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ABSTRACT

Android devices are rapidly being used, which makes it easy for the malware threat to rise to higher
levels. This ever-growing problem has prompted the need to enhance detection systems as far as these
devices are concerned. Standard techniques of machine learning (ML) are sufficient from the point of
view of their speed for searching patterns and behaviors of contemporary malware; however, it is more
important to have effectively enhanced methods. The purpose of this paper is to expand the utilization of
Android malware identification via artificial neural networks (ANNSs) and compare its efficiency with
that of other ML methods. An ANN is used in this study, and the results are compared against those of
several other types of ML, including logistic regression (LR), k-nearest neighbors (KNN), extremely
randomized trees (extra trees), gradient boosting (GBM), adaptive boosting (AdaBoost), and categorical
boosting (CatBoost). The six evaluation values include training accuracy, testing accuracy, average
accuracy, precision, recall and the F1 score. The ANN model performed well, with training and testing
accuracies of 0. 99 and an average accuracy of 0. 99, precision of 0. 99, recall of 0. 98, whereas the F1
score, which is an average of both precision and recall, was 0. 99. Related studies based on conventional
ML methods are also highly efficient, with some accuracy and an F1 score of 0. 95 and 0. 96. On the
other hand, the ANN model ranked the best in the assessed measures. Thus, this study focuses on the
reliability of ANNSs for improving mobile security systems against next-generation malware and their
applicability to secured Android smartphones. The reason behind the high accuracy of the ANN model
is the enhanced learning ability of the ANN, which helps it learn the characteristics and dynamics of
malware better than traditional ML models do.

1. INTRODUCTION

Malware is a general term that is used to refer to a vast category of malicious programs a programmer can create with the
aim of damaging or compromising computers or networks [1]. These include viruses [2], worms [3], Trojan horses [4],
ransomware [5], spyware [6], and adware [7]. The various types of malware all have a particular intent of several forms of
dishonesty: identity theft [8], fiscal fraud [9], denial of services [10], or espionage [11]. The advancement and usage of
malware attacks have increased in recent years, and as a result, an individual, business, and even a government organization
does not remain untouched by it [12]. The goals of malware generation are multiple. Hackers operate toward acquiring
financial benefits by stealing important information, embezzlement and ransomware [13]. Some are interested in altering
the user’s experience [14], threatening their security, gaining information about them or even promoting political views
[2]. New connections and the general expansion of the digital economy increased new entry points for threat actors [15].
The Android operating system, the most commonly used mobile device across the globe, has now become a favorite among
malware developers. The Android, which is an open development platform that is very popular in the market, is a primary
target for hackers [16][35]. The android malware can be transmitted through applications, online sites, documents,
downloadable applications in the mail and via short message services (SMSs) [17]. The previous methods of approach in
malware detection for only Android include the following: signature detection, heuristic detection and behavioral detection.
Signature-based detection uses a search for well-known patterns of the malware code [2].

While being very efficient at combating well-known malware, it is not good at dealing with newer, unknown strains of
viruses. Heuristic analysis involves the processes of searching for behaviors or characteristics that may be associated with
malicious software, but it is normally riddled with inaccuracies. The behavior-based detection approach observes the
actions performed by applications to detect malicious action; this type of detection can be quite resource-consuming and,
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as a result, might slow down the device [18][50]. Sophistication in malware continues to increase, which makes it difficult
for it to be detected by normal security measures. Polymorphic and metamorphic malware can change their code to avoid
being distinguished by signature detection, whereas smart malware can imitate the behaviors of legitimate apps to escape
heuristic and behavior-based detection [2]. This shows an increased level of complexity as a result of which appropriate
and flexible mechanisms to detect threats have also evolved more. Techniques in artificial intelligence (Al), machine
learning (ML), and deep learning (DL) have become major assets in the confrontation with malicious applications [19]-
[21]. Al-enabled malware detection involves applying a high level of sophistication where the Al software works through
a large number of data inputs to discern a given behavior pattern and what is malicious or not. This is because, unlike
criminal techniques used in the past, which can easily be detected by common antimalware software, Al can learn from
new data, which is an advantage given the ever-evolving malware.

The increases in the number, variety, and complexity of various types of malwares require the application of new and better
models of detection to guarantee adequate security for smartphones using the Android operating system. Many approaches,
such as signature, heuristic and behavior-based approaches, have been deemed incapable of capturing the sophistication,
flexibility and advancement of present-day malware. These methods fail, as they are confronted with polymorphic and
metamorphic malware that changes their code or disguises themselves as other programs in an attempt to avoid detection.
Hence, in the face of these heuristics, Al, ML, and DL are vital assets in combating malicious software. ML helps analyze
and compare massive amounts of data and determine signs of a threat, which increases the efficiency of malware detection.
The following work aims to investigate the use of improving the identification and filtering of android malware and its
efficiency against commonly used ML techniques. The findings of our study show that ANNs are superior to other
classifiers in the context of malware detection, which indicates that they can help enhance the frameworks of mobile
security. Therefore, with the use of the currently available enhanced capabilities of ANNSs, this work contributes to ongoing
research on more precise and accurate techniques for detecting malware on the Android operating system.

1.1. Problem Statement

The identification of viruses in systems utilizing the Android OS is an important issue because of the prevalence of the
smartphone and the advancement of malware. Signature-based and heuristic detection are some of the most commonly
used methods that are not effective in detecting new evolving threats that include polymorphic and metamorphic malware.
Due to these limitations, there is a need to work out other efficient methods that will help in identifying these threats and
stop them. This paper seeks to fill this gap by analyzing the application of Artificial Neural Networks (ANNS) in the
identification of Android malware with an ambition of increasing accuracy and reliability of the outcome than the traditional
methods of machine learning process for achieving the same goal.

1.2. Motivation and Contribution

The rationale for this research is found in the increased occurrence and sophistication of Android malwares that present
great threats to the privacy and integrity of users’ data. Traditional approaches to detection prove quite difficult to update
at the same rate as that of the malware tactics. To the best of the authors knowledge, this paper makes a significant
contribution to the existing literature by harnessing ANNs, which are endowed with the ability of fast learning and
flexibility, for malware detection. From this paper, the reader gets an assessment of the performance of the ANN model
against other ML techniques highlighting the fact that the ANN model performs well in distinguishing the malicious
applications. Furthermore, the paper includes the recommendations and guidelines on the application of ANNs in
cybersecurity, noting the essential characteristic that their advantages could decrease the threat of malware which infiltrate
Android systems.

2. RELATED WORK

Over the years, there have been different papers written by researchers and scholars in the area of Android security,
including areas of malware analysis, detection, and vulnerability of Android applications. For example, DL techniques
were used to propose a system in [22] for Android malware detection. In this way, the system achieves an accuracy of 95.
31% accuracy in identifying Malware features extracted from Manifest files and Java files of the Android platform. It
employs a deep neural network (DNN) and other features, including permission combinations, intent filters, invalid
certificates, Android package kit (APK) files present in the asset folder, and application programming interface (API) calls.

[23] specialize in ML algorithms, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Linear
Discriminant Analysis (LDA), Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNNs) and LSTMs
(CNN-LSTM), and autoencoder (AE), for the identification of threats in Android mobile devices. The algorithms are
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evaluated on two datasets and obtain very high accuracy, where the CICAndMal2017 dataset is used for SVM and the
Drebin dataset is used for LSTM. A comparison with other security systems reveals that the SVM, LSTM, and CNN-
LSTM algorithms can be effectively used in the detection of malware in the Android ecosystem. In [24], the authors focused
on the classification of Android malware by using DNNs. Researchers have suggested an algorithm for classifying malware
that is inclusive in lib. Thus, files are predicted via the CNN-LSTM network. They also measure the effectiveness of their
proposed method with other familiar ML algorithms, including SVM, KNN, and random forest (RF). The accuracy level
of the system is 98% in identifying the occurrence of malware.

In contrast, [25] focused on similarity-based Android malware detection via the Hamming distance of static binary features.
The authors introduce four malware detection methods: the first nearest neighbors (FNN), all nearest neighbors (ANN),
weighted all nearest neighbors (WANN), and k-medoid-based nearest neighbors (KMNN) algorithms. These methods aim
at generating an alarm when a malevolent application is found in Android, hence eradicating the spread of malware. All
the aforementioned methods were benchmarked on three datasets, namely, Drebin, Contagio and Genome, with accuracies
above 90%.

Finally, [26] presented the biosentinel neural network (BSNN), which is a new DL model that is hybrid in nature and
especially aimed at improving the ability to detect malware, specifically zero-day threats. The nature and components of
the proposed BSNN model include the integration of a graph neural network (GNN) for feature extraction and a transformer
for sequential data processing. They achieve a better accuracy of 93. 16% with a precision of 90. 89%, recall of 88. 19%
and an F1 score of 90. 45% greater than traditional methods.

All these studies enrich the field of malware detection and emphasize the growing complexity of this process as well as the
need for constant invention. Although older methods, such as traditional ML, have yielded promising outcomes, more
flexible and effective ideas that can efficiently handle the modern threats launched by malware are needed. Thus, our work
improves upon these basic works by utilizing ANNs for better detection precision and robustness, which will overcome the
deficits of the current approaches and move Android malware detection to the next level. The purpose of this study is to
present an extensive assessment of ANN abilities and establish a potential line of development for enhancing Android
devices’ protection against malware attacks.

3. MALWARE DETECTION IN Al

Notably, malware detection has improved substantially and has been widely impacted by the use of Al and ML. It is
generally observed that traditional approaches such as signature-based and heuristic detection fail to identify the new
generation of intelligent malware [27], [28]. Al has enormous scalability and changeability, as it is based on algorithms
that process large amounts of data and identify signs of illicit actions [29]-[32].

Al and its detection are usually conducted with the help of the training of ML models where feature sets extracted from
both normal and anomalous programs are used. These features could be static properties such as the size of a file, metadata,
and dynamic behavior such as API calls and network traffic. More specifically, logistic regression (LR), support vector
machines (SVMs) and, last but not least, neural networks are distinguished supervised learning techniques that are
frequently used and promise high accuracy in the classification of malware [27], [29], [33]-[36].

ML is categorized into subfields. DL, which uses neural networks with more than one layer, such as CNNs and recurrent
neural networks (RNNSs), can learn intricate features from scratch, thus improving detection. Other methods of learning
without supervision include clustering and anomaly detection; new forms of malware can be detected since they are out of
the usually perceived average behavior [37]-[43].

Conversely, Al-based malware detection is not without problems, some of which are evasion techniques and adversarial
attacks. Persistent training makes ML models less vulnerable to new threats, whereas proper explainable Al models are
very important for understanding and preventing threats [44]. The particular feature of Al as a system is its ability to learn
and develop; thus, applications of Al have increased cybersecurity and fight against malicious software [45]-[51].

4. SUGGESTED METHODOLOGY

The suggested methodology used for malware detection via an ANN is shown in Figure 1, which depicts a series of steps:
data collection, exploratory data analysis (EDA), preprocessing, model development, and model evaluation.
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Fig. 1. Steps of the methodology.

4.1. Data collection

The data for this study were collected form [52]. This dataset is categorized and optimized for use in identifying and
studying malware attacks that affect the Android operating system. It includes features extracted from Android applications
with comprehensive information about their operations. The dataset consists of 4464 Android application balanced samples,
whereby the samples are labeled either as malware or benign: Malware=56.74% and Benign= 43.26%, as illustrated in
Figure 2. These labels are essential for supervised learning models because they help the algorithm detect patterns related
to the malware as well as regular applications.

Malware

Benign

Fig. 2. Category distribution.

4.2. EDA

In an effort to better understand the structure of the given dataset and discover associations capable of improving the
performance of the considered models for detecting malware, an initial analysis of the data general characteristics was
performed, or an exploratory data analysis (EDA) was performed [53]. This part provides a description of the dataset and
the results of the analysis that are directly correlated with it.

The obtained dataset is rather rich and contains all the features which can be extracted. Drawing from this stock, we will
categorize these features as in the Figure 3:
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Fig. 3. Features of the dataset.

1. Permission Features: Authorization grants given by a user to an application and defines the resources and data the
user wants the application to use. Examples include:
e Location: Access to coarse and fine locations.
Camera: Permission to use the device's camera.
Microphone: Access to the microphone.
Contacts, SMS, Calendar, Storage: Permissions to access and modify contacts, send and receive SMS,
manage calendar events, and read/write to storage.
2. System features: Aspects concerning the activities of system functions, as well as controls, which include the
following:
e Hardware Access.
e  System Settings.
e  System Services.
3. Security-related features: Items related to security functions and activities involving the following:
e Permission Management: Granting and revoking permissions.
Authentication: Methods for verifying user identity.
Encryption: Cryptographic operations for securing data.
Security Policy Enforcement: Implementing security policies.
4. Communication features: The following aspects of communication are at the center of technological advances:
e SMS: Sending and receiving messages.
e Phone Calls: Making and receiving calls.
e Network State: Accessing and managing network connections.
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5. Data Access Features: Some of the areas related to data access and manipulation that define its capabilities include
the following:
External Storage: Reading and writing to external storage.
Databases: Accessing and manipulating databases.
e User Information: Accessing contacts and call logs.
e App-specific Data: Managing data specific to the application
6. App Lifecycle Features: Aspects related to the application life cycle, which include the following:
e Installation and Uninstallation: Managing app installations and removals.
App Startup and Shutdown: Handling app launches and closures.
App Updates: Managing updates.
App Permissions: Handling permission requests and changes.
7. Device Control Features: Manipulation features associated with a device’s actions and configuration
characteristics, including the following:
e  System Settings: Changing various system settings.
e Audio settings: Modifying audio configurations.
e Device Display: Controlling the display settings.
e Power Management: Managing device power.
8. Miscellaneous features: Other characteristics, such as the following:
e  System Logs: Accessing system logs.
e  System Services and Components: Using services such as cameras and location managers.
e  System Events: Handling events such as incoming calls, boot completed.
e System Ul Components: Interacting with system user interface components.
These aspects and their interactions are the most fundamental in regard to the nature of Android malware and how it can
be detected by ML algorithms. These findings will be useful in feature selection and model training in the sections that
follow in this research.

4.3. Preprocessing

After the dataset is loaded into a data structure suitable for analysis via Python, the preprocessing in this study includes
two steps:

o Splitting the dataset: To ensure that the model can generalize well to new data, the dataset is divided into two
parts: the training dataset and the testing dataset. The training data constitute 70% of the total data used to train
the ANN model. Hence, 30% is the testing set that is used in the assessment of the performance of the model for
malware detection. This split allows the determination of the degree to which the model’s performance can be
generalized to other data.

e Label encoding: The labels are then converted into numerical forms with the help of a label encoder. Label
encoding helps in transforming specific categorical labels into a format that can be given to ML algorithms for
better and improved forecasts. In this context, the label encoder maps each label to a different integer (e.g., the
label ‘malware’ may be encoded as 1, and the label ‘benign’ may be encoded as 0). This step is important because
most neural networks and other popular ML algorithms accept numerical data for processing.

4.4. Model development

The DL model used for detecting Android malware in this study is an ANN [54]. The model is structured to classify inputs
into one of two labels: malware or benign. The ANN is built via a sequential model from the Keras library and consists of
several layers designed to process the input features and produce a binary classification output, as explained in Figure 4
below:
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Input Layer Input: [(None, 327)]
Output: [(None, 327)]
Batch Normalization Input: (None, 327)
OQutput: (None,327)
Dense Input: (None,327)
Output: (None, 128)
h 4
Dense Input: (None, 128)
Qutput: (None, 64)
Dense Input: (None, 64)
Output: (None,32)
Dense Input: (None, 32)
Output: (None, 16)
Dense Input: (None, 16)
Output: (None, 1)

Fig. 4. ANN proposed Model.

e Input Layer: The input layer is defined to take in data that have the shape of 327 features. This means that every
record in the dataset under consideration is described by a 327-feature vector.

e Batch normalization layer: This layer helps normalize the parameters that are passed on to the next layer, hence
reducing the internal covariate shift, which in turn makes the network train faster and more stable.

o Dense Layer 1: This layer has 128 neurons, and the activation function used here is the ReLU or rectified linear
unit. This type of layer calculates the weighted sum of the inputs, applies the addition of a bias to it and then
applies the ReLU activation function to provide nonlinearity to our model to help the model learn more complex
functions.

o Dense Layer 2: This layer includes 64 neurons, and the activation function that is implemented is Swis, which is
a smooth, nonmonotonic activation function that can sometimes be outperformed by ReLLU because it can yield
small negative gradients.

e Dense Layer 3: This layer contains 32 neurons, and the activation function used is ReLU. Similar to the first dense
layer, ReLU activation is applied to introduce further nonlinearity and complexity.

o Dense Layer: This layer contains 16 neurons, and the activation function used is swish. This layer also uses a
swish activation function, which contributes to the network's ability to learn more complex patterns.

e Output Layer: This layer contains 1 neuron, and the activation function used is sigmoid. The sigmoid activation
function outputs a value between 0 and 1, making it suitable for binary classification tasks. It effectively assigns
probabilities to the two classes (malware or benign).

The model is trained for 500 epochs, meaning that the entire training dataset is passed forward and backward through the
neural network 500 times. This helps the model learn and adjust the weights to minimize the loss. The training process uses
a batch size of 32, meaning that the model updates its weights after processing every 32 samples from the training dataset.
This helps in managing memory more efficiently and often leads to faster convergence.

4.5. Model evaluation

After training, we need to evaluate the suggested model via several metrics to ensure its effectiveness, as presented in Table
1 below.
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TABLE I. METRICS FOR EVALUATING MODEL PERFORMANCE
Terms Description
TP Number of samples or the population of samples which was correctly
segmented as malicious
TN The total number of samples that were correctly classified onto the
benign class
FP Number of incorrectly classified samples as a result of the observed
distinction of malice
FN Erroneously classified samples in minority class
Confusion Matrix TP FP
FN TN
Accuracy (TP+TN)/(TP+TN+FP+FN)
Precision TP/(TP+FP)
Recall TP/(TP+FN)
F1-Score 2*((precision*recall)/(precision +recall))
ROC-AUC ROC Curve: A graphical representation that shows the diagnostic
performance of a binary classification system.
AUC: Denotes the area beneath the ROC curve.

This table provides definitions and descriptions of the key terms and metrics used in evaluating the performance of a binary
classifier. It includes true positives (TPs), the number of samples correctly identified as malicious, and true negatives (TNs),
the number of samples accurately classified as benign. False positives (FPs) are incorrectly classified as malicious, whereas
false negatives (FNs) are benign samples misclassified as malicious. The confusion matrix is displayed as a 2x2 table of
TP, FP, FN, and TN. Accuracy measures the overall correctness of the model and is calculated as
(TP+TN)/(TP+TN+FP+FN) [55]. Precision, defined as TP/(TP+FP), indicates the proportion of true positives among the
predicted positives. Recall, calculated as TP/(TP+FN), measures the model’s ability to detect positive samples. The F1
score, which combines precision and recall, is computed as 2*((precision*recall)/(precision+recall)) [56]. Finally, the
receiver operating characteristic-area under the curve (ROC-AUC) provides a graphical plot (ROC curve) illustrating the
diagnostic ability of the classifier, with the AUC representing the area under this curve. In addition, the fitting involves
checking how well the model generalizes to new data, ensuring that it is not overfitting (too tailored to training data) or
underfitting (too simplistic). Together, these metrics provide a comprehensive view of the proposed model's performance
and areas for improvement.

5. RESULT AND DISCUSSION

The ANN model demonstrates exceptional performance and fitting, as evidenced by its uniformly high metrics. Both the
training and test accuracies stand at 0.99, indicating that the model generalizes extremely well from training to unseen data,
with no significant signs of overfitting, as presented in Figure 5. The precision rate of 0.99 suggests that the model is highly
reliable in its positive predictions, which is critical in applications where false positives are costly, such as malware
detection. The recall of 0.98, though slightly lower than that of the other metrics, still shows that the model successfully
identifies most positive instances, which is vital for minimizing false negatives. The F1 score, 0.99, underscores the model's
balanced performance in terms of precision and recall, confirming its ability to manage the trade-offs between identifying
as many relevant instances as possible while maintaining accuracy.
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Fig. 5. Fitting of the ANN model.
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Now, we compare the ANN model with several traditional ML methods and find that the ANN outperforms the other ML
methods listed in Table 2 across nearly all the metrics.

TABLE II. COMPARISON BETWEEN THE RESULTS OF TRADITIONAL ML METHODS AND THE PROPOSED ANN MODEL
Method Train accuracy Test accuracy Accuracy Precision Recall F1-score

LR 0.96 0.96 0.96 0.96 0.96 0.96
KNN 0.94 0.92 0.93 0.93 0.94 0.93
ExtraTrees 0.99 0.95 0.95 0.96 0.95 0.95
GBM 0.97 0.96 0.96 0.97 0.96 0.96
AdaBoost 0.96 0.95 0.96 0.96 0.96 0.96
CatBoost 0.98 0.96 0.96 0.96 0.96 0.96
ANN 0.99 0.99 0.99 0.99 0.98 0.99

Table 2 provides a comparative analysis of various ML models used for Android malware detection, showing their
performance in terms of training accuracy, test accuracy, overall accuracy, precision, recall, and F1 score. The models
evaluated include logistic regression (LR), k-nearest neighbors (KNN), extremely randomized trees (extra trees), gradient
boosting (GBM), adaptive boosting (AdaBoost), categorical boosting (CatBoost), and ANN. LR and the GBM demonstrate
strong performance, with both achieving 0.96 in test accuracy and an F1 score of 0.96. KNN, albeit lower, with a test
accuracy of 0.92. Even at this stage, it retains a reasonably good F1 score of 0. 93. The extra trees achieved a training
accuracy of 0.99, whereas the test accuracy reached 0.95. In addition, both AdaBoost and CatBoost yield good results, with
test accuracies and F1 scores of 0.95 and 0.96, respectively. However, the ANN model has a massive lead and records the
highest test accuracy of 0. 99 and an F1 score of 0. 99. This improved performance signifies that ANNSs are the best tool
for improving Android malware detection because they are precise in identifying vicious programs. The high accuracy
values demonstrated by the ANN model prove that it can be a useful instrument for developing types of innovative mobile
security techniques, as presented in Figure 6.
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Fig. 6. Results of the ANN model

The generalization capability of the chosen ANN model shows promising performance in regard to extended use for
different types of malware and the Android context. On the basis of the results, the ANN model's superior performance,
marked by high training and testing accuracies (both 0.99), indicates its robust ability to capture intricate patterns and
behaviors inherent to different malware types. This heightened learning capability ensures that the ANN can effectively
distinguish between benign and malicious applications across diverse datasets. Figure 7 displays confusion matrices for six
different ML approach ANN models.
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The ANN model shows strong performance, with 1788 TPs, 1309 TNs, 17 FPs, and 10 FNs. This indicates high accuracy
and low misclassification rates. LR also performs well but has higher misclassification rates, with 739 TPs, 559 TNs, 21
FPs, and 31 FNs. The KNN model has 717 TPs, 539 TNs, 51 FPs, and 43 FNs, indicating slightly lower performance than
ANN and LR. The extra trees model performs comparably to the LR model, with 737 TPs, 553 TNs, 27 FPs, and 33 FNs.
The GBM shows robust performance similar to that of the ANN, with 731 TPs, 540 TNs, 20 FPs, and 29 FNs. AdaBoost
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has 735 TPs, 552 TNs, 28 FPs, and 25 FNs, showing balanced performance but with slightly higher FNs than the ANN.
Finally, CatBoost has 731 TPs, 519 TNs, 21 FPs, and 29 FNs, performing similarly to the GBM and showing strong
predictive capabilities. While all the models demonstrate reasonable performance, the ANN appears to have the highest
accuracy and the lowest misclassification rate, making it the most effective model in this comparison.

Figure 8 presents ROC curves for two approaches: traditional ML approaches and an ANN approach. The ROC curve on
the left shows the performance of various ML models, with an AUC of 0.99. This high AUC indicates that the ML models
have excellent discrimination capabilities between the positive and negative classes, with minimal false positive rates. On
the right side of the figure, the ROC curve for the ANN approach is plotted, with an AUC of 1.00. This indicates that the
ANN model is well capable of classifying the positive and the negative classes without any mistakes. The ROC curve in
the case of the ANN is close to the curve with the y-axis, which means that it achieves a high true positive rate even at very
low false positive rates. Overall, the performance of the ML models is rather high, with an AUC of 0. 99, whereas the other
classifiers fail to do so, with an average AUC of 0. 99, while the ANN approach for classifying the given dataset has an
impeccable AUC of 1.00, which demonstrates the ability of the proposed approach to classify the given data more

accurately.
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Fig. 8. ROC curves of the traditional ML techniques and the ANN technique

Overall, the ANN technique reveals higher accuracy; moreover, this result is obtained regardless of the choice of a specific
subset of data, which indicates the robustness and reliability of detection. This makes it appropriate for environments that
involve many risks; hence, high levels of precision are needed in regard to the results of malware detection.

6. LIMITATIONS AND FUTURE WORK

Despite the fact that this research shows how ANNSs can be efficiently used for detecting Android malware, several
limitations are inherent and should be considered in further investigations.

6.1. Limitations

e Dataset Limitations:
Despite the fact that the data set used in our study is rather extensive, it is possible that the study does not cover
all the types of malware and their actions. It has a specific drawback of the features and samples that it has been
trained on might not include all the potential variants of the real-world malware, which in turn may affect its
ability to deal with the new and emerging threats. This is the major shortcoming of the model, when the model is
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presented with new strains of malware that it has not been exposed to before, there is a possibility of reduced
detection.

Computational Resource Requirements:

The process of training and deploying deep learning models especially ANNs is a very computational intensive
process. High computational power and memory are not always the best for all situations especially when the
device in use is a mobile phone. This may be a disadvantage in extending the use of the proposed method,
especially when the computing power is an issue in the target application area.

Overfitting Concerns:

Overfitting means if the training data is not very diverse even though it could give high accuracy. This is known
as overfitting where the model learns the characteristics of the training data and noise in it and does not work well
on new data. This means that when the model is applied in real life situations where the data may slightly vary
from the training data, this may lead to a reduction in the model’s accuracy.

Adversarial Attacks:

These include Adversarial attacks where the attackers alter the input data to deceive the model which includes
ANNSs and other forms of Al and ML [57], [58]. This is a well-known problem in cybersecurity since the opponents
can craft inputs that will not be blocked. The study does not discuss how the proposed ANN model will avoid the
adverse manipulation from the attackers.

6.2. Future Work

Expanding the Dataset:

The future work will include the expansion of the presented dataset and the variety of malware and characteristics.
It could entail data collection from various sources including new types of malwares to enhance the model’s ability
to apply transfer learning to other types of threats. In addition, It can describe the dynamic characteristics of the
behavior to give more details regarding the malware’s attributes.

Optimizing Model Architecture:

For the future work, since it can be considered as one of the drawbacks of the paper that the computational power
has not been fully utilized, which might attempt to further fine-tune the architecture of the ANN.

Enhancing Robustness Against Adversarial Attacks:

For the further research, it is advisable to extend the work on the methods that may improve the robustness of the
ANN model against the adversarial attack. This may involve the consideration of certain strategies that could be
of help in fighting the problem, such as the adversarial training that involve presenting the model to normal data
as well as the contaminated data and or the development of specific measures to fight against adversarial data.
Other security systems and application integration:

Future research should be carried out on the proposed model of ANN for other security systems and to compare
the results in real environment. Some of the practical uses of applying the model could involve bringing in the
cybersecurity firms to explain the model’s efficiency at recognizing malware on Android OS in several conditions.
Explainability and Interpretability:

One of the other areas that could be further investigated in this research is the improvement of the interpretability
of the outcomes and the developed ANN model. Hence, it is crucial to understand how the model arrives at such
conclusions to gain the trust of the users and improve the model’s performance. For the interpretation of the
model’s choice, it can employ SHAP, which stands for SHapley Additive exPlanations or LIME, which is the
acronym for Local Interpretable Model-agnostic Explanations.

Therefore, extending these future directions and overcoming the mentioned limitations, the contribution of the research
can be in the enhancement of the Android malware detection techniques and provision of better and more practical tools
for this purpose that finally leads to the enhancement of the mobile devices security.

7. CONCLUSION

This paper aims to provide an in-depth investigation of how the use of ANNSs can improve the detection of Android malware
in comparison with other known ML methods. The types of data analysis performed in the study included the use of an
ANN model and comparisons with other forms of ML methods. By observing the results, it is found that the ANN model
outperforms the considered models in all the observed aspects. The general enhancement in the learning aptitude of the
ANN model makes it successful in this area. The use of a neural network structure for the model results in the identification
of the patterns typical of modern malware being more effective than conventional ML. This learning ability and adaptation
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capability make the detection and differentiation of the new generation of Android malware simpler with the help of the
ANN-based approach.

The overall significance of the study’s findings for mobile security science is large. Therefore, the use of ANN-based
detection systems can be employed to present a dependable and defendable strategy to counter the rising Android
smartphone threat in the form of malware. With the help of the ANN, which is the basis for the suggested approach, even
the most complex and concealed malicious programs are easy to detect and eliminate. Furthermore, on the basis of the
better performance of the ANN model illustrated in this paper, the ANN model can be viewed as a useful tool for security
researchers and practitioners in designing future generation Android malware detection systems. The possibility of
achieving a high degree of accuracy and speed in applying classification reveals great potential for enhancing the security
of the Android environment, thus safeguarding users, companies, and even governmental structures from the harm caused
by malware. Adaptability is a major advantage that can be tagged to the ANN-based approach, which forms the core of the
review. However, concerning the type of Android malware that will be developed in the future, the model comprising a
neural network will be capable of being updated and trained again. Thus, flexibility is essential for the security system, and
this aspect makes it possible to improve it to prevent newly appeared malware threats, which makes it a valuable and
effective solution for the protection of Android devices in the future.

As stated above, this study has some shortcomings, despite yielding positive results. First, although the dataset used is large
and diverse, it is still a sample of overall malware and could contain somewhat diverse kinds and actions of malware, so
the results may not be universal. Second, it might determine that this model can be influenced by the movement of malware
where the pattern is frequently changed so that it is not easily detected. Moreover, the work is based mainly on the static
and dynamic attributes of the applications, which may not include all the potential indicators of malicious activities. Finally,
the computational power that is needed to train these high-level neural networks can be very intensive and hence may not
be feasible for implementation in real-world scenarios that may be characterized by limited computational power.

Future research should overcome these limitations by using more diverse datasets containing increased numbers of various
types of malware and their behaviors. Improving the model to incorporate new and variant malware threats will be relevant.
Researchers should also consider enhancing the detection of the proposed features with information in the context with
which it is being used as well as other patterns of user behavior. Furthermore, advancements in training algorithms and
feature architectures require effort to reduce the training complexities related to the ANN automated malware detection
system. Finally, research in making the models understandable would be crucial to enhance the use of these models, given
that the users need to comprehend the manner in which the models arrive at certain decisions.
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