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A B S T R A C T 

Smartphone authentication systems must balance security and user convenience, which is a persistent 

challenge in the digital realm. Traditional biometrics, such as fingerprints and facial recognition, face 

vulnerabilities to spoofing and environmental conditions, limiting reliability. This study introduces a 

novel approach by integrating three-dimensional (3D) touch sensors with finger location data for 

authentication. The goal is to develop a system that improves accuracy while minimizing false positives 

and negatives, leveraging touch pressure and spatial interaction as unique biometric identifiers. Data 

from 20 participants, including pressure levels, spatial coordinates, and timestamps, were analysed using 

Random Forest (RF) and Extreme Gradient Boosting (XGBoost) models. The results showed that 

combining pressure sensitivity with spatial data significantly improved performance, achieving an F1- 

score of 0.83 and an accuracy of 83%. The system demonstrated balanced precision (0.84) and recall 

(0.83), effectively reducing false positives and negatives. Robustness was confirmed through cross-

validation tests, which validated the consistency across datasets and real-time usability scenarios. This 

study establishes a foundation for secure, user-friendly smartphone authentication, highlighting the 

potential of 3D touch technology in addressing current biometric system limitations. This approach opens 

avenues for further research in mobile security, integrating multimodal biometric data with advanced 

machine learning techniques. 

 

1. INTRODUCTION 

Smartphone authentication approaches face challenges in ensuring both security and efficiency [1]. This research develops 

a new methodology that combines 3D touch sensor [2], [3], [4] and the location of one's fingers with advanced decision-

making techniques like the Random Forest and XGBoost [5]. Passwords and PINs are often guessed, stolen, or forgotten, 

whereas biometric systems, although more reliable, are vulnerable to spoofing and environmental factors that affect their 

reliability. This study pioneers the integration of 3D touch pressure data with spatial coordinates for smartphone 

authentication. Unlike prior studies that relied on static biometric features, such as fingerprints and facial recognition, this 

work leverages dynamic, multidimensional data to enhance both security and usability. By employing advanced machine 

learning models like Random Forest and XGBoost, the proposed system achieves superior performance in real-time 

scenarios.  The results demonstrate that when combined with spatial data, touch data are effectively able to differentiate 

between genuine users and impostors. This combination significantly enhances authentication by leveraging touch pressure 

and spatial data.[6], [7], [8] 

1.1 Motivation 

As smartphones become integral to daily life, securing user data against unauthorized access is more critical than ever 

before. However, traditional authentication methods, such as PINs and passwords, are prone to theft and forgetfulness, 

whereas biometric methods face spoofing and environmental challenges[9], [10], [11], [12]. Passwords and PINs are 

typically guessed, stolen, or forgotten, whereas biometric systems are more trustworthy; however, they are also susceptible 

to spoofing and environmental conditions that affect their dependability. For example, fingerprint sensors can be 

compromised by dirt or moisture, and facial recognition may fail with photographs or under low-light conditions.[13]. 

The vulnerabilities call for better and adaptable authentication methods that heighten security but still maintain ease of 

usability for the user. One approach that seems particularly viable involves marrying the 3D touch sensor to the finger 

location data on the screen. The sensors provide dynamic and continuous biometric information that reflects each specific 
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user's interaction with the device on the basis of the intensity of touch and coordinates of touch pressure in space, which 

makes it unique. It would then offer much better security by using natural patterns of interaction that are hard to duplicate. 

1.2 Challenges 

Integrating dynamic features such as 3D touch sensors and spatial data into authentication systems presents challenges, 

including variability in user interactions, real-time processing requirements, and the ability to balance security with 

usability. While these technologies offer significant advantages, their implementation requires overcoming the following 

key issues: 

a. Data Variability and Noise: Touch data can be highly variable because of various user habits, device 

sensitivities, and environmental factors, thus acting as noise and impacting system accuracy [14]. 

b. Real-time processing requirements: Touch data must be processed quickly and accurately to ensure the 

effectiveness of the authentication system. This process requires high-level algorithms that can be analysed in real 

time without losing performance [15]. 

c. Balancing Security and Usability: Because boosting security is very important, the system must also work so 

that intuition and inconspicuousness are not lost in making the system user friendly. Overly complex 

authentication modes, however, may discourage users, reducing adoption rates [3], [16]. 

1.3 Contributions 

This work contributes to smartphone authentication in the following key aspects: 

a. Fusion of 3D touch and spatial data: Static biometric data are what traditional authentication systems rely on; 

in this work, 3D touch dynamics are combined with finger locations on the sensor surface to ensure a multivariable 

user identification solution. 

b. Utilization of state-of-the-art decision-making methods: This method optimizes authentication performance 

by using complex algorithms like Random Forest and XGBoost in touch data processing. This is achieved by 

using sophisticated algorithms to make decisions in real time and by effectively recognizing patterns. 

c. Comprehensive evaluation and validation: The proposed system has been rigorously tested on various training 

and validation datasets with a newsworthy decimal computational score, showing high levels of accuracy, 

precision, and hit rate (without any loss of generality). This validates its effectiveness and robustness in addressing 

common identity authentication challenges. 

d. Addressing real-time processing concerns: This study enhances algorithms for real-time performance, ensuring 

that the system retains high accuracy while delivering a user-friendly experience, thus striking a vital equilibrium 

between security and usability. 

e. Increased Security Against Impostors: Compared with the conventional method, the system demonstrated 

significantly higher security during simulated tests, successfully preventing unauthorized individuals from 

gaining access. 

Smartphone authentication technology has significantly advanced owing to the increasing usage of 3D touch sensors, 

cognition-based decision-making, and fingertip positioning (2D). This approach addresses the existing weaknesses of the 

system and establishes a new, more flexible foundation for safe biometrics. The findings of this research may help in 

developing better secure and easy authentication mechanisms and standards for mobile device security in the future. 

1.4 Objectives 

This study is designed to make smartphone authentication even more accurate while reducing instances of false positives 

and negatives. Other specific aims involve optimizing real-time processing algorithms and demonstrating the scalability 

of the system for practical application. The effectiveness of its authentication function is evaluated on smartphones via a 

3D sensor for touch and the location information of its fingers. Evaluate the performance of decision-making methods 

(Random Forest, XGBoost) in analysing touch and spatial data related to user identification. To demonstrate the ability of 

the proposed system to distinguish active users from fake users in real scenarios. 

1.5 Study significance 

This study is significant because it introduces a novel method for improving smartphone authentication by using a 3D 

touch sensor in conjunction with decision-making techniques. To avoid the drawbacks of existing systems, this paper 

presents a more secure, adaptable, and user-friendly authentication technique through pressure and spatial fall data 

analysis. 
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2. LITERATURE REVIEW 

Different biometric authentication techniques, such as fingerprinting, facial recognition, and touch dynamics, have been 

thoroughly investigated for mobile devices [17], [18], [19]. In particular, the performance of touch dynamics has shown 

promising results owing to the distinctive behavioral information it conforms to and its nonintrusive nature, which 

facilitates user comfort [20]. Techniques such as machine learning make these biometric technologies more reliable.[5], 

[7], [21] 

This research innovates a study, identifying the existing authentication methods in the literature and acknowledging the 

potential of 3D touch sensors and finger positioning data in supporting decisions to authenticate users and in modelling 

more secure and robust systems. To fill these gaps, this study highlights the need to incorporate cutting-edge technology 

into more potent cell phones. 

2.1 Existing authentication techniques 

In the past, smartphone authentication solutions have been dependent on facial recognition plus fingerprint recognition and 

PIN/password combinations. Although these methods offer some security, they are far from perfect: 

a. Fingerprint recognition is very common because it is easy to use; however, it is susceptible to spoofing attacks 

through imitation fingerprints and external factors such as moisture, dirt, or damage to the sensor for 

fingerprinting, which could cause false rejections or acceptances [22], [23]. 

b. Facial recognition: These recognition systems may be insecure when users are wearing items such as masks 

or glasses or when the lighting is dim. Additionally, there are security concerns because the algorithms themselves 

can at times be fooled by images or videos [13]. 

c. PIN/Password Systems: Despite their simplicity and extensive use, PINs and passwords tend to be forgotten, 

stolen, or guessed, making them less secure and convenient than biometric solutions [3]. 

Previous studies, such as those by Lee et al. [19] and Kumar et al. [24], explored static biometric data for authentication. 

However, they did not incorporate dynamic features such as 3D touch and spatial interaction. Additionally, these studies 

often rely on simpler machine learning algorithms, which limits their ability to handle complex, real-time data. This study 

addresses these gaps by integrating 3D touch technology with advanced decision-making models, setting a new benchmark 

for authentication systems. 

2.2 Use of 3D Touch Sensor and Finger Locations in Authentication 

The confluence of 3D touch sensors and spatial data analysis is an emerging field in smartphone security. The sensors can 

track levels of pressure, offering yet another kind of biometric data used to identify a person in ways that are more difficult 

to replicate than still images or fingerprints alone.[2], [3], [8] 

a. 3D Touch Data: As per [3], the force of the touched area can be used to generate user usage-based profiles, 

which provide an additional dimension of security to modern authentication techniques. 

b. Finger location analysis: Spatial data, which reveal the X and Y coordinates on a screen where a touch 

occurred, enhance the profiling of user identification. Research conducted by Shen et al. [25] and Yang et al. [26] 

revealed that finger position data alone, without pressure information, might greatly increase the capacity to 

discriminate between real users and imposters. Using the inherent variety in user touch behavior, this method 

generates a dynamic security measure that adjusts to individual behaviors. [27]. 

c. Difficulties with Data Integration: Obtaining and analysing position and pressure data accurately in real-time 

are very challenging. This calls for sophisticated algorithms in signal filtering and analysis for the attainment of 

accuracy since some studies argue that human variability and noise in sensor data might affect accuracy [28]. 

2.3 Decision-Making Techniques in Authentication 

The confluence of 3D touch sensors and spatial data analysis is an emerging field in smartphone security. The sensors can 

capture levels of pressure, adding up to another layer of biometric data to identify a person in ways that are harder to 

replicate than with only static images or fingerprints. 

a. Random Forest: A popular authentication method is the utilization of Random Forest as a decision-making 

system, which is resilient and has the ability to handle complex datasets. As demonstrated in the work of Nguyen 

et al. [29] Random Forest techniques classify user interactions quite well by using various input features, which 

lowers the chances of false positive results. 

b. XGBoost: Due to its efficiency and accuracy, XGBoost has been implemented to improve security systems by 

learning from touch and location data at the user’s level of granularity. According to Chen and Guestrin [30], in 

differentiating users on the basis of the features extracted via both pressure sensitivity and finger location, 
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XGBoost outperforms traditional algorithms. Quick optimization of decision trees allows the use of the model in 

real-time authentication applications. 

c. Optimization Techniques: Grid search and randomized search. This is typical for hyperparameter tuning 

techniques to improve model performance. This is a very important step in the process of adapting the models to 

the very specific particularities of 3D touch and location data because they were developed in recent works by 

Nastasiu et al. [31]. 

2.4 Gaps in Current Research 

Although the field has made many strides, some gaps remain: 

a. Limited Multi-Feature Data Utilization: Most systems integrate only one feature instead of many touch-related 

data points [32]. 

b. Difficult real-time processing: Complicated touch data are still very difficult to process in real-time without 

loss of accuracy or speed [8], [33]. 

c. Adaptability to diverse user interactions: The broader variation in individual user behavior is a difficulty for 

existing models and may eventually result in security vulnerabilities [34]. 

The literature has highlighted the potential for 3D touch sensors and finger location data in improving smartphone 

authentication. Moreover, sophisticated decision-making techniques are needed to address the complexity of these data. As 

modern technological innovations are embraced, they pave the way for better authentication schemes, namely, secure, 

flexible, and user friendly, that go a long way in remedying the problems identified in traditional systems. 

 

3. METHODOLOGY 

The methods section describes the procedures for data collection, feature analysis, model development, and evaluation via 

a complex decision strategy. The main goal is to leverage 3D touch sensor and finger position data to improve the accuracy 

of smartphone authentication. Figure 1 shows an example of the experimental flow of the 3D touch authentication system. 

(A) 
Represents the fingertip pressing 

on the screen 

(B) 
Represents finger force pressure on 

the screen 

Fig. 1. Examples of the experimental process of the 3D touch authentication system 

3.1 Data collection and preprocessing 

The data were collected from 20 volunteers, each of whom completed five authentication attempts via a smartphone with 

a 3D touch screen. The dataset contains four main features: pressure level, x and y coordinates of the touch point, and 

timestamps for each interaction. The data collection was conducted in a controlled environment to ensure consistent 

readings from the 3D touch sensor and to capture each user's unique interaction patterns. The following are the 

preprocessing steps: 

a. Normalization: Values of features were normalized so that all of them were within the same range of scaling, 

i.e., [0, 1], which ensured that no particular feature dominated the learning process of the model due to its bias. 

b. Outlier removal: Extreme values, which were caused mostly by sudden atypical touches, were filtered out via 

the Z-score method to keep the data clean. 
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c. Feature Engineering: New features were created from basic data points such as the duration and trajectory of 

touch, which further increased expressiveness in modelling how users behave. 

3.2 Feature Extraction 

To convert unprocessed sensor data into useful inputs for the algorithms used in decision-making, feature extraction is 

essential. The primary characteristics that have been retrieved are as follows: 

a. Pressure (P): This provides a unique biometric characteristic by measuring the force exerted by the user. 

b. X and Y coordinate (X, Y): Catch of the finger’s on-screen activity, which has a different value for each user. 

c. Time (T): Captures the sequence and timing of touches, providing context for how the screen is interacted with 

over time. 

These features are mathematically represented via equation (1): 

F = [𝑃, 𝑋, 𝑌, 𝑇]……….                                                                            (1) 

where F is the feature vector input for the machine learning models. 

3.3 Model training and decision-making techniques 

Decision-making techniques such as Random Forest and XGBoost were utilized to classify user interactions as genuine or 

impostor attempts. These models were chosen for their ability to handle complex, multidimensional data efficiently and 

accurately.[30], [35] 

1. Random Forest Model: 

Random Forest is an ensemble method that builds multiple decision trees during training and outputs the mode of the 

classes as the final prediction [36], [37]. It has demonstrated pronounced efficacy in addressing data characterized by high 

noise levels and elucidating nonlinear associations among various features [38]. The mathematical representation is as 

follows: 

The decision function 𝑓(𝐅) can be expressed as in equation (2) [37]: 

𝑓(F) =
1

𝑛
∑ 𝑇𝑖(F)

𝑛

𝑖=1

… … … … …                                                                    (2) 

where: 

- 𝑇𝑖  represents individual decision trees in the forest. 

- 𝑛 is the total number of trees. 

 

2. XGBoost Model: 

XGBoost (Extreme Gradient Boosting) is a powerful machine learning algorithm known for its speed and accuracy. The 

methodology employs gradient boosting methodologies to progressively enhance the model by minimizing the loss function 

[30]. The objective function for XGBoost is defined in equation (3) [39]: 

ℒ(Θ) = ∑ 𝑙(𝒴𝑖 , �̂�𝑖)

𝑁

𝑖=1

+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

… … … … … ….                                                   . (3) 

where: 

- where 𝑙(𝒴𝑖 , �̂�𝑖) is the loss function measuring the difference between the actual and predicted values. 

- Ω(𝑓𝑘) is the regularization term that controls the complexity of the model. 

- Θ represents the model parameters. 

3.4 Hyperparameter Optimization 

Hyperparameter tuning was conducted via a randomized search, optimizing parameters such as the number of estimators, 

learning rate, maximum depth, and subsample ratios. The goal was to find the optimal settings that maximize the model’s 

performance on the validation data. Optimization equation (4) [40]: 

Θ∗ = arg min
Θ

ℒ(Θ) … … …                                                                      … . (4) 

where Θ∗ represents the optimized parameters that minimize the objective function. 
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3.5 Model evaluation 

The models were evaluated via key metrics, including accuracy, precision, recall, and F1-score, which were calculated as 

follows [41]: 

1. Precision (P): Precision measures the accuracy of positive predictions (i.e., True Positive (TP)), indicating the proportion 

of correctly identified genuine users out of all predicted positive instances, reflecting the model's ability to avoid False 

Positives (FP). The calculation process was performed via equation (5), as indicated by[42], as follows: 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
… … … …                                                                            … . . (5) 

2. Recall Measure (R): The model can correctly and effectively identify all True Positive cases, indicating the extent of 

its effectiveness in discovering real users among all True Positive cases. It is determined by the equation (6), as shown 

below [42]: 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
… … … …                                                                           … . . (6) 

3. F1-Score (F1): This metric is a performance measure that combines precision with recall into a single value, providing 

a balanced assessment of the model's accuracy in accurately distinguishing True Positives while minimizing false negatives 

and false positives. Equation (7) is computed as follows [42]: 

𝐹1 = 2 × (
𝑃 × 𝑅

𝑃 + 𝑅
) … … …                                                                        … … . . (7) 

The abbreviation TP refers to True Positive, FP refers to False Positive, and FN refers to False Negative. These metrics 

illustrate the model's ability to have a comprehensive understanding of correctly and accurately identifying genuine users 

and rejecting impostor users [3], [8], [42]. 

Combining the RF and XGBoost classifiers with 3D touch pressure-based and finger position on-screen data improves the 

accuracy of authentication. Considering the diversity and complexity of user interaction, the decision-making techniques 

employed in this work provide a strong approach to smartphone authentication. 

 

4. RESULTS AND DISCUSSION 

In this part, the performance of the established smartphone authentication system, which is based on the 3D touch sensor 

and finger decision-making techniques applied for the location data, is detailed. Random Forest and XGBoost model 

performance metrics, as well as visualizations of the tables or confusion matrices for the models used to make this 

assessment. The originality of this study lies not only in devising a novel biometric layer that works in a functional, 

dynamic fashion but also in providing spatial coordinates via 3D touch data. Static biometrics become vulnerable since 

they can be hacked; thus, being countered by such drawbacks, we use dynamic biometric systems, which can also be 

considered an alternative solution for scaling them for practical purposes. Additionally, the use of tools such as XGBoost 

provides a solution with the capability for high-dimensional data management, making it a significant landmark of mobile 

security. 

4.1 Model Performance Metrics 

The models were tested on important metrics, such as accuracy, precision, recall, and F1-Score. Random Forest and 

XGBoost modelling results are presented in Table 1. A discussion about how effective models are as follows: 

a. XGBoost Outperforms Random Forest: Compared with the random forest, XGBoost was better at addressing 

the complex exchange of touch and spatial data, which was reflected in its high accuracy (83.0%, as shown in 

Table 1). The precision and recall values suggest that XGBoost strikes a good trade-off between correctly 

recognizing legitimate users and accepting them. In addition, the ideal precision and recall values confirm that 

XGBoost does a very good job of correctly identifying true persons and accepting them. 

b. Balanced Metrics: Both models have good balanced precision and recall, which is important for any 

authentication system; we want neither false positives (impostors accepted) nor false negatives (legitimate users 

rejected). The F1-score helps balance precision and recall and, as such, provides further support for the strength 

of these models. 

TABLE I.  MODEL PERFORMANCE METRICS 

Model Accuracy (%) Precision Recall F1-Score 

Random Forest 79.5 0.82 0.78 0.80 

XGBoost 83.0 0.84 0.83 0.83 
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The performance metrics (accuracy, precision, recall, and F1-score) of the two rates are shown in Table 1 for Random 

Forest and XGBoost decision-making models. These measures assess the performance of each model in terms of 

discriminating between legitimate users and impostors in the authentication system. XGBoost achieved the highest 

accuracy (83%), indicating that it provides better overall performance than Random Forest (79.5%). XGBoost 

demonstrated balanced precision (0.84) and recall (0.83), meaning that it can reliably identify legitimate users while 

minimizing false positives and negatives. The F1-score for XGBoost (0.83) confirms its superior ability to handle 

imbalanced datasets compared to Random Forest (0.80). This analysis suggests XGBoost as the preferred model for real-

time smartphone authentication applications. 

4.2 Confusion Matrix Analysis 

A confusion matrix provides the model's classification performance from a detailed viewpoint, bringing to the surface both 

correct and incorrect predictions across the different classes. Figure 2 shows the confusion matrix for the XGBoost model 

(validation data), where the true positives, false negatives, false positives, and true negatives are shown for user interactions. 

The analysis of the confusion matrix is as follows: 

a. Diagonal dominance: The high values along the diagonal of the matrix indicate correct classifications of 

genuine users and impostors. This clearly shows that the model is reliable because it rarely misclassified legitimate 

users’ behavior and impostor behavior. 

b. Low Off-diagonal values: Minimal misclassifications indicate the model’s robustness in differentiating 

between genuine user behavior and unauthorized access attempts. Misclassification error is introduced by the 

XGBoost model according to both the majority and minority classes and genuine and inappropriate attempts, 

respectively. This can be indicated in the matrix by the fact that there are low off-diagonal values. 

 
Fig. 2. Confusion matrix for the XGBoost model (validation data) 

 

4.3 Comparison of Decision-Making Techniques 

Figure 3 shows that XGBoost outperforms the random forest algorithm in every criterion of evaluation—accuracy, 

precision, recall, and F1 score—which proves the greater ability of the former to identify genuine users without errors and 

is therefore a better alternative for mobile device authentication. The discussion of the comparison is as follows: 

a. Higher Precision and Recall with XGBoost: The data presented in the chart prove that XGBoost uniformly 

outperforms Random Forest concerning all the performance metrics. This superiority may be due to the efficient 
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optimization of decision trees that XGBoost performs and the minimization of prediction errors via gradient 

boosting techniques. 

b. Decision Tree Complexity Management: The regularization components of XGBoost facilitate the regulation 

of decision tree complexity, thereby mitigating the risk of overfitting and promoting the model's ability to 

generalize effectively to previously unobserved data, a factor that is paramount for the functionality of 

authentication systems in real-world applications. 

 
Fig. 3. Performance Comparison of the Random Forest and XGBoost Models 

4.4 Feature Importance Analysis 

Refinement and improved interpretability of the system are achieved by knowing which features are most important in 

influencing the model's judgments. Figure 4 below shows the feature importance plot, which displays the relative influence 

of each feature (pressure, X coordinate, Y coordinate, and time) on the model's predictions. Important insights include the 

following: 

a. Pressure as a Dominant Feature: The most influential feature is the pressure level since it confirms the 

hypothesis that the touch force provides a unique biometric feature that is difficult to replicate. 

b. Spatial Data Contribution: The contribution of spatial coordinates (X and Y) is also important because they 

provide spatial context that helps separate users on the basis of their touch habits. 

c. Temporal Data Utilization: Temporal data help in understanding the patterns of interaction by the user across 

sessions and, hence, enhance the accuracy of the model. 

 
Fig. 4. Importance of features in the XGBoost Model 
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4.5 Robustness and Validation Results 

The XGBoost model proved to be robust in all performance and validation tests, with accuracy, precision, and recall at 

high levels, so it can be dependable for real-world authentication: 

1- Cross-validation accuracy: The cross-validation process further confirmed the stability of XGBoost, with 

consistently high accuracy scores across different data splits. 

2- Real-Time Processing Capabilities: The system was tested under simulated real-time conditions, 

demonstrating the ability to process and authenticate user interactions within milliseconds, ensuring a seamless 

user experience without noticeable delays. 

The results prove that the developed system of smartphone user authentication, which is based on the integration of 3D 

touch sensors with spatial data and decision-making techniques, is efficient. In particular, XGBoost yielded better results, 

which once more confirms the possibility of using advanced algorithms to solve complex and changeable biometric 

databases. When substantial classification effectiveness with minimized misclassification rates and real-time processing 

are achieved, the implementation of a feasible and safe alternative to traditional methods of authentication is ensured. 

The proposed system achieved an F1-score of 0.83 and an accuracy of 83%, surpassing traditional authentication methods, 

which often achieve accuracy rates < 83%. Unlike static biometric systems, our approach integrates dynamic features such 

as touch pressure and spatial data, significantly reducing the number of false positives and negatives. Additionally, the 

XGBoost model demonstrated superior performance compared with simpler algorithms, ensuring robust and real-time 

usability. 
 

5. VALIDATION AND PROOF 

5.1 Validation Approach 

Model validation was performed from a very broad perspective, from cross-validation to simulated impostor trials. Cross-

validation is the technique used in testing the model for efficacy over many data splits to ensure that the accuracy of the 

model is consistent and too dependent on a single training dataset. Third, simulated deception attempts were also included 

to assess the detection ability of the system in authentic and imposter interactions, providing a practical view of how well 

the model works in real life. 

Figure 5 shows the accuracy scores obtained by the XGBoost model for different cross-validation folds. This type of 

visualization indicates whether the model is stable and reliable in practice and performs equally well on different subsets 

of the data. 

 
Fig. 5. Cross-Validation Accuracy across Different Splits 

5.2 Proof of Integration Effectiveness 

The integration of 3D touch data and finger location allowed the model to outperform traditional methods of authentication. 

The results indicated that the incorporation of these features improved accuracy, precision, and recall. It shows the unique 

interaction patterns captured by 3D touch and spatial data in offering a robust biometric layer. 

TABLE II.  PERFORMANCE METRICS WITH AND WITHOUT FEATURE INTEGRATION 
 

Metric Without Integration With Integration 

Accuracy (%) 74.5 83.0 

Precision 0.75 0.84 

Recall 0.73 0.83 

F1-Score 0.74 0.83 
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Table 2 compares key performance metrics of the model with and without integrating 3D touch and spatial data. This 

quantitatively proves the effectiveness of feature integration in enhancing authentication accuracy. Without integration, the 

system achieved an accuracy of 74.5%, precision of 0.75, recall of 0.73, and F1-score of 0.74, indicating limited 

differentiation capability. With integration, the inclusion of 3D touch and spatial data significantly improved the accuracy 

(83%), precision (0.84), recall (0.83), and F1-score (0.83). These results demonstrate the potential of feature combinations 

to improve the model's ability to differentiate real users from imposters, thereby establishing a strong basis for 

authentication systems. Compared with the models generated without these features, the accuracy, precision, and recall all 

increased considerably, indicating the successful integration of both types of 3D touch and spatial data (Table 2). These 

results show how well our proposed approach addresses the limitations of traditional methods. 

5.3 Robustness testing 

The robustness of robustness was assessed through testing to study the model's resilience to determine whether the model 

performed robustly across various user engagement patterns (pressure, finger position, speed). Whatever the variations, the 

model continued to show high performance on average, indicating its strength against noise in the data. 

 
Fig. 6. Robustness Testing Results 

Figure 6 shows the performance metrics under different conditions, including different levels of touch pressure and speed, 

indicating that the model is invariant in real-world usage. 

A confusion matrix that considers True Positives, True Negatives, False Positives, and False Negatives during simulated 

impostor attacks (Figure 7) provides better insight into how well the model identifies legitimate users and rejects impostors 

and thus provides more evidence of the system's performance in managing unauthorized access control. 

 
Fig. 7. Impostor Simulation Results 
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The strong classification performance, low misclassification rates, and efficient real-time processing of this approach paint 

a different story and may offer a feasible secure alternative to traditional authentication methods. 

6. CONCLUSION 

This study presents a novel approach to smartphone authentication by integrating 3D touch sensors with spatial finger 

location data and employing advanced machine learning techniques, including Random Forest and XGBoost. The proposed 

system significantly enhances authentication accuracy and security while maintaining usability.  The integration of 3D touch 

and spatial data demonstrated high accuracy (83%), precision (0.84), and recall (0.83), with an F1-score of 0.83. These 

metrics confirm the system's ability to reduce false positives and negatives effectively. Robustness tests and cross-

validation prove the model's consistency across various datasets and real-world conditions, highlighting its adaptability for 

real-time usage. 

However, the study has certain limitations. First, the dataset used in this study was limited to 20 participants, which may 

not fully represent the diverse interaction patterns of a broader population. Second, the controlled experimental environment 

does not reflect practical procedures where factors such as device hardware diversity and user habits can affect 

performance. Finally, the computational requirements of real-time processing pose challenges for integration into low-

power mobile devices. 

Even with these limitations, this study contributes significantly to the field of biometric authentication by introducing a 

novel methodology that leverages 3D touch sensors and spatial data. New ways to interpret 3D touch and location data 

with decision-making techniques are proposed, offering a new method for smartphone security. The study demonstrated 

that machine learning algorithms such as XGBoost can effectively make use of such atypical sources of data to increase 

the accuracy of authentication. Such integration sets new standards for the creation of safe and easy-to-use authentication 

systems. The benchmarks are set by the decision-making algorithms themselves, which work together with biometric data. 

Future research can build upon this work by investigating more touch characteristics, such as swipe speed and the dynamics 

of gestures or even multitouch gestures, for better accuracy and robustness of the system. This could also increase the 

accuracy of the system and combine multimodal biometric information—such as auditory recognition, facial gestures, and 

even affective state identification—to improve its robustness and security. This is done concerning using multiple biometric 

features, which improves the level of security in the system. The fusion of several biometric modalities supports 

the development of more complex level systems because it enhances the security base from which usability advantages 

may be realized. 
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