated data (𝑟11 × 𝑒1) is sent to 𝑃𝑁 2 by the parent node𝑃𝑁 1. Second, in addition to gathering and combining data 
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from its child nodes, the parent node 𝑃𝑁 2 also gathers data from𝑃𝑁1. The equation provides the mathematical 

representation (14). 

𝑃𝑁2 = 𝑟11 × 𝑒1 + 𝑟12 × 𝑒2 ,                                                                              (14) 

𝑃𝑁 3 = ∑ 𝑟1𝑖  × 𝑒𝑖
𝑘
𝑖=1   ,                                                                                   (15) 

 

where 𝑟1𝑖 is the random number of every parent node in path 1 and k denotes the number of parent nodes in each path. The 

data is transmitted from 𝑃𝑁1 to the DODAG root by the parent nodes in path 1. Equation (16) provides the observation 

matrix, which is the result of the DODAG root's collection of the aggregated information in path 1. 

 

𝑧1 = ∑ 𝑟1𝑖  × 𝑒𝑖
𝑘
𝑖=1                                                                                       (16) 

 

 Where 𝑧1 denotes the path 1 aggregated data collection by the DODAG root. 

In the same manner, the data packets𝑧𝑖, where i = 1, 2… N is received by the DODAG root, which also gathers the 

aggregated information from M pathways. Thus, Equation (17) can be used to express the data aggregation process 

mathematically. 

[
 
 
 
 
𝑧1
𝑧2
.
.
𝑧𝑁]
 
 
 
 

=  [

𝑟11 𝑟12 𝑟1𝑀
𝑟12 𝑟22 𝑟2𝑀
𝑟𝑁1 𝑟𝑁2 𝑟𝑁𝑀

]

[
 
 
 
 
𝑧1
𝑧2
.
.
𝑧𝑁]
 
 
 
 

   .                                                                      (17) 

 

Then, CS theory can be used to renovate the weighted total of combined records from the N path to the innovative data of 

the M node. As a result, the maximum number of data transmissions can be lowered (𝑁 < 𝑀). Algorithm 5 shows the data 

aggregation using the CSP theory.  

 

Algorithm 5: Using CSP Data Aggregation 

Input: Sensor data 𝑒 =  {𝑒1, 𝑒2, . . . 𝑒𝑛} 
Output: Compressed data z 

1.  Calculate the data aggregation from 𝑃𝑁1 to the DODAG root 

  𝑧1 = ∑ 𝑟1𝑖  × 𝑒𝑖
𝑘
𝑖=1  

 

2. Using the M pathways, calculate the aggregation of data in the DODAG root. 

[
 
 
 
 
𝑧1
𝑧2
.
.
𝑧𝑁]
 
 
 
 

=  [

𝑟11 𝑟12 𝑟1𝑀
𝑟12 𝑟22 𝑟2𝑀
𝑟𝑁1 𝑟𝑁2 𝑟𝑁𝑀

]

[
 
 
 
 
𝑧1
𝑧2
.
.
𝑧𝑁]
 
 
 
 

  .                                                                     (18) 

 

3.  Return the aggregated data z 

 

 

3.4.4  Classification of Joint Attacks  

Finally, it is introduced to classify and mitigate joint attacks like version number attacks using the Q-learning strategy. The 

Q-learning, reinforcement learning technique is used to identify the malevolent nodes with high accuracy while having 

minimal overhead on the network. This strategy continuously learns and adapts to network conditions to identify malicious 

behaviors indicative of version number attacks. To improve the detection accuracy, the Trickle timer algorithm is 

integrated. This algorithm regulates the frequency of control message dissemination, which ensures that the network can 

rapidly and accurately detect attacks. Integrating Q-learning with the trickle-time algorithm achieves enhanced accuracy 

in detecting the version number attacks efficiently to safeguard the network while maintaining a low overhead. This 

approach improves the RPL network which remains resilient and secure against joint attacks and promotes reliable 

communication within the Internet of Everything environment. 

i. Q-learning 

Q-RPL algorithm 6 illustrates our suggested method of detection. When the node receives the DIO packet, the Q-RPL 

Protocol operation is executed. Each node's information is kept in a static array variable to ensure data integrity. 

Additionally, a global variable 𝑄𝑙𝑖𝑠𝑡 [𝑀𝐴𝑋_𝑁𝑂𝐷𝐸] has been created. It contains the list of discounts, together with the 

disregarding factor of the. Every node keeps track of the number of DIO communications it receives from other nodes in 
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120 seconds. The client uses UDP packets to transmit this data to the server once every 120 seconds. To choose the best 

routing routes based on past performance data, nodes utilize Q-Learning, a reinforcement learning model. Figure 3 

illustrates the iterative process by which nodes modify their route choices in response to rewards from earlier 

activities. Every node monitors the total rewards earned from the routes it has traveled, adjusting its policy to prioritize 

routes that provide greater utility (low latency, energy efficiency, little interference). The system is self-learning; nodes 

automatically adjust to changing network conditions by exchanging Q-values, which enhances overall route selection and 

reduces error margins without requiring centralized management. 

 

 
Fig. 3. Iterative Q-Learning Process for Route Selection in RPL. 

 

Nodes can respond to changes and any interruptions in real time by using reinforcement learning. IoT networks are greatly 

impacted by this adaptive learning process, which improves network stability, especially in situations of congestion or 

targeted assaults. 

 

Algorithm 6: Q-RPL: version number attack detection. 

1. 𝑁𝑜𝑑𝑒𝑀 , 𝑄𝑙𝑖𝑠𝑡 [𝑀𝐴𝑋_𝑁𝑂𝐷𝐸]     Global variable 

2. 𝑑𝑖𝑜𝑐𝑜𝑢𝑛𝑡 , 𝑉𝑒𝑟_𝑐𝑜𝑢𝑛𝑡    static variable for each node 

3. 𝜏𝑖 ← [𝑣𝑒𝑟𝑛𝑢𝑚 , 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑛𝑜𝑑𝑒𝑖𝑑]          global variables 

4. 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒𝑠 𝑄 − 𝑅𝑃𝐿𝑝𝑟𝑜𝑐 

5.             ∅𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑚𝑒 ← 𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑖𝑚𝑒() 

6. If 𝜗 == 0 then check if the list is empty 

7.     𝜗 = 𝜗 + 1                      Increment the variables 

8.      Call allocates list () procedure static procedure. Initialize the structure for the node. 

9. End if  

10. 𝐷𝐼𝑂𝑐𝑜𝑚𝑖𝑛𝑔 = 𝑓𝑟𝑜𝑚    get the node ID from where DIO coming 

11. For 𝑖 ← 1 to Max_NODE do 

12.        If 𝑁𝑜𝑑𝑒𝑆[𝜏𝑖 . 𝑓𝑟𝑜𝑚] ==  𝑠𝑜𝑢𝑟𝑐𝑒𝑖𝑝   then 

13.         𝛿 ← 𝑁𝑜𝑑𝑒𝑆[𝐷𝐼𝑂𝑐𝑜𝑚𝑖𝑛𝑔]. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛        get the current version of node 

14.         ∆ ← 𝑑𝑖𝑜. 𝑣𝑒𝑟𝑠𝑖𝑜𝑛    get version from DIO message 

15.           If  ∆ − 𝛿 > 0 then the version changed 

16.                    𝑁𝑜𝑑𝑒𝑆[𝐷𝐼𝑂𝑐𝑜𝑚𝑖𝑛𝑔] =  𝑁𝑜𝑑𝑒𝑆[𝑖]. 𝑑𝑖𝑜𝑐𝑜𝑢𝑛𝑡 + 𝑁𝑜𝑑𝑒𝑆[𝑖]. 𝑣𝑒𝑟𝑐𝑜𝑢𝑛𝑡  

   Updating the node list value for the node for detection with the penalty 

17.           Else 𝑁𝑜𝑑𝑒𝑠[𝐷𝐼𝑂𝑐𝑜𝑚𝑖𝑛𝑔] =  𝑁𝑜𝑑𝑒𝑠[𝑖].  𝑑𝑖𝑜𝑐𝑜𝑢𝑛𝑡       updating the node list value without penalty 

18.            End if  

19.        End if  

20. End for 

21. End process  
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TABLE I.  DESCRIPTIVE OF VARIABLES. 

 

Variable Name Description 

𝑁𝑜𝑑𝑒𝑀 Nodes in the network 

𝑄𝑙𝑖𝑠𝑡 [ ] The incoming DIO count with 

penalties for each node is stored in a 

global list. 

𝑑𝑖𝑜𝑐𝑜𝑢𝑛𝑡 Store count of DIO 

𝑣𝑒𝑟𝑐𝑜𝑢𝑛𝑡 Increments when the version 
changes 

Version number keeps the most recent version of the 

node 

𝜏𝑖 Stores the 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,𝑛𝑜𝑑𝑒−𝑖𝑑 

∅𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑖𝑚𝑒 obtains the system time as of right 

now. 

𝜗 To start the list 

𝐷𝐼𝑂𝑐𝑜𝑚𝑖𝑛𝑔 Obtain the inbound DIO's Node-ID. 

𝑀𝐴𝑋𝑁𝑂𝐷𝐸 Total node count inside the system 

𝛿 keeps the version number updated. 

Q_table_server [][] depicts the condition of the network 
using the DIO count. 

 

 

 
 

Fig. 4. Detection and Isolation of Version Number Attack. 

 

The parameters and their descriptions used in the algorithms are shown in Table I. Following filtering the client data; the 

server creates a graph that shows the inbound and outgoing DIO messages among the nodes. While the server is the root 

node or a border router, the data collected from the client nodes are Z1 nodes. Figure 4 shows how version number assaults 

in RPL are identified and isolated by CIDS. By altering a node's version number, these attacks interfere with the 

construction of DODAG. Nodes keep a watch on the version history of the DIO messages sent by their parent nodes. In the 

CIDS, anomalies in version increments cause an alert, marking the questionable node for additional examination. Affected 

nodes are separated as soon as they are detected, preserving route integrity for the system. By using consistency thresholds 

to isolate compromised nodes, the detection system determines penalties for inconsistent version updates. 

ii. Trickle-timer algorithm 

The goal of the trickling timer method is to modify the DIO transmission frequency in response to changes in the network. 

The standard states that when a network discrepancy is found, the communication rate of the DIO messages increases. The 
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identification of network loops, a node failing or entering the network, and other events are among the inconsistent 

notifications. The trickling timer algorithm's brief flow is explained as follows: 

1. Set J to a value in [𝐽𝑚𝑖𝑛 ,  𝐽𝑚𝑎𝑥] to begin the initial time slot 

2. The initial slot by environment d=0,𝑠𝑡𝑖𝑚𝑒𝑟 = [
𝐽

2
, 𝐽] is a point taken arbitrarily in the interval, and each time slot steps 

at J. 

3. When the trickle time obtains consistent messages let d+=1 

4. At the timer the trickle timer checks if there is d<k and only permits packets to be directed if d<k 

5. When J expires, make J*2, if J*2>𝐽𝑚𝑎𝑥 , set J = 𝐽𝑚𝑎𝑥 

6. The trickling timer will reset itself if it detects a conflicting message.  

 

Algorithm 7: trickle time based on RL. 

Input: ← 𝐽𝑚𝑖𝑛, 𝑑𝑘 ← 𝑘, 𝑡𝑛 ← 0, 𝑑𝑛
𝑚 ← 0, 𝑚 ← 1,𝑖𝑛𝑐𝑜𝑛𝑛

𝑚−1 ← 0, 𝑟𝑒𝑤𝑎𝑟𝑑 ← 0, ∆𝑄 ← 0, Q table← 0 

1. 𝑅𝑎𝑛𝑑𝑜𝑚 𝑡𝑖𝑚𝑒 ∶ 𝑢𝑠𝑒    𝑠𝑛
𝑚 = [𝑡 ×

𝑗

𝑚
 , (𝑡 + 1) × 𝐽/𝑚]  𝑡𝑜 estimate 𝑠𝑛

𝑚 

2. 𝑅𝑒𝑐𝑒𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐷𝐼𝑂 𝑡ℎ𝑒𝑛 ∶ 𝑑𝑛
𝑚+ = 1 

3. 𝑅𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑎𝑛 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 𝐷𝐼𝑂 𝑡ℎ𝑒𝑛 ∶ 𝐽 ← 𝐽𝑚𝑖𝑛, 𝐷𝐼𝑂𝑆𝑒𝑛𝑡 𝑛⟵ 0, 𝑑𝑛
𝑚 ← 0, 𝑚 ← 1, 𝐷𝐼𝑂𝑐𝑜𝑢𝑛𝑡𝑛

𝑚⟵ 0, 

𝑖𝑛𝑐𝑜𝑛𝑛
𝑚−1 ← 1, 

4. while 𝑡ℎ𝑒 𝑟𝑎𝑛𝑑𝑜𝑚 𝑡𝑖𝑚𝑒 𝑠𝑛
𝑚  𝑒𝑥𝑝𝑖𝑟𝑒𝑠 ∶ do 

5. select 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 among [0, 1] (𝑟𝑎𝑛𝑑) 𝑡𝑜 exposure 𝑎𝑛𝑑 𝑢𝑠𝑒 

6. if 𝑟𝑎𝑛𝑑 ≤ 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 then 

7. if 𝑑𝑛
𝑚< 𝑑𝑘 then 

8.  𝐷𝐼𝑂 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡1), 𝐷𝐼𝑂𝑛
𝑠𝑒𝑛𝑡  ++ 

9. else 

10. 𝐷𝐼𝑂 𝑠𝑢𝑝𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝑠1) 

11.  end if 

12.  else 

13.  𝑈𝑠𝑒 𝑎𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑜𝑝𝑡𝑖𝑚𝑎𝑙

=  arg𝑚𝑎𝑥𝑄(𝑡, 𝑎) 𝑡𝑜 choose 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑙𝑒𝑑 𝑡𝑜 𝑡ℎ𝑒 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑟𝑒𝑤𝑎𝑟𝑑 

𝑖𝑛 𝑡ℎ𝑒 𝑝𝑎𝑠𝑡 
14. end if 

15. end while 

16. while the time interval expires, do 

17. C𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑠𝑛
𝑚 regarding 𝑡𝑜 𝑠𝑛

𝑚 = {
1 − 𝑖𝑛𝑐𝑜𝑛𝑛

𝑚   𝑖𝑓 𝑡 = 𝑡0
𝑖𝑛𝑐𝑜𝑛𝑛

𝑚     𝑖𝑓 𝑡 = 𝑡1
 

 

18.  𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛥𝑄 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜  

                𝛥𝑄(𝑡, 𝑎) = {𝑠𝑛
𝑚(𝑡, 𝑎) +  𝜏 × max(𝑡, 𝑎)} − 𝛥𝑄(𝑡, 𝑎)  

19. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑄 – 𝑡𝑎𝑏𝑙𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜  

                    𝑄𝑛𝑒𝑤(t,a) = 𝑄(𝑡, 𝑏) + 𝑏 ×  𝛥𝑄(𝑡, 𝑎) 
20.  𝑈𝑝𝑑𝑎𝑡𝑒 𝑗 ∶ 𝑗 ⟵  𝑗 ∗  2 
21. if j  > 𝐽𝑛𝑎𝑦 then 

22. J ⟵ 𝐽𝑛𝑎𝑦 

23. end if 

24. if 𝐷𝐼𝑂𝐶𝑜𝑢𝑛𝑡𝑛
𝑚 = 0 then 

25.  𝑑𝑘 ← 𝑘  

26.  else 

27. 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑘 𝑢𝑠𝑖𝑛𝑔  

𝑑𝑘 = 
∑ 𝐷𝐼𝑂𝑐𝑜𝑢𝑛𝑡𝑛

𝑚𝑚
𝑗=1

𝑚
 

28.  end if 

29. m+ = 1 

30.  𝐷𝐼𝑂𝐶𝑜𝑢𝑛𝑡𝑛
𝑚+ = 𝑑𝑛

𝑚 

31.  𝑖𝑛𝑐𝑜𝑛𝑛
𝑚−1  ⟵ 0 

32. end while 

Where, 

𝑠𝑛
𝑚  = 𝑟𝑒𝑤𝑎𝑟𝑑 
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𝛥𝑄(𝑡, 𝑎) is a better learning estimate for a certain pair of states and actions. Algorithm 7 demonstrates the trickle time-

based RPL algorithm.  

Version number assaults produce significant congestion and interfere with network routes. For IoT applications with strict 

reliability requirements, this detection method is crucial because it isolates rogue nodes, maintaining route stability and 

guaranteeing continuous data transfer. 

 

4. EXPERIMENTAL RESULTS  

This section presents the experimentation analysis and performance evaluation of the suggested study plan. This part is 

divided into three subsections: research overview, comparative analysis, and simulation study. 

A. Simulation Setup 

To simulate the proposed research method, Contiki-3.x with Cooja simulator is utilized. This tool has an efficient network 

topology and provides all specifications for the proposed technique. Table II indicates the system specifications. Table III 

shows the simulation parameter.   

 

TABLE II . SYSTEM SPECIFICATION.  

Software 

specification 

OS Ubuntu 20.04 

Network 

simulator 

Contiki-3.x with 

Cooja 

simulator 

Hardware 

specification 

RAM 4 GB 

hard disk        500 GB 

 

TABLE III. SIMULATION PARAMETER.  

Parameters Descriptions 

Network parameters IoT nodes 100 

Routers(sink) 4 

B. Comparative analysis 

This section contrasts the suggested approach with several existing ones, including Secure trust-based RPL routing in the 

mobile sink (SecRPL-MS)[20], security, mobility, trust-based model(SMTrust)[21], RPL attacks based on intrusion 

detection for effective routing (RAIDER) [25], flexible trickle algorithm based on RPL (RPL-FL) [33] assesses its 

efficiency using performance metrics like Number of nodes vs. accuracy (%), Number of nodes vs. precision (%), Number 

of nodes vs. energy consumption (mW), Number of nodes vs. throughput (%), Number of nodes vs. control message 

overhead, Number of nodes vs. time computing (s). 

a. Number of Nodes vs. accuracy (%) 

In a CIDS for detecting joint assaults in the RPL routing protocol, the number of nodes and accuracy (%) are correlated as 

follows: 

Accuracy(%) =  α × log(number of nodes) + β                                                         (18) 

 

Here 

α, β is a constant 

 

 
TABLE  IV.  NUMERICAL OUTCOMES OF ACCURACY (%). 

(x-axis) – Number of Nodes Accuracy (%)- (y-axis) 

SecRPL-

MS 

SMTrust-RPL Proposed 

20 30 32 35 

40 42 45 46 

60 57 62 66 

80 81 86 90 

100 90 95 98 
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Fig. 5. Accuracy vs. Number of Nodes in CIDS.  

 

Fig 5 and Table IV represent the number of nodes vs. accuracy and the numerical outcomes of accuracy (%). The accuracy 

for three routing protocols, SecRPL-MS, SMTrust-RPL, and the proposed method, was analyzed along various numbers 

of nodes. The proposed approach consistently outperforms the other two achieving 35% accuracy with 20 nodes and 

peaking at 98% with 100 nodes. In the comparison, SMTrust-RPL reached 95% at 100 nodes, while SecRPL-MS had the 

lowest performance starting at 30% with 20 nodes and reaching 90% with 100 nodes. This demonstrates the superior 

performance of the proposed approach across all the tested node quantities. The accuracy of the suggested CIDS protocol 

is much greater than the others; it starts at 35% with 20 nodes and reaches 98% with 100 nodes. Advanced approaches such 

as QWL-RPL for traffic management and the GBM algorithm for low computing burden during attack detection are 

responsible for the accuracy increases. In a variety of node settings, the suggested method maintains good accuracy. For 

real-world IoT applications, where scalability and dependability are crucial, particularly in hostile contexts where 

coordinated attacks may occur, this high accuracy rate is essential. 

b. Number of Nodes vs. Precision (%) 

In a CDIS for detecting joint assaults in the RPL routing protocol, the number of nodes and accuracy (%) have the 

following relationship: 

 

Precision(%) =  τ × log(number of nodes) + γ                                                             (19) 

 

τ, γ is a constant 
TABLE V.  NUMERICAL RESULTS OF PRECISION (%). 

(x-axis) – Number of Nodes Precision (%)- (y-axis) 

SecRPL-

MS 

SMTrust-RPL Proposed 

20 20 23 25 

40 39 42 45 

60 69 72 76 

80 81 85 90 

100 85 90 95 
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Fig. 6. Precision vs. Number of Nodes in CIDS. 

 

Fig 6 and Table V represent the number of nodes vs. precision (%) and the numerical outcomes of the precision (%). The 

precision of SecRPL-MS, SMTrust-RPL, and a proposed approach was assessed over varying Nodes. The suggested 

approach consistently exhibited superior precision that starts at 25% with 20 nodes and reaches 95% at 100 nodes. SMTrust-

RPL followed closely beginning at 23% and achieving 90% precision by 100 nodes. SecRPL-MS had the lowest precision 

starting at 20% and the maximum reach out is 80% with 100 nodes. This demonstrates that the suggested approach offers 

the highest precision across all the nodes. Because of its low-latency classification made possible by GBM and integrated 

fuzzy logic trust evaluation, the suggested CIDS shows exceptional precision, reaching 95% at 100 nodes. Here, precision 

is essential since it gauges how well the system can distinguish between malicious and benign nodes while reducing false 

positives. To prevent false alarms, which can waste network resources and affect dependability, CIDS must have a high 

accuracy rate. Because of its increased accuracy, the suggested approach may function dependably across extensive IoT 

networks, facilitating precise and consistent intrusion detection. 

 

c. Number of Nodes vs. Energy consumption (mW) 

In CDIS for detecting collaborative assaults in the RPL routing protocol, the number of nodes and energy usage (mW) are 

correlated as follows: 

 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑚𝑊) =  ∅ × 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 +  𝜃                                                          (20) 
 

𝜃, ∅  is a constant 

 
TABLE VI.  NUMERICAL RESULTS OF ENERGY CONSUMPTION (mW). 

(x-axis) – Number of Nodes Energy consumption (mW) -(y-axis) 

SecRPL-

MS 

SMTrust -

RPL 

Proposed 

20 5 4 3 

40 6 5 4 

60 7 6 5 

80 9 8 6 

100 10 9 7 
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Fig. 7.  Energy consumption vs. Number of Nodes in CIDS. 

 

Fig. 7 and Table VI represent the number of nodes versus energy consumption (mw) and the numerical results of energy 

consumption (mw). The energy consumption of SecRPL-MS, SMTrust-RPL, and the suggested approach were analyzed 

on different nodes. The suggested method shows a lower energy consumption that starts at 2 mW with 20 nodes and 

gradually increases to 7 mW at 100 nodes. The SMTrust-RPL exhibits moderate energy consumption that starts with 2 mW 

and increases to 9 mW by 100 nodes. SecRPL-MS had the highest energy consumption, beginning at 1mW and reaching 

10mW at 100 nodes. This recommends that the proposed approach is more energy efficient compared to the other 2 

protocols as the number of nodes upsurges.  

Energy consumption with the suggested approach peaks at 7 mW with 100 nodes after beginning at 3 mW with 20 nodes. 

This energy efficiency results from efficient attack detection with low resource requirements and intelligent traffic 

management via load balancing. Effective energy use is essential for Internet of Things devices running on limited power. 

The suggested CIDS system is ideal for long-term IoT deployments because of its low energy consumption, which 

preserves longer network uptime while striking a balance between high detection precision and lower energy consumption. 

 

d. Number of nodes vs. throughput (%)  

For detecting joint assaults in the RPL routing protocol, the number of nodes and throughput (%) have the following 

relationship: 

 

Throughput(%) =  τ × log(number of nodes) + γ                                                     (21) 

τ, γ is a constant 

 
TABLE VII.  NUMERICAL RESULTS OF PERFORMANCE (%). 

(x-axis) – Number of nodes Throughput (%) - (y-axis) 

SecRPL-

MS 

SMTrust-

RPL 

Proposed 

20 10 15 20 

40 15 30 40 

60 40 50 60 

80 70 80 86 

100 90 95 96 
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Fig 8.  Throughput vs. Number of Nodes in CIDS. 

 

Fig 8 and Table VII show the number of nodes vs. throughput (%) and the numerical outcomes of throughput (%). The 

throughput of SecTrust, SMTrust-RPL, and the suggested method was evaluated across several nodes. The suggested 

approach consistently shows the highest throughput starts at 20% at 20 nodes and reaches 96% at 100 nodes.  SMTrust-

RPL followed beginning at 15% and reaching out 95% at 100 nodes. SecTrust had the lowest throughput starting at 10% 

and achieving 90% at 100 nodes. This demonstrates that the proposed approach delivers the highest throughput across all 

tested nodes compared to other methods.  

The suggested strategy makes use of data aggregation techniques and improved load distribution using WRF-RPL to sustain 

good throughput even as the number of nodes rises. This procedure increases the rate of successful data packet delivery, 

minimizes duplicate data transfers, and saves energy. For Internet of Things applications that need to exchange data in real 

time, high throughput is crucial. The efficiency of the suggested strategy in managing massive IoT data needs without 

sacrificing speed or reliability is confirmed by its capacity to maintain throughput under heavy load situations. 

e. Number of Nodes vs. control message overhead 

For detecting joint assaults in the RPL routing protocol, the number of nodes and control message overhead have the 

following relationship:  

            𝐶𝑜𝑛𝑡𝑟𝑜𝑙 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = α × log(number of nodes)2 + β                                       (22) 

TABLE VIII.  NUMERICAL OUTCOMES OF CONTROL MESSAGE OVERHEAD.  

(x-axis) – Number of nodes control message overhead- (y-axis) 

RAIDER SMTrust-RPL Proposed 

20 1000 1200 1500 

40 1500 2400 2600 

60 2000 3400 3700 

80 2500 3500 3900 

100 3000 3600 4000 

 

Fig. 9.  Control Message Overhead vs. Number of Nodes in CIDS.  
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Fig 9 and Table VII show the number of nodes vs. control message overhead and the numerical outcomes of control 

message overhead. The control message overhead of RAIDER, SMTrust-RPL, and the proposed approaches was assessed 

across different nodes. The suggested method with the highest overhead starts with 1500 messages at 20 nodes and rises to 

4000 messages at 100 nodes. The SMTrust-RPL shows the moderate overhead begins at 1200 messages and reaches out to 

3600 messages by 1000 epochs. The RAIDER had the lowest overhead starting with 1000 messages and increasing to 3000 

messages at 100 nodes. This indicates that while the RAIDER and the SMTrust-RPL have lower control message overhead, 

the proposed work remains the most effective in terms of overhead across all the nodes.  

Due to its many security features, such as real-time attack categorization and dynamic learning for coordinated attack 

detection, the suggested CIDS has a larger control message overhead than RAIDER and SMTrust-RPL. At 20 nodes, the 

overhead is 1500 messages; at 100 nodes, it is 4000. Energy and resource use are impacted by control message overhead. 

The suggested CIDS delivers better accuracy and precision at the expense of increased overhead. In networks where 

security and resistance to sophisticated assaults are more important than cutting costs, this trade-off is advantageous. 

f. Number of Nodes vs. time computing(s) 

For detecting joint assaults in the RPL routing protocol, the number of nodes and time computing (s) have the following 

relationship. 

 

𝑡𝑖𝑚𝑒 𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔(𝑠)   α × log(number of nodes)2 +                                                            (23) 
 

TABLE  IX.  NUMERICAL OUTCOMES OF TIME COMPUTING (s). 

(x-axis) – Number of Nodes Time computing(s)- (y-axis) 

RPL-

FL 

SMTrust-RPL Proposed 

20 23 21 20 

40 48 45 40 

60 70 66 60 

80 89 80 75 

100 120 110 80 

 

 
 

Fig. 10. Computation Times vs. Number of Nodes in CIDS. 

Fig 10 and Table IX show the number of nodes vs. time computing(s) and the numerical outcomes of time computing(s). 

the time computing of RPL-FL, SMTrust-RPL, and the suggested method was measured over different nodes. The 

suggested approaches consistently show the shortest computing time starting at 20s with 20 nodes and increasing to 80 

seconds with 100 nodes. The SMTrust-RPL had a moderate computing time starting at 21s and reaching 110s by 100 nodes. 

RPL-FL shows the longest computing time begins at 23s and escalates at 100 nodes. This demonstrates that the proposed 

approaches are the most effective across all the tested nodes. Minimal calculation times are demonstrated by the suggested 

CIDS, ranging from 20s at 20 nodes to 80s at 100 nodes. The use of adaptive learning techniques (Q-learning) and 

lightweight detection algorithms (like GBM) that lower processing demands is what makes this efficiency possible. Since 

computation time is essential for real-time applications, the suggested method's shorter computation time guarantees that 

the network can react to threats instantly. Quick response is crucial in time-sensitive situations, such as healthcare IoT 

systems, and this feature facilitates the adoption of CIDS. Table X represents the comparison of the proposed work with 

the existing work.  
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TABLE   X. COMPARISON OF PROPOSED WORK VS EXISTING WORK. 

Metric Proposed CIDS SMTrust-RPL SecRPL-MS RPL-FL RAIDER 

Accuracy (%) 35 - 98 32 - 95 30 - 90 - - 

Precision (%) 25 - 95 23 - 90 20 - 85 - - 

Energy Consumption (mW) 3 - 7 4 - 9 5 - 10 - - 

Throughput (%) 20 - 96 15 - 95 10 - 90 - - 

Control Message Overhead 1500 - 4000 1200 - 3600 - - 1000 - 3000 

Computation Time (s) 20 - 80 21 - 110 - 23 - 120 - 

 

C. Discussion 

Effective in resource-constrained contexts, the suggested Collaborative Intrusion Detection System (CIDS) for a large-

scale Internet of Everything (IoE) network was created with computational complexity and scalability in mind. The system 

achieves processing efficiency by combining Q-learning with a Light Gradient Boosting Machine (GBM). GBM only 

considers high-gradient data, minimizing computational effort by eliminating less important aspects and using histogram-

based methods to speed up processing and reduce memory requirements both of which are critical for IoT devices with 

limited resources. Being a model-free technique, Q-learning further enhances efficiency by enabling nodes to base their 

routing and detection choices on cumulative rewards that have been saved, eliminating the need for constant computation 

or large data storage. 

Queue and Workload-Aware RPL (QWL-RPL), which controls load distribution across nodes to avoid congestion, 

improves system scalability. Together with Weighted Random Forward (WRF) routing, which is optimized using a genetic 

algorithm to guarantee that no one node is overloaded, this load-balancing technique maintains performance even as the 

network grows. Furthermore, as the number of nodes increases, a Trickle timer in conjunction with Q-learning modifies 

the frequency of control messages in response to network fluctuations, protecting bandwidth and preventing over-

communication. By combining data at intermediate nodes, the Energy and Delay-Aware Data Aggregation (EDADA) 

feature makes an additional contribution. This lowers transmission collisions and conserves energy, two important factors 

in large-scale deployments with frequent data exchanges. 

EDADA's compressed sensing theory, which reduces redundant data transmission and energy usage per node, is included 

in CIDS, which was designed with resource limits in mind. The decentralized processing strategy of the system, which fits 

well within the memory and processing capacity constraints of IoT nodes, removes the requirement for centralized 

computing by allowing each node to independently carry out routing and trust evaluations based on local information. In 

addition to distributing energy consumption evenly among nodes, load balancing prolongs the network's operating life by 

minimizing battery drain on any one node. All things considered, CIDS successfully strikes a compromise between high 

accuracy, scalability, and energy and computational economy, making it a reliable option for protecting large IoE networks 

when resources are limited. 

The increased control message overhead produced by the Collaborative Intrusion Detection System (CIDS) is one of the 

study's main limitations. Even though this cost helps the RPL protocol identify joint assaults more accurately, it can strain 

network resources, especially in large-scale IoE installations. In contexts with limited resources, this additional cost may 

result in increased energy consumption and decreased network efficiency, which would impact network performance as a 

whole. 

 

5. CONCLUSION 

The improved method for improving security and efficiency in RPL-based IoE networks, EDADA-RPL, is presented. 

To maintain high throughput and accuracy while lowering network latency and energy consumption, EDADA-RPL 

combines energy-efficient data aggregation with workload-aware and queue-aware routing. Important additions include 

the use of Q-learning with a trickle timer to dynamically adjust to changing attack patterns like rank and wormhole assaults, 

and the incorporation of fuzzy logic for trust evaluation, which improves the system's capacity to detect and isolate 

compromised nodes. A graph for the following metrics that include the Number of nodes vs. accuracy is plotted, Number 

of nodes vs. energy consumption (mW), Number of nodes vs. throughput, Number of nodes vs. control message overhead, 

Number of nodes vs. precision, Number of nodes vs. time computing (s). Our approach performance is examined using 

numerical analysis, demonstrating that it performs better than the current methodologies across all measures. Finally, our 

methods perform better than the existing works. 

Implications of this study suggest that IoE networks using the proposed CIDS will experience a more resilient RPL protocol, 

leading to sustained network performance even under complex attack scenarios. These findings offer practical applications 

in smart cities, healthcare IoT, and other critical infrastructures where secure, reliable communication is essential. Future 

work could focus on further optimizing control message overhead and validating the CIDS’s performance across diverse 

IoT environments, thereby broadening its applicability. 
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