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A B S T R A C T 

 
Malware detection is a vital problem, and efficient methods that can efficiently detect malware are 
needed. The increasing use of mobile computers makes malware detection a vital part of security in an 
era where smartphones have come to play a key role in many of our daily lives. Earlier approaches, 
however, suffer from high false positive rates; they are not scalable for larger databases, or they are not 
amenable to adapt well to novel zero-day malware. For these reasons, the demand for more sensitive and 
flexible detection models is high. In this study, we develop a hybrid mobile malware detection framework 
that leverages ant colony optimization (ACO) and deep neural networks (DNNs) to improve detection 
accuracy, reduce the rate of false positives, and make the model resilient to new malware. AntDroidNet 
is a novel ACO-enabled feature selection model that dynamically reduces the feature dimensionality by 
selecting single instances to include the most informative properties and avoid dimensionality. A DNN 
is consequently constructed to train the determined set of features, improving the identified classification 
performance and decreasing the number of instances with false discoveries. In this way, a self-optimizing 
feedback loop can iteratively improve the feature selection process given the performance of the DNN, 
leading to a dynamic and efficient detection model. Using the CICMalDroid2020 dataset, the proposed 
AntDroidNet model achieves a remarkable accuracy of 99.89% and an excellent false positive rate of 
only 0.13% and outperforms the classical machine learning algorithms in terms of accuracy and 
efficiency. AntDroidNet is a scalable and powerful mobile malware detection model that eclipses all 
state-of-the-art methods and shows important enhancements in efficiency and reliability. By prototyping 
whitelisting systems, this work opens new avenues in mobile security and lays the groundwork for future 
work on building real-time detection components and system components able to scale to the fast pace 
of evolution of mobile malware in new connected ecosystems. 

 

1. INTRODUCTION 

Mobile devices have become ubiquitous since their mass adoption; however, mobile malware has also begun to infiltrate the 
mobile cyber threat landscape. This malware is designed to interrupt or take over a mobile device that just goes through 
malicious app stores, middleware, or counterfeit apps. Once installed, mobile malware can be a mess, logging in credentials, 
hitting up on unauthorized messages, changing device settings or cutting performance[1][2]. Such advanced and large classes 
of mobile malware are a threat to the current systems of mobile malware detection, especially with the evolution of 
polymorphic malware, which entirely adopts a case to avoid detection applied by most signature-based approaches [3][4][5]. 
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In light of the continually evolving online environment, machine learning (ML) represents a novel method to address these 
issues, providing more flexible and scalable solutions than traditional approaches do. Malware writers exploit machine 
learning algorithms to avoid detection; thus, we need better techniques to fight these evolving threats[6][7]. Hackers are 
becoming well aware of AI and advanced analytics, which are paramount in cybersecurity, a booming field that has already 
scored many points with its use of adversarial learning and deep learning models to bridge security challenges [8][9]. 
Although there has been great progress in leveraging machine learning techniques for mobile malware detection, there are 
still numerous challenges to overcome[21]. Owing to the rapid growth and diversity of mobile malware, traditional malware 
detection methods, such as signature-based methods, have fallen short. Moreover, with the incorporation of IoT devices 
further increasing the attack surface, issues surrounding privacy breaches and data compromises remain at the top of mind 
[10][11]. As malware becomes more complex over time, detection becomes even more difficult, and new sophisticated 
techniques to discover obfuscated and mutated threats are needed [12][13]. Given the extensive use of mobile devices, 
particularly those of the Android platform, they have become prime targets for malware that targets mobile devices, creating 
an expectation for an efficient detection method[27]. One possible answer lies in combining machine learning and deep 
learning models; however, few studies have addressed the implementation of adaptive, efficient, and scalable detection 
systems [14][15]. Mobile devices, especially Android platforms, are prime targets for malware due to their widespread use, 
highlighting the urgent need for robust detection methods[31]. The integration of machine learning and deep learning models 
offers a potential solution, but this area remains underexplored, particularly for developing adaptive, efficient, and scalable 
detection systems [16][17]. 

In this paper, we propose a new hybrid integration model called AntDroidNet Cybersecurity, which incorporates ACO and 
a DNN, for the mobile malware detection system. Dynamically selecting appropriate features not only ensures 
dimensionality reduction but also optimizes the feature set for improved detection speed. The proposed AntDroidNet 
cybersecurity model employs ACO to dynamically select only those features that contribute most to effective detection. 
Using ACO-optimized characteristics integrated with DNNs contributes to enhanced classification accuracy along with 
reduced false positives. Moreover, the proposed AntDroidNet cybersecurity model includes a novel self-learning feedback 
technique in which the performance metrics of the DNN are utilized for this purpose to sequentially adjust the features 
accordingly to have an adaptable system over a time period. 

This study aims to achieve the following objectives: 

• To design a dynamic model that detects mobile malware by combining ACO and DNN. 

• Improving feature selection can improve detection accuracy and reduce false positives. 

• To create a self-improving feedback mechanism system that is able to adapt to the dynamicity of mobile malware. 

Compared with traditional techniques, the proposed AntDroidNet cybersecurity model is a promising approach for mobile 
malware detection, with various benefits. The integration of ACO and DNN ensures reduced training/inference time, 
resulting in speed and potential applicability in real-time scenarios in mobile environments. Moreover, owing to dynamic 
feature selection, the framework can be adapted to new types of malware, allowing an effective response to future 
cybersecurity issues. In addition to contributing to the active research of mobile security solutions, this research will lay the 
groundwork for further investigation into marrying advanced optimization techniques with deep learning in the field of real-
time malware detection for mobile and IoT environments. 

2. RELATED WORKS 

Android malware detection has become a crucial concern in cybersecurity. Detection methods are primarily categorized into 
static and dynamic analyses. Static analysis examines code without execution, whereas dynamic analysis observes malware 
behavior in a controlled environment. Researchers have employed various machine learning algorithms for malware 
detection, including naive Bayes, support vector machine (SVM), K-nearest neighbors (KNN), and decision trees. More 
recently, deep learning techniques have gained attention for their potential to extract high-level features directly from raw 
data. The field continues to evolve, with ongoing research exploring both traditional and advanced machine learning 
approaches to increase the accuracy and efficiency of Android malware detection. This highlights the complex and dynamic 
nature of the challenge, necessitating continued innovation in cybersecurity strategies. 

The authors of [18] proposed a novel approach for Android malware that encompasses the use of machine learning. Dynamic 
analysis is performed on the dataset comprising benign and malicious CICMalDroid 2020 applications with the aim of 
increasing the detection accuracy. They focus on feature extraction and outlier management, achieving 95% accuracy with 
a 60.2% reduction in the feature subset. The centerpiece of their approach is hierarchical classification based on ensembles 
of classification algorithms, including random forest, k-nearest neighbors, and support vector machines, which are fused at 
the final stage via a weighted voting mechanism. A comparison with other techniques demonstrates the superiority of this 
approach, especially in multiclass problems of classifying the extensions of multithreat malware, which is a great 
improvement in the protection of Android devices from accessing new cybercriminal functionalities in the future. In [19], a 
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novel method for autonomously detecting Android malware was presented by MDADroid, and it is based on having a 
Functionality-API mapping, which enhances its resource management and environmental adaptability. This technique uses 
permission APIs to draw a graph on devices about what APIs correspond to what functionalities, hence boosting feature 
representation from the API level up to an abstraction level. The calculation of how two APIs are similar constitutes an API 
mapping and is a substantial component since, during the introduction of newer versions of android, there are changes made 
to the API; hence, the components have minimal adaptation costs. Furthermore, these greedy techniques reduce the time 
needed for adaptation, allowing models to be more easily retrained and thus improving performance. Extensive experiments 
on many datasets, such as AndroZoo, CICAndMal 2017, CICMalDroid 2020 and Drebin, have confirmed that MDADroid 
achieves high performance and is invariant to API changes. Furthermore, this method enables greater detection capabilities, 
reduces the total model training and evaluation costs, and holds great potential for mobile security since it offers better 
performance, lower costs and greater robustness. In [20], the authors presented MTDroid, which is an improvement on the 
methods of Android malware detection through the use of moving target defense technology. This novel approach 
implements a large, complex and persistent changing set of classifiers, making identical system exploitation targets quite 
difficult for attackers to predict. With the use of diversifying the adversarial training approach and optimized ensembled 
learning, MTDroid is able to greatly enhance evasion attack resistance. Additionally, the ability to update the stock of models 
in the framework in real time according to the performance metrics makes the framework more versatile and robust. Our 
extensive testing across various datasets shows that MTDroid outperforms current methods in a wide range of malware 
detection tasks for Android operating systems, essentially providing all necessary functionalities for Android malware 
detection while sustaining strong effectiveness in the presence of manipulative disturbances. [22] proposed a new scheme 
for classifying Android malware by using audio features obtained from sonified APKs. By sonifying the application data, 
the authors capture the proprietary features in the audio for investigation. The work assesses different nature-inspired 
algorithms for feature selection, and the genetic algorithm performed the best, yielding a 99.72\% accuracy level. This 
strategy appears to be effective in solving known problems in malware detection, such as resource consumption, scaling, and 
difficulty in circumventing. This study promotes the idea that the use of optimized feature selection techniques through 
metaheuristics can improve the classification performance while minimizing the computational load. Such an approach also 
provides a different angle for addressing mobile security, which can be used in addition to, or even instead of, the usual 
detection methods. One of the recent developments I have developed is a way to detect malware on android devices via 
machine learning and audio features [23]. Starting by transforming the apk files into waveforms and extracting audio features, 
researchers have applied metrics such as mel-frequency cepstral coefficients (MFCCs) and gamma-frequency cepstral 
coefficients (GFCCs). They combined these metrics to account for the narrow downside of concentrating on few features. 
The researchers carried out experiments using the CICMalDroid 2020 dataset and achieved an accuracy of 98.96%, recall of 
99.65%, and F1 score of 99.33%. The results suggest that using multiaudio feature fusion enables a deeper and fuller 
understanding of android applications and enhances the strength of crystalline systems. [24] described the development of 
GA-StackingMD, which is a new approach to Android malware detection that leverages several classifiers. The system, in 
its basic form, uses a stacking technique that combines five different classifiers, where genetic algorithms (GAs) are used 
for optimization. This concept design helps address two longstanding issues in the field: the curse of feature space and low 
accuracy rates of detection. The framework consists of two sequential feature selection stages to reduce the aforementioned 
limitations. First, informed gain analysis is used to determine the most relevant features. A chi-square test follows and 
removes duplicate feature subsets, thereby identifying the most significant features. This epidemiologic study of feature 
selection establishes the basis for an improved detection model owing to precise feature selection. According to experimental 
trials, the GA-StackingMD model outperforms the individual classifiers in terms of performance. For example, the model 
was tested on the CIC-AndMal2017 dataset and obtained an accurate detection rate of 98.43%. Similarly, the same 
evaluations on the CICMalDroid2020 database yielded a model accuracy of 98.66%. These findings highlight the suitability 
and effectiveness of the framework within various datasets. 
 

3. PROPOSED ANTDROIDNET CYBERSECURITY MODEL 

The proposed AntDroidNet cybersecurity model is systematically executed by the following constituent components. First, 
the raw data are preprocessed via normalization and feature scaling processes. Second, ant colony optimization is 
implemented to select a set of relevant features. Here, the principles of global exploration and local search are utilized in the 
proposed model. Ant colony optimization considers both heuristic and pheromone information to choose a collection of 
influential features. For this purpose, a longitudinal dataset is decomposed into K-hop neighborhood communities. Upon 
identifying a collection of influential features, the reduced dataset is reconstructed through the extracted features. Finally, 
the constructed hybrid deep neural network comprises input layers, three hidden layers, and one output layer. A rectified 
linear unit function is employed as an activation function. The backpropagation algorithm is adopted in training the 
developed hybrid deep neural network. The significance of the proposed model is tested via a diverse set of performance 
metrics. The model focuses on detecting mobile malware with high accuracy while minimizing false positives and false 
negatives. Figure 1 shows the steps of the proposed model. 
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Fig. 1. A block diagram of the proposed AntDroidNet cybersecurity model 

3.1 Data Preprocessing  

For successful mobile malware detection, mobile malware data must be properly transformed into an appropriate 
representation. This fundamental process is called data preprocessing. First, it is very important for the data to be of high 
quality for effective training of the ML model. Data that have missing values or imbalances in label values are not suitable 
for direct input to DNNs. To address these issues, several data preprocessing steps were conducted. Data Preprocessing for 
Data Inputs Solutions for Missing Data: Delete NA Data or Imputation. 

Data Preprocessing for the Feature Selection Feature Extractor: The most significant values for target labels can be used 
when the extracted values are significantly different from those for benign samples. To select the optimal feature values, the 
t test method was used. 

Data Preprocessing for Data Pretraining Min–Max normalization: The purpose of data normalization is to convert the dataset 
into a particular distribution or a normal form as input for a deep neural network. By doing so, the performance of the 
optimization in the next stage is significantly improved. Data transformation as augmentation: Another preprocessing step 
is to use the augmentation function to increase the size of the dataset. The dataset could be augmented with noise, brightness, 
contrast, and saturation gain. 

By proper data preprocessing, the model components receive credible input values, resulting in decreased bias, lack of 
significance, or false interpretation of the learning model. Consequently, achieving tremendous enhancements in the training 
quality of the CNN model because of these preprocessing stages is highly likely. The output of this stage is the separated 
data in accordance with the proposed approach: one for training, validation, and testing with proper data, one for the 
pretraining of the RBMs, and the other for data in the fine-tuning stage. 

❖ Min–max normalization: Mobile malware datasets typically contain raw features such as permissions, API calls, 
and network traffic. These features can have different ranges of values, so normalization is critical. 

Let:    𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]   

represents the feature set for each sample, where n is the total number of features. To normalize the dataset, Min–Max 
normalization is applied to ensure that all features fall within the range [0, 1]: 

𝑥𝑖
′ =

𝑥𝑖−𝑚𝑖𝑛(𝑥𝑖)

𝑚𝑎𝑥(𝑥𝑖)−𝑚𝑖𝑛(𝑥𝑖)
                                                         () 
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where 𝑥𝑖 is the original value of feature 𝑖, 𝑥𝑖
′  is the normalized value, and 𝑚𝑖𝑛( 𝑥𝑖) and 𝑚𝑎𝑥( 𝑥𝑖) are the minimum and 

maximum values of feature 𝑖, respectively. 

❖ Feature Encoding (One-Hot Encoding): If the dataset contains categorical features (e.g., permissions or API calls), 
they need to be encoded. One-hot encoding is often used: 

𝑓𝑖
(𝑘)

= {1   if sample 𝑖 has the 𝑘𝑡ℎ permission / API call,
0  otherwise.

                                () 

Algorithm 1 presents the steps of preprocessing for the CICMalDroid 2020 dataset. 

Algorithm 1 𝐷𝑎𝑡𝑎 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝑓𝑜𝑟 𝐶𝐼𝐶𝑀𝑎𝑙𝐷𝑟𝑜𝑖𝑑2020 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 
Require: 𝑅𝑎𝑤 𝐶𝐼𝐶𝑀𝑎𝑙𝐷𝑟𝑜𝑖𝑑2020 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑋 𝑤𝑖𝑡ℎ 𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑎𝑛𝑑 𝑛 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑤ℎ𝑒𝑟𝑒 𝑋 =  {𝑥1, 𝑥2, . . . , 𝑥𝑛} 
Ensure: 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑋_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑛𝑑 𝑜𝑛𝑒 − ℎ𝑜𝑡 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
 1:Initialization: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑋_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 =  ∅ 
 2:Step 1: Min-Max Normalization 
 3: for 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥𝑗  𝑖𝑛 𝑋 do: 
 4:      𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥𝑗 : 𝑥𝑗,𝑚𝑖𝑛 =𝑚𝑖𝑛(𝑥𝑗) 
 5:      𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥𝑗: 𝑥𝑗,𝑚𝑎𝑥 =𝑚𝑎𝑥(𝑥𝑗)  
 6:      𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥𝑗  𝑢𝑠𝑖𝑛𝑔 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 1 
 7:      𝐴𝑝𝑝𝑒𝑛𝑑  𝑥𝑗

𝑛𝑜𝑟𝑚  𝑡𝑜 𝑋_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 
 8:end for{𝐴𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑎𝑟𝑒 𝑛𝑜𝑤 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1} 
 9:Step 2: One-Hot Encoding of Categorical Features 
10:for 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑥𝑘

𝑛𝑜𝑟𝑚 𝑖𝑛 𝑋_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 do 
11:       if  𝑥𝑘

𝑛𝑜𝑟𝑚 𝑖𝑠 𝑎 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 then 
12:           𝑃𝑒𝑟𝑓𝑜𝑟𝑚 𝑜𝑛𝑒 − ℎ𝑜𝑡 𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑜𝑛 𝑥𝑘

𝑛𝑜𝑟𝑚 
13:          𝐴𝑝𝑝𝑒𝑛𝑑 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 𝑒𝑛𝑐𝑜𝑑𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑡𝑜 𝑋_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 
14:      endif 
15: end for{𝐷𝑢𝑚𝑚𝑦 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 𝑎𝑟𝑒 𝑐𝑟𝑒𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒} 
16:Step 3: Return the Preprocessed CICMalDroid2020 Dataset 
17:return 𝑋_𝑒𝑛𝑐𝑜𝑑𝑒𝑑 

 

3.2 Feature Selection Using Ant Colony Optimization (ACO) 

After the dataset containing many features from hardware and API calls is obtained, the most important step is to determine 
the feature selection for optimizing the classification process. The proposed method extracts the top-k relevant features from 
a dataset to facilitate the classification process in the experiments. The definition of the top-k relevant features is determined 
via a modified ant colony optimization algorithm. The concept of ACO reflects the foraging behavior of ants. From the 
strategy used in ACO, where each strategy is equipped with its own description, the feature selection method using ACO 
supports handling a large feature space, minimizing the phenomenon of irrelevant and redundant features. The process of 
this method will be discussed via the following figures, which include the following topics: phases in the FSD-ACO project, 
the ant colony system, feature subset evaluation, and modified feature subset evaluation. However, the workload required 
will not be discussed in depth. This subsection proposes the feature selection framework using modified ACO to support the 
selection of the most relevant attributes that will be used in the classification process from the results using state-of-the-art 
algorithms. The main purpose of using the feature selection framework is to determine more efficient ways of identifying a 
small number of top-k relevant features from a dataset that can be used in the subsequent classification stages. These top-k 
relevant features are fed into the classifier to verify the performance produced. 

To dynamically select the most relevant subset of features via ACO, the dimensionality is reduced, and the efficiency of the 
DNN is improved. Therefore, the main task in this stage is to select the most important features via ACO. Let: 

• 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} is the feature set, where 𝑛 is the number of features. 

• 𝑆 ⊆ 𝐹 is a subset of features selected by an ant. 

• 𝐴 is the number of ants in the population. 

• 𝜏𝑖𝑗 is the pheromone level associated with feature 𝑓𝑗 after iteration 𝑖. 

• 𝜂𝑗 is the heuristic desirability of selecting feature 𝑓𝑗, where 𝑦 is the target class. 

• where 𝛼 and 𝛽 are constants that control the influence of pheromone and heuristic information, respectively. 
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3.2.1  Probability of Feature Selection 

The use of probabilities for selecting certain items, which in our case is the selection of features, is a well-known aspect of 
the ACO algorithm. Here, we can describe each feature as a solution candidate; thus, for each feature, ant agents must choose 
the value "yes" or "no" to select this feature for detection or not. The probability of choosing each feature (which is related 
to the value of "yes" for each feature) is then determined according to a combination of the pheromone trails and the heuristic 
information describing the relevance of the feature for detection. The feature that has higher pheromone trail values is 
considered more appropriate for detection, whereas the heuristic parameter guides the detection in a direct way to the most 
likely selected features. This probability-based mechanism is robust enough to adapt the feature subsets according to the 
detection scenario, so it can automatically defend against newly emerging malware. 

Notably, the calculation of the initial value of the probabilities could be profoundly impacted by the parameter settings. Each 
parameter can assume different value ranges, which may result in different feature probabilities and consequently different 
detection efficacies. Therefore, proper parameter setting is crucial for establishing the selection probability of each feature. 
Both the heuristic and the pheromone parameters are fundamental. We cannot simply set a specific value. It needs to be 
carefully determined and configured on the basis of the value range of the input features. Setting a proper value for heuristic 
information and pheromone trails can enhance the robustness and effectiveness of the feature selection process. Usually, we 
balance this by preconfiguring these parameters on the basis of the range of the input features. Another highlight of this 
approach is that the balance between pheromone trails and heuristic information can be quickly reached, thus leading to fast 
progress in feature selection. 

𝑃𝑖𝑗(𝑆) =
𝜏𝑖𝑗

𝛼 .𝜂𝑗
𝛽

∑ 𝜏𝑖𝑘
𝛼 .𝜂𝑘

𝛽
𝑘∈𝐹

                                                () 

where: 

• where 𝑃𝑖𝑗(𝑆) is the probability that feature 𝑓𝑗 is selected by ant 𝑖 at step 𝑆. 

• 𝜏𝑖𝑗 is the pheromone level associated with feature 𝑓𝑗 after iteration 𝑖. 

• where 𝜂𝑗 is the heuristic desirability of selecting feature 𝑓𝑗 (e.g., correlation of feature 𝑓𝑗 with the target 𝑦), 

• where 𝛼 and 𝛽 are constants that control the influence of pheromone and heuristic information, respectively. 

• 𝐹 is the set of all features. 

• 𝜂𝑗 can be calculated as 
1

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑓𝑗,𝑦)
. 

3.2.2 Heuristic Information  

Heuristic information is important for feature selection via ACO. It is generated on the basis of the probability of selecting 
a feature that reduces the cost function. The heuristic information is between zero and one and influences the cost function 
value. Higher heuristic information leads to lower cost function values, making it useful for selecting features. The influence 
of the pheromone value and heuristic information aims to improve search performance in the DNN architecture. The decision 
for feature selection is dynamic and flexible. Heuristic information plays a role in selecting optimal features but can also 
increase the ability of mobile malware detection. Balancing heuristic information's increase in ability with feature coverage 
is necessary. Higher heuristic values in ACO lead to faster exploration. 

𝜂𝑗 =
1

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑓𝑗,𝑦)
                                                            () 

where 𝑦 is the target (malignant or benign) and where 𝜂𝑗 represents the correlation between feature 𝑓𝑗 and the target. 

3.2.3 Pheromone Update  

Ant colony optimization (ACO) is an evolutionary computation method for solving optimization problems. The key to 
enhanced ACO is the pheromone update rule, which balances accumulation and evaporation. ACO techniques automatically 
accumulate and evaporate pheromones on the basis of selected features. Efficient automatic design is necessary for dynamic 
adaptation. ACO evolution involves increasing and decreasing pheromone levels on the basis of feature quality. Higher 
pheromone levels reinforce good selection, whereas lower levels allow the removal of low-quality features. This feature-
specific approach enables ACO to select and evolve good features while adaptively removing the worst features on the basis 
of pheromone effects. 
Once ants construct their solutions (subsets of features), the pheromone is updated to reflect the quality of the solution. 
 

𝜏𝑖𝑗(𝑡 + 1) = (1 − Ρ). 𝜏𝑖𝑗(𝑡) + ∑ Δ𝐴
𝑘=1 𝜏𝑖𝑗

𝑘             () 
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where: 

• where Ρ is the pheromone evaporation rate. 

• where 𝜏𝑖𝑗(𝑡) is the pheromone level associated with feature 𝑓𝑗 at iteration 𝑡. 

• where Δ𝜏𝑖𝑗
𝑘  represents the change in pheromones contributed by ant 𝑘. 

• where 𝐴 is the total number of ants in the population. 

• Δ𝜏𝑖𝑗
𝑘  is the pheromone deposited by ant 𝑘 on feature 𝑓𝑗: Δ𝜏𝑖𝑗

𝑘 = {
𝑄

cost(𝑆𝑘)
  if feature 𝑓𝑗 ∈ 𝑆𝑘,

0              otherwise.
                             () 

3.2.4 Aco Cost Function  

Feature selection is dependent on the ACO cost function. It assesses an optimal subset of features and relies on the 
optimization procedure. The best feature subset can be obtained via the ACO-based strategy. Note that the cost function is 
also optimized to balance several objectives and evaluate distinct choices of feature-set subsets. It seeks to maximize the 
accuracy of the detection output relative to the accuracy of the maximal classifier, in turn yielding a more compact, yet 
equally effective, detection model. The fast calculation of computational complexity values is inferred from complex 
decision models. To follow the structure of the system and build a function on the basis of the results, we need to understand 
the cost function. Therefore, the cost function in ACO is typically based on the classification performance of the DNN. The 
classification error or accuracy of the DNN when the selected feature subset is used is as follows: 

cost(𝑆𝑘) = 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆𝑘)                                                                     () 

where 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆𝑘) is the classification accuracy of the DNN trained on the feature subset (𝑆𝑘). 

Algorithm 2 presents feature selection via ant colony optimization (ACO). 

Algorithm 2 𝐴𝑛𝑡 𝐶𝑜𝑙𝑜𝑛𝑦 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 
Require: 𝑆𝑒𝑡 𝑜𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝐹 

=  {𝑓1, 𝑓2, . . . , 𝑓𝑛}, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑠 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠,  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝛼 𝑎𝑛𝑑 𝛽 𝑓𝑜𝑟 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑎𝑛𝑑 ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒, 𝑒𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 Ρ 
Ensure: 𝐵𝑒𝑠𝑡 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑆𝑏𝑒𝑠𝑡  
 1:Step 1: Initialize the Pheromone 
 2:𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 ← {𝜏1 = 1, 𝜏2 = 1, . . . , 𝜏𝑛 = 1}{𝐸𝑞𝑢𝑎𝑙 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠} 
 3:𝑆𝑏𝑒𝑠𝑡 ← ∅{𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦} 
 4:𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 0{𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦} 
 5:for 𝑒𝑎𝑐ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘 =  1 𝑡𝑜 𝑛𝑢𝑚_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do 
 6:     Step 2: Construct Solutions for Each Ant 
 7:     𝐴𝑛𝑡𝑠 ← ∅ 
 8:     for 𝑒𝑎𝑐ℎ 𝑎𝑛𝑡 𝑖 =  1 𝑡𝑜 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠 do 
 9:           𝑆𝑖 ← ∅{𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑓𝑜𝑟 𝑎𝑛𝑡 𝑖} 
10:         for 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓 ∈ 𝐹 do 
11:                𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓  𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑛𝑔 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞 (3) 
12:                if 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 ≤  Ρ(𝑓) then 
13:                   𝑆𝑖 ← 𝑆𝑖 ∪ {𝑓}{𝐴𝑑𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡} 
14:                end if 
15:          end for 
16:             𝐴𝑛𝑡𝑠 ← 𝐴𝑛𝑡𝑠 ∪ {𝑆𝑖} 
17:   end for 
18:         Step 3: Evaluate Solutions Using DNN 
19:       for 𝑒𝑎𝑐ℎ 𝑎𝑛𝑡 𝑖 = 1 𝑡𝑜 𝑛𝑢𝑚_𝑎𝑛𝑡𝑠 do 
20:             𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆𝑖) ← 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑡ℎ𝑒 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑜𝑓 𝐷𝑁𝑁 𝑜𝑛 𝑆𝑖  
21:        end for 
22:        Step 4: Update the Best Solution 
23:        𝑏𝑒𝑠𝑡_𝑎𝑛𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑖𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆𝑖) 
24:      if 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆𝑏𝑒𝑠𝑡_𝑎𝑛𝑡) > 𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 then 
25:           𝑆𝑏𝑒𝑠𝑡 ← 𝑆𝑏𝑒𝑠𝑡_𝑎𝑛𝑡 
26:          𝑏𝑒𝑠𝑡_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑆𝑏𝑒𝑠𝑡_𝑎𝑛𝑡) 
27:      end if 
28:       Step 5: Pheromone Update 
29:       for 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓 ∈ 𝐹 do 
30:            𝑈𝑝𝑑𝑎𝑡𝑒 𝑝ℎ𝑒𝑟𝑜𝑚𝑜𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 𝑢𝑠𝑖𝑛𝑔 𝑒𝑞(5) 
31:       end for 
32: end for 
33: Step 6: Return the Best Feature Subset 
34:return 𝑆𝑏𝑒𝑠𝑡   
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4. DEEP NEURAL NETWORK (DNN) 

DNN training is the process of constructing a robust mathematical model through learning. The network architecture defines 
the structure. Training estimates functional mappings by adjusting connection weights through iterative alternation. The 
initial parameters are randomly sampled, and the learning process adjusts the weights iteratively. DNNs have deep layer-by-
layer structures for extracting intricate feature transformations. Training aims to minimize model error via forward 
propagation and backpropagation. It competes between minimizing training error and explaining test error. The model is 
capable and discriminative because of its significant improvement in predictive ability. 

Once the optimal feature subset S is selected, the DNN is constructed and trained for classification. After ACO selects the 
optimal subset of features, the DNN is trained to classify whether a sample is malware or benign. The DNN architectures 
are as follows: 

• Input Layer: The input layer corresponds to the selected feature subset 𝑆 from ACO, which has d features. 

• Hidden Layers: A series of hidden layers are used for feature transformation. Each hidden layer computes a 
linear transformation followed by a nonlinear activation function (ReLU). 

• Output Layer: The output layer computes a binary classification via the sigmoid activation function. 

Once ACO selects the optimal feature subset 𝑆, the DNN uses these features for classification. The DNN consists of multiple 
layers where each layer performs linear transformations followed by activation functions. 

4.1 Input Layer  

Let 𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑] be the input vector, where 𝑑 is the number of selected features (from ACO). The input to the DNN 

is the selected feature vector, which is passed through the first hidden layer. 

4.2 Hidden Layers  

4.2.1 Forward ARD Propagation (DNN) 

Forward propagation in DNNs is crucial for predicting output scores or labels. The data are processed layer by layer, 

adjusting the weights and features. The activation functions add nonlinearity and facilitate weight adjustment. Without 

activation functions, it is similar to one deep layer. Proper activation function selection reduces negative functions and 

improves model training. For each hidden layer 𝑙: 
𝑍𝑙 = 𝑊𝑙 . 𝐴𝑙−1 + 𝑏𝑙                                      () 

where 𝑍𝑙  is the linear combination of inputs at layer 𝑙; 𝑊𝑙 is the weight matrix for layer 𝑙; 𝐴𝑙−1 is the activation from the 

previous layer (or input features for the first hidden layer); and 𝑏𝑙 is the bias for layer 𝑙. 

4.2.2 Activation Function (ReLU for Hidden Layer) 

The ReLU is a commonly used activation function in hidden layers for several reasons: it is computationally efficient and 

speeds up training progress. It overcomes the vanishing gradient problem of the sigmoid function. It can learn complex 

representations. However, other activation functions, such as sigmoid, Softmax, and tanh, have advantages. While ReLU 

performs well in training progress and when equipped with increasing layers, it is best to use Sigmoid and Softmax for 

classification tasks. The ReLU is suitable for providing positive values close to real-world features and can also incorporate 

sparsity in hidden layers. 

𝐴𝑙 = 𝑚𝑎𝑥( 0, 𝑍𝑙)(ReLU Activation)                                     () 

4.3 Output Layer  

The sigmoid function is used in the output layer for binary classification in DNN frameworks. Sigmoid maps previous layer 

outputs to binary classifications, resulting in a probability value between 0 and 1. A value close to 1 or 0 indicates confident 

predictions. The properties and interpretability of the sigmoid function make it popular for binary decision-making. Its 

gradients aid in gradient-based optimization. While there are trade-offs, using the sigmoid function improves detection 

accuracy in mobile malware detection. 

�̂� = 𝜎(𝑊𝑜. 𝐴𝐿 + 𝑏𝑜) =
1

1+𝑒−𝑍𝐿                                                () 

where 𝑊𝑜 is the weight matrix of the output layer; 𝐴𝐿 is the activation from the last hidden layer; 𝑏𝑜 is the bias vector of the 

output layer; 𝜎(𝑧) =
1

1+𝑒𝑧 is the sigmoid function; and 𝑍𝐿  is the preactivation output of layer 𝑙. 
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4.4 Loss Function  

4.4.1 Binary Cross-Entropy Loss Function  

There are many metrics used for measuring the prediction power of a DNN on a binary classification task, but one very 
important loss function that we can compute for measuring the error is the binary cross-entropy loss function. It calculates 
the gap between the true labels (0 or 1) and the predicted likelihoods (i.e., sigmoid output). This is calculated as the log loss 
for each instance; the greater the difference between the ground truth and predicted probabilities is, the higher the penalty. 
To ensure that the model correctly predicts, the ideal case is the predicted probability, which resembles the actual probability. 
In other words, the smaller the binary cross-entropy value is, the better the model fits the data, indicating less discrepancy 
between the predicted and actual outcomes and better prediction accuracy. Going slightly deeper, the binary cross-entropy 
may actually converge slower if one has imbalanced classes, so choosing the proper loss function is extremely important in 
both accuracy and convergence. Therefore, we want to know how to update our model’s weights in backpropagating with 
the right information such that the model is guided toward performing better binary classification tasks; now, we add binary 
cross-entropy to guide us through. 

𝐿(�̂�, 𝑦) = 1 = −
1

𝑁
∑ (𝑦𝑖 𝑙𝑜𝑔( �̂�𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − �̂�𝑖))𝑁

𝑖=1                         () 

where 𝑦𝑖  is the true label (malware/benign) (0,1) for the 𝑖 − 𝑡ℎ sample; �̂�𝑖 is the predicted probability for the 𝑖 − 𝑡ℎ sample; 
and 𝑁 is the number of samples. 

4.5 Optimization and Backpropagation  

Backpropagation is a mechanism that allows iterative updating of the weights and biases of a DNN, pushing the model closer 
to minimizing its loss function. Through a process called backpropagation, the model uses the chain rule to propagate the 
gradient backwards and update its parameters on the basis of any error it has made. The computation of the gradient is very 
important for optimizing the objective function and making precise predictions and incorrect calculations of the gradient can 
produce all erroneous results. Learning factors such as the 'learning rate' have a very important effect on the convergence 
rate and training time. A learning rate of 0.001 is used in this study, as it provides a good compromise between the speed of 
convergence and stability. When combined with the Adam optimizer, this learning rate facilitates effective weight 
adjustments while inhibiting problems such as divergence or slow convergence. The empirical results confirm the efficiency 
of the details of the model, especially when it is applied to the optimized feature subset generated from ACO, where it 
enhances the model performance overall. 

4.5.1 Gradient Computation  

For a given layer 𝑙, the gradients of the loss function with respect to the weights and biases are calculated as follows: 

A- Error at the output layer: This error is related to the backpropagation learning algorithm. It computes the difference 
between the predicted output �̂� and the true label 𝑦, which is fed as an input to the backpropagation algorithm. This 
error provides guidance for the whole learning process by telling the network what to change to update its weight. 
Therefore, the model can obtain a smaller overall loss function by minimizing 𝛿𝐿, which can enhance the prediction 
ability of the model. This calculated error is then propagated back through the layers of the network, enabling each 
layer to adjust its weights according to its contribution to the ultimate error in the output, thus optimizing the 
network's performance and ensuring convergence during the training process. 

𝛿𝐿 = �̂� − 𝑦                                                                      () 

B- Backpropagation: This equation is essential for backpropagation, as it determines the error at each layer 𝑙 on the 

basis of the error of the next layer 𝛿𝑙+1, its weights 𝑊𝑙+1, and the derivative associated with the activation 
∂𝐴𝑙

∂𝑍𝑙. It 

helps propagate the output error back through the neural network such that each hidden layer can relate its 
contribution to the final error. By enabling the network to adjust weights at every layer according to the degree to 
which each neuron contributes to the overall output, this results in effective learning and speedier convergence. The 
network can thus achieve a better fit in the sense of capturing complex patterns in the data, as the loss function is 
reduced by adjusting the weights iteratively in this manner. 

𝛿𝑙 = (𝛿𝑙+1. 𝑊𝑙+1) ⊙
∂𝐴𝑙

∂𝑍𝑙                                                  () 

 where ⊙ denotes elementwise multiplication and where 
∂𝐴𝑙

∂𝑍𝑙 is the derivative of the activation function. 
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4.5.2 Gradients of Weights and Biases  

A- Gradient of weight: Optimizing DNN performance requires adjusting weights to balance neurons. Weight updates 

depend on the learning rate, which affects precision. The update speed can be adjusted by adjusting the learning rate. 

While updating weights during backpropagation, the model becomes confounding. The precise calculation of the 

weight gradient is crucial for optimal measurement. The learning rate follows the gradient to assign values to 

weights. Increasing the learning rate increases the weight closer to the optimal value. High learning rates impact 

convergence. Model neglect occurs without a detailed learning rate analysis, which affects accuracy. Underfitting 

arises when weights lack precision, resulting in incorrect classification. Decreasing the learning rate emphasizes 

overfitting. 
∂𝐿

∂𝑊𝑙
= 𝛿𝑙. (𝐴𝑙−1)𝑇                                                      () 

B- Gradient of biases: The bias update process in DNN training requires gradient calculation. Biases have a similar 

role to weights in DNNs. The calculation of the unfrozen bias can be straightforwardly performed. The biases are 

beneficial, as they allow the network to shift the activation function and learn quickly. The gradient of biases 

determines the shift direction and proportion. Adjusting biases can increase network activity. The joint update of 

weights and biases enhances the network's power. The optimization of biases aims to balance the step size between 

layers and improve generalization. Biases are essential for the DNN architecture and training process. 
∂𝐿

∂𝑏𝑙
= 𝛿𝑙                                                           () 

4.6 Weight Update Using an Optimizer 

4.6.1 First and Second Moment Estimates  

The 𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)
∂𝐿

∂𝑊
                                             () 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2) (
∂𝐿

∂𝑊
)

2

                                                        () 

4.6.2 Bias-corrected estimates and weight update 

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 , �̂�𝑡 =

𝑣𝑡

1−𝛽2
𝑡                                                        () 

𝑊 = 𝑊 − 𝛼
�̂�𝑡

√�̂�𝑡+𝜀
                                                      () 

where 𝛼 is the learning rate; 𝛽1 and 𝛽2 are decay rates for the moment estimates; and 𝜀 is a small constant to prevent division 
by zero. 

Algorithm 3 presents the DNN initialization and training stage. 

"Algorithm 3 " Deep Neural Network Initialization,Training,and Evaluation 

"Require: " Input training data X_train,training lables y_train,test data X_test,test lables y_test, 

selected feature subset S , 

 number of epochs num_epochs,learning rate η 

"Ensure: " Trained DNN model and its evaluation accuracy on test data 

" 1: Step 1: Initialize DNN Architecture" 

" 2: " Define a sequential DNN model model 

" 3: " Add input layer with |S | input neurons and ReLU activation function 

" 4: " Add hidden layer with 64 neurons and ReLU activation function 

" 5: " Add second hidden layer with 32 neurons and ReLU activation function 

" 6: " Add output layer with 1 neuron and Sigmoid activation function 

" 7: " model←{Input:|S|,Hidden1:64,Hidden2:32,Output:1} 

" 8: Step 2: Compile the Model" 

" 9: " Set optimizer to Adam with learning rate h 

"10: " Set loss function to Binary Cross-Entropy 

"11": Set metrics to monitor as Accuracy 

"12: " model.compile(optimizer=Adam(η),loss='binary_crossentropy',metrics=['accuracy']) 

"13: Step 3: Train the DNN" 

"14: " Extract training features corresponding to S:X_(train,S)←X_train [S] 

"15: " Train the model for num_epochs epochs with batch size 32: 

"16: " model.fit(X_(train,S),y_train,epochs=num_epochs,batch_size=32) 
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"17: Step 4: Evaluate the DNN on Test Data" 

"18: " Extract test features corresponding to S:X_(test,S)←X_test [S] 

"19: " Calculate evaluation accuracy: 

"20: " accuracy←model.evaluate(X_(test,S),y_test) 

"21: Step 5: Return the Trained Model and Accuracy" 

"22: return " model,accuracy 

 

The fourth pseudocode describes the proposed AntDroidNet cybersecurity model and illustrates how the ACO integrates 
with the DNN and the stages of developing the proposed AntDroidNet cybersecurity model in detail. 

5. RESULTS AND DISCUSSION 

This section presents a comprehensive analysis of the experimental results obtained from implementing the proposed 
AntDroidNet cybersecurity model. Multiple performance metrics are included in this evaluation framework, where more 
attention is given to the confusion matrix, which is the initial method that can show the predictive and classification 
performance of the model. This matrix serves to effectively illustrate both the model's capacity to classify applications 
accurately into malware or benign categories and to identify any misclassifications during the evaluation process. 

5.1 Dataset 

By correctly classifying Android applications as malware, cybersecurity researchers contend that developing effective 
classification and detection methodologies is a major challenge. The current study uses the CICMalDroid 2020 dataset [25] 
for training and evaluating the proposed model to overcome this issue. The complete datasets include different types of 
potentially harmful software (adware, banking trojans, riskware and SMS-based threats) as well as normal benign apps for 
comparison. Having malicious and benign samples allows one to know the features that mention differences in malware. 
The numerical distribution of the samples is detailed in Table I, which provides quantitative insight into the composition of 
the dataset and draws attention to the diversity of threats represented in this study. 

Algorithm 4 𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝐴𝑛𝑡𝐷𝑟𝑜𝑖𝑑𝑁𝑒𝑡 𝐶𝑦𝑏𝑒𝑟𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑀𝑜𝑑𝑒𝑙 
"Require: " Raw datase X with m samples and n features,labels y,number of Ants num_ants,number of iterations 

num_iterations, 

ACO parameters α,β,evaporation rate Ρ,DNN paramters: number of epochs num_epochs,learning rate η 

"Ensure: " Best subset of selected features S_best  and trained DNN model with optimal classification accuracy 

" 1: Step 1: Initialize Pheromone Levels for ACO" 

" 2: " pheromone←{τ_1=1,τ_2=1,...,τ_n=1}{Initial pheromone levels are equal for all features} 

" 3: " S_best←∅,best_accuracy←0 

" 4: for " each iteration k=1 to num_iterations" do" 

" 5:       Step 2: Feature Subset Construction by Ants" 

" 6:       for " each ant i=1 to num_ants"  do" 

" 7:             " S_i←∅ {Start with an empty feature subset} 

" 8:             for " each feature f∈F"  do " 

" 9:                   " Calculate  selection probability using equation number 3: 

"10:                  if  " randomly generated number ≤Ρ(f)" then" 

"11:                        " S_i←S_i∪(f) 

"12:                  end if " 

"13:            end for  " 

"14:      end for" 

"15:      Step 3: Evaluate Feature Subsets Using DNN" 

"16:      for " each ant i=1 to num_ants" do" 

"17:            " Extract relevant features X_(train,S_i )←X_train [S_i] 

"18:            " Define and compile DNN with |S i| input neurons,hidden layers (64 and 32 neurons),and sigmoid output 

layer 

"19:            " Train DNN on X_(train,S_i )  and"  " y_(train,S_i )  for"  " num_epochs  

"20:            " Evaluate model on X_(test,S_i )  to obtain accuracy(S_i) 

"21:      end for" 

"22:      Step 4: Update Best Feature Subset and Accuracy" 

"23:      " best_ant←〖argmax〗_ia ccuracy(S_i) 

"24:      if " accuracy(S_(best_ant)) > best_accuracy" then " 
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"25:            " S_best←S_(best_ant),best_accuracy←accuracy(S_(best_ant)) 

"26:      end if" 

"27:      Step 5: Pheromone Update" 

"28:      for " each feature f∈F"   do" 

"29:            " Adjust pheromone level using equation number 5: 

"30:      end for" 

"31: end for" 

"32: Step 6: Final Training and Testing of the Optimized DNN" 

"33: " Extract features from S_best:X_(train,S_best )←X_train [S_best] 

"34: " Define,compile,and train DNN using S_best  as input features 

"35: " Final evaluation on X_(test,S_best ):final_accuracy←model.evaluate(X_(test,S_best ),y_test) 

"36: return " S_best,model,final_accuracy 

 

TABLE I.  CICMALDROID 2020 DATASET 

App Class Family No. of App 

Malware 

Adware 1253 

Banking 2100 

SMS 3904 

Riskware 2546 

Benign Benign 1795 

 

5.2 Evaluation Metrics 

In the methodology section of the performance assessment, four standard metrics are defined: accuracy, precision, recall and 
the F1 score. That is, along with the metric MCC. These established metrics were selected to allow for a comprehensive and 
objective assessment of the proposed AntDroidNet cybersecurity model in terms of malware detection capabilities and 
benign versus malicious application classification ability. The MCC is particularly useful for imbalanced datasets, as it 
considers all the elements of the confusion matrix (true positives, true negatives, false positives and false negatives) and 
provides a balanced and comprehensive evaluation. In cases where classes are not evenly distributed, the MCC is a better 
metric for measuring both accuracy and the ability to classify both positive and negative samples. The robustness and 
reliability of the proposed AntDroidNet cybersecurity model are validated by these performance statistics. This careful 
structure allows for the systemic evaluation of the success of the proposed AntDroidNet cybersecurity-based model and 
provides valuable insights into defining its practical implications in the real-world sense. The four confusion matrices are 
depicted below in Figure 2 and Table II of the proposed AntDroidNet cybersecurity model. 

 

Fig. 2. Confusion matrix for the proposed AntDroidNet cybersecurity model. 
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TABLE II.  TP, FP, FN, AND TN FOR THE PROPOSED ANTDROIDNET CYBERSECURITY MODEL. 

TP (%) FP (%) FN (%) TN (%) 

99.91 0.13 0.09 99.87 

 

A confusion matrix was employed to evaluate the performance of the proposed model in classifying mobile applications as 
either malware or benign. The empirical results demonstrate the model's exceptional predictive capabilities. Specifically, the 
model achieved a remarkable 99.91% TP in correctly identifying malware applications. With respect to FPs, the model 
exhibited outstanding precision, with only 0.13% of benign applications being incorrectly classified as malware a rate 
significantly below 1%, indicating superior discriminative capabilities between malware and benign applications. 
Furthermore, the model demonstrated exceptional TN in correctly identifying benign applications, achieving a 99.87% true 
negative rate. The FN was particularly impressive at merely 0.09%, representing cases where malware applications were 
incorrectly classified as benign. This exceptionally low rate further validates the model's robustness. These confusion matrix 
results underscore the proposed model's remarkable ability to accurately distinguish between malware and benign 
applications. These performance metrics indicate the model's potential for reliable deployment in real-world mobile security 
applications, where precise discrimination between malware and benign software is crucial. 

Table III shows the detection accuracy of the proposed AntDroidNet cybersecurity model in addition to the other four 
performance metrics: precision, recall, F1 score, and MCC. 

 

TABLE III.  PERFORMANCE METRICS FOR THE PROPOSED ANTDROIDNET CYBERSECURITY MODE. 

Method 
Performance Metrics (%) 

Accuracy Precision Recall F1score MCC 

Classification 98.99 98.39 98.64 98.51 97.75 

Detection 99.89 99.75 99.91 99.83 99.74 

 

Table III presents the performance metrics for malware classification and detection utilizing the CICMalDroid 2020 dataset. 
Through optimization of the feature selection process, AntDroidNet is the most advanced model with classification and 
detection results. The method obtained an optimized dataset extracted from the original CICMalDroid 2020 dataset by 
utilizing the most impactful features to present a direct influence on classification rates. The metrics for performance reflect 
the fact that identifying and preserving the most relevant image characteristics greatly reduces redundancy or lowers impact 
features as an optimization approach. This fine-tuning approach is critical for improving the model's detection capabilities 
and classification performance. This methodological advancement in feature selection can provide configure accuracy in 
terms of mobile malware detection because this ability to detect the most suitable and relevant level of features can be 
advantageous and allows high-level classification in target classes. For both the detection and classification of malware and 
benign applications during the performance evaluation phase of the proposed AntDroidNet cybersecurity model, MCC is 
used as its well-balanced implementer for evaluation metrics after classifying the malware data. MCC is a holistic statistic 
collapsing all classification results positive or negative: TP, TN, FP and FN from the confusion matrix into a single score 
that represents all four values. The importance of this metric is that it describes an equal assessment of the AntDroidNet 
cybersecurity model on the basis of how well it correctly determines whether a given piece of software is malware while 
also avoiding the misclassification of benign applications that would not be otherwise labelled as such. This exhaustive end-
to-end reasoning vector guarantees unwavering quality execution measurements and prompts fewer bogus alerts and 
overlooks malware programs. Therefore, using MCC is a powerful approach for evaluating the overall performance of the 
AntDroidNet cybersecurity model, which furnishes more in-depth information from common performance measures while 
providing a more truthful assessment of its effectiveness in real applications involving malware detection. 

5.3 Comparing Results in the Literature 

The final performance evaluation of the proposed AntDroidNet cybersecurity model is compared against the literature, which 
uses the same CICMalDroid2020 dataset and evaluation measures for the detection of Android malware. Table IV and Figure 
3 summarize the comparative analysis, revealing significant performance advantages of the proposed AntDroidNet 
cybersecurity model, especially in terms of accuracy, precision, recall, and F1-score metrics, among the other research 
comparisons. The comparative analysis underpins the excellent discriminative performance of the proposed AntDroidNet 
cybersecurity model for malware detection. By using an extensive, standardized evaluation framework, in terms of metrics 
and datasets, this method allows for strong validation of the model capabilities. As they provide a robust model for Android 
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malware detection, the proposed AntDroidNet cybersecurity model demonstrates an overall improvement in adversarial 
robustness, as reflected specifically in the empirical findings. This study not only validates the effectiveness of the model 
but also contributes to the progress in the mobile security domain, especially android malware detection systems. 

TABLE IV.  PERFORMANCE METRICS FOR THE PROPOSED ANTDROIDNET CYBERSECURITY MODE. 

Method 

Performance Metrics (%) 

Accuracy Precision Recall F1score 

[24] 96.7 99.16 96.54 97.84 

[23] 98.66 99.15 99.06 99.10 

[25] 98.70 98.7 98.7 98.7 

[22] 98.96 99 99.65 99.33 

[26] 98.97 99.23 99.50 99.36 

[27] 99 99 99 99 

[28] 99 99 100 99 

Proposed AntDroidNet 99.89 99.75 99.91 99.83 

 

 

Fig. 3. Results of the comparison of the proposed AntDroidNet cybersecurity model with related models. 

According to the figure above, when the proposed AntDroidNet cybersecurity model is compared with existing frameworks 
in the literature, under comparable conditions utilizing identical CICMalDroid 2020 datasets and performance metrics such 
as accuracy, precision, recall, and F1-scores, the improvements in detection accuracy achieved by the proposed AntDroidNet 
cybersecurity model are noteworthy. Specifically, compared with models [25][24][26][23] and [28], the enhancements in 
accuracy represent a significant advancement over previous approaches. With respect to models [29] and [30], the proposed 
AntDroidNet cybersecurity model demonstrated a marked improvement in detection accuracy, surpassing these models by 
0.89%. This enhancement underscores the model's robust predictive ability in identifying cyber threats. 

In terms of precision, while all compared models exhibited similar results, the proposed AntDroidNet cybersecurity model 
achieved a 0.5% percentage point improvement, reflecting enhanced classification accuracy in its predictions.\ 
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For the recall metric, model [30] achieves a perfect score of 100%, with the proposed AntDroidNet cybersecurity model 
closely following at 99.91%. In terms of the final F1 score metric, the proposed AntDroidNet cybersecurity model once 
again performs excellently, achieving the highest F1 score of approximately 99.83% among all the compared models and 
approaching near-perfect performance. 

Moreover, the false positive rate of the proposed AntDroidNet cybersecurity model is remarkably low at 0.13%, which is 
ideal in practical applications. 

These results suggest that the proposed model outperforms the compared frameworks and holds promise for real-world 
implementation, potentially contributing significantly to addressing cybersecurity challenges. 

6. CONCLUSION 

In this paper, a novel AntDroidNet cybersecurity model based on hybrid deep neural networks with ant colony optimization 
is proposed for feature selection to detect comprehensive mobile malware effectively. The experimental outcomes 
demonstrate the effectiveness of combining deep learning and swarm intelligence and exploiting them for the field of mobile 
malware detection. It is an advanced and novel mobile malware detection system based on a hybrid DNN and ACO. The 
historical outcome of our findings will be thoroughly documented, and the response rates, clarity and MCC will be assessed. 
The abovementioned immense contributions of our proposed AntDroidNet cybersecurity model can be summarized as 
follows: (i) It has been proven to be an unprecedented viable technique of hybrid DNN amalgamation along with ant ACO 
for feature selection. Combining the strengths of DNN and ACO, our system has been shown to have high precision. The 
successful experimental results clearly show that ACO is an improved technique for mobile malware detection. These 
pioneering research results also establish that hybrid DNNs with ACO have only a few applications not only in the case of 
mobile malware but also in other cybersecurity cases, resulting in an excellent and reliable detection model. (ii) Additionally, 
one of the strongest advantages of our AntDroidNet cybersecurity architecture is that it serves as an amazing architecture 
guidance tool for malware-based architectures. This novel AntDroidNet model can be estimated to be effective in the industry 
for more than just mobile malware detection systems. By doing so, its efficiency and adaptability can remarkably increase 
the performance of real-time detection, which gives it strong utility in real-time detection systems, especially in sectors that 
require continuous security monitoring, including but not limited to mobile apps and Internet of Things (IoT) hardware. 
Since IoT networks are expanding at an unprecedented pace and the sophistication of cyber attacks continues to evolve, this 
work may contribute to the establishment of security architectures targeted toward large-scale, real-time environments. Our 
research has the capacity to aid the development of more resilient, scalable and adaptable security solutions in the areas of 
mobility and the IoT because it addresses the rapidly changing landscape of these threats. 

Future work might explore additional optimization of the model to increase its real-time detection efficiency and make the 
system deployable on a wider range of mobile devices and future malware families. Furthermore, you would focus on making 
the computation of the model efficient enough to be used beyond the model itself, such as in dated versions of certain mobile 
and IoT environments for widespread, real-world deployment. These upgrades help keep the model relevant as the 
cybersecurity industry continues to advance, tackling mobile and IoT security threats that become more sophisticated over 
time. 
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