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A B S T R A C T  
 

Underwater wireless sensor network (UWSN) requirements have increased beyond applications in 
environmental monitoring and underwater exploration to military surveillance. The complex underwater 
environment raises many challenges due to high propagation delays, limited bandwidth, high error rates, 
and dynamic underwater currents. Most traditional clustering algorithms do not consider the multifaceted 
requirements of UWSNs. In most cases, a single objective is optimised at the cost of other essential 
factors, such as energy consumption, network robustness, and data transmission reliability. This paper 
proposes a new UWSN protocol based on the tiger beetle optimisation (TBO) algorithm for 
multiobjective K-means clustering (TBO-MOK). The protocol comprises adaptive search procedures 
motivated by tiger beetle hunting behaviors and lightweight AES-based encryption for data security. 
TBO-MOK is excellent in multiobjective optimisation since it simultaneously considers performance 
metrics of more than one aspect. Many problems are resolved by TBO-MOK, which optimises all the 
involved performance metrics to provide balanced energy usage and robust communication links. 
Comprehensive simulations demonstrate that TBO-MOK outperforms the traditional LEACH, PSO, and 
GA approaches in grossly enhancing network lifetime, energy efficiency, load balancing, and data 
transmission reliability. These results show the potential of TBO-MOK to provide a more effective and 
resilient solution for UWSNs. 

 

 

1. INTRODUCTION 

Another crucial technology has emerged as UWSNs for environmental, underwater exploration, and military surveillance 
applications. The different nodes of these networks are engaged in water to gather information and transmit it back to the 
stations on the surface or to other nodes, as depicted in Figure 1. Additionally, a new environment presents the challenges of 
high propagation delays, limited bandwidth, and high error rates. In contrast, efficient and reliable data transmission 
protocols should be expanded to protect against robust variability in water currents and guarantee long-lasting processes. 
UWSNs are considered critical for several applications, such as environmental monitoring, underwater exploration, and 
military surveillance. These networks contain sensor nodes distributed underwater to collect and transfer data to stations. 
Despite their growing significance, UWSNs face challenges due to the essence of the underwater environment. High 
propagation delays, limited bandwidth, and high error rates cause data transmission complexity, whereas dynamic 
underwater currents exacerbate network instability. This makes the development of efficient and reliable protocols for 
UWSNs a pressing research demand. [1]. 

Conventional clustering algorithms, such as K-means [2], [3], cannot cope with the complex conditions of UWSNs. 
Traditional algorithms have a monoobjective function; the objective is to reduce the distance between nodes and cluster 
centers without considering other important factors—energy consumption, network robustness, and data transmission 
reliability [4], [5]. 

Genetic algorithms [6] tend to imitate the process of natural selection and attempt to solve complex optimisation issues by 
maturing solutions over generations, making them practical for multiobjective optimisation in UWSNs in terms of energy 
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efficiency, robustness, and reliability of data transmission. Particle swarm optimisation, which is illuminated by the social 
manners of birds and fish, modifies parameters around candidate solutions, improving those iteratively balances different 
performance metrics in the UWSN. Multiobjective evolutionary algorithms, such as NSGA-II, optimise multiple objectives 
simultaneously and allow the Pareto optimal solutions in UWSNs to be found. Simulated annealing (SA) [9] is a probabilistic 
technique that approximates the global optimum by incorporating multiple performance criteria into the cost function. Ant 
colony optimisation (ACO) [10][39], inspired by ant foraging behavior, finds optimal graph paths, can minimise energy 
consumption, and can maximise network lifetime in UWSNs. 

 

Fig. 1. UWSN environment 

Multiobjective optimisation techniques can overcome these limitations since several performance metrics can be optimised 
simultaneously for more efficient and resilient network designs. Nonetheless, they may be very computationally intensive, 
resulting in high computational overhead. Most of them suffer from slow convergence speed and usually become stuck in 
some local optima. Maintaining diversity in the solutions and scalability with increasing objectives is a problem. 

Classic clustering algorithms, such as K-means clustering, focus on mono-objective optimisation, often prioritising the 
immediacy between nodes and cluster centers. However, these techniques account for critical factors such as energy 
consumption, network robustness, and data transmission reliability. While multiobjective algorithms such as particle swarm 
optimisation and genetic algorithms often suffer from slow convergence, local optima, and high computational overhead, 
they are less beneficial for dynamic and resource-constrained underwater environments. Acquiring a balanced tradeoff 
between energy efficiency, load balancing, and connectivity remains a significant burden for UWSN protocols. 

Tiger beetle optimisation (TBO) [11] is a bioinspired optimisation algorithm modelled after tiger beetle hunting and survival 
strategies and is renowned for its exceptional speed, agility, and adaptability in dynamic environments. Unlike traditional 
optimisation methods, which often focus on a single objective, TBO excels in multiobjective optimisation by simultaneously 
considering multiple performance metrics. It achieves this by employing a population-based search mechanism, where 
individual solutions, akin to beetles, explore the search space guided by adaptive strategies that balance exploration and 
exploitation. Owing to its ability to self-adjust its search patterns, TBO is efficient for complex, multidimensional problems 
and, therefore, highly suitable for the intricate requirements of UWSNs. It outperforms state-of-the-art, existing LEACH and 
PSO- and GA-based methods that easily achieve trade-offs in a multiobjective scenario by optimising multiobject energy 
consumption, network lifetime, and data transmission reliability. TBO thus ensures, with its adaptiveness and robustness, 
the equal distribution of energy expenditure across a network for these sensor nodes so that more resistance to node failures 

is developed and reliable links are maintained for communication, providing an overall more effective solution for UWSNs. 

This paper proposes the TBO-based multiobjective K-means clustering (TBO-MOK) protocol to address the shortcomings 
in reliable data transmission within UWSNs. Inspired by the exceptional hunting and survival strategies of one of the fastest-
moving and most adaptable insects, our approach is based on TBO. The TBO algorithm's ability to navigate effectively and 
find optimality within complex, multidimensional search spaces represents a fitting solution for solving the multiobjective 
optimisation required in UWSNs. 

The TBO-MOK protocol addresses some critical failures in existing processes for simultaneously optimising multiple 
performance metrics, such as energy consumption, network lifetime, and data transmission reliability. Indeed, traditional 
clustering algorithms such as K-means typically cannot handle these conflicting objectives, resulting in suboptimal network 
performance. However, TBO-MOK is enabled with a population-based search mechanism that allows adaptive balancing in 
exploring and exploiting the solution space. It makes energy usage uniform throughout the network, preventing nodes from 
failing early and preventing the collapse of communication links in dynamic underwater environments. By handling these 
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critical issues, the TBO-MOK protocol significantly enhances the overall efficiency and reliability of UWSNs compared 
with existing methods such as LEACH, PSO, and the GA. 
This study combines the use of the TBO algorithm with UWSNs for the first time and performs multiobjective optimisation 
of energy efficiency, load balancing, and connectivity. In the case of conventional approaches such as PSO or GA, TBO 
presents a bioinspired mechanism that balances exploration and exploitation. Moreover, the combination of AES-based 
encryption and dynamic key management via elliptic curve cryptography (ECC) provides secure and efficient data 
transmission, enabling the handling of security intervals in prior studies. 

In this study, energy efficiency, load balancing, and connectivity performance are managed, and critical security problems 
intrinsic to UWSNs are addressed. By combining AES-based encryption and ECC-based dynamic key control, the proposed 
TBO-MOK protocol provides secure and reliable data transmission, reducing exposures such as eavesdropping and 
tampering. This work provides a comprehensive method that balances security and performance, making it practical for real-
world applications. 

This investigation's dual focus is to optimise the performance and improve the security of UWSNs, which are inclined toward 
unique exposures under dynamic underwater conditions. By combining cutting-edge encryption mechanisms and dynamic 
key management with a bioinspired optimisation framework, this work guarantees data confidentiality and integrity while 

maintaining energy efficiency and network robustness. 

The main contributions of this article are as follows: 

• A new protocol, TBO-MOK, is used for cluster identification, energy dissipation, and the selection of cluster 
heads in UWSNs. The protocol uses the strengths of the TBO algorithm's efficient adaptive searching to 
enhance performance and lifespan. 

• Extensive evaluations compared TBO-MOK with the baseline LEACH, PSO, and GA methods. The results for 
critical metrics, such as network lifetime, energy consumption, load balancing, and data transmission reliability, 
showed improvements in the workings of TBO-MOK over other algorithms in most situations under study. 

• A lightweight encryption mechanism based on the advanced encryption standard (AES) is integrated to ensure 
the confidentiality and integrity of fitness data during the clustering process in the TBO-MOK protocol for the 

UWSN. 

• The strength and flexibility of the protocol for different conditions in UWSNs are demonstrated. The TBO-
MOK protocol copes well with multiple contradictory goals and adapts to environmental changes. 

Section 2 summarises the related articles regarding the routing protocols in WSNs and UWSNs. Section 3 details the 
proposed TBO-MOK protocol. This section elaborates on the fundamental aspects related to cluster identification, energy 
dissipation, and selection of a cluster head. Section 4 presents a complete performance evaluation of the proposed protocol 
through extensive simulations against traditional schemes such as LEACH, PSO, and the GA. The results are presented in 
Section 5, which outlines the vast improvements achieved by TBO-MOK in balanced workload distribution, enhanced 
connectivity, and energy efficiency. Finally, the conclusion in Section 6 summarises how the TBO-MOK protocol 
contributes to the area of UWSNs, reiterating its superiority over existing methods and its potential for future applications 
in various underwater sensing and monitoring scenarios. 

2. RELATED WORKS  

Different routing protocols have been suggested over the past few years to address the unique challenges of underwater 

wireless sensor networks. Notably, among them could be the stretched holding time difference (SHTD). This protocol 

prevents collisions and minimises energy consumption but demonstrates limited scalability and increases delay in the case 

of an extended network [12]. Another technique combines multiple sinks for secure data aggregation and authentication in 

cluster-based underwater vehicular wireless sensor networks. Although this technique optimises data processing, it adds 

complexity and introduces bottlenecks on sink nodes [13]. 

Deep reinforcement learning (DRL) [14] has also been applied to topology control in UWSNs, whereby network topologies 

adjust dynamically according to environmental conditions. However, such a method adds high computational overhead and 

complexity, especially for real-time applications [15]. Mixed-integer linear programming has also been utilised to balance 

network lifetime and k-connectivity; however, it has brought forth issues related to complexity and scalability in large-

scale networks [16]. 

Advanced particle swarm optimisation (PSO) has been used to design energy-efficient routing protocols for UWSNs to 
minimise energy consumption and prolong the network lifetime. Despite its advantages, PSO is prone to premature 

convergence and convergence to suboptimal solutions [17]. DRAR and Co-DRAR balance reliability and delay in routing 

decisions at increased complexity and possibly higher energy consumption [18]. 
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Robust opportunistic routing solutions can enhance routing efficiency in various conditions of UWSNs; however, they may 

introduce high latency and packet loss in scenarios if an environment is dynamic [19]. Sector-based routing, aimed at 

reducing energy consumption and enhancing communication reliability, has poor adaptability to changes in the network 

and the mobility of nodes [20]. Shifted energy efficiency and priority protocols are designed to optimise routing according 

to energy levels and data priority; however, managing priorities and energy efficiency is not straightforward [21]. 

Dynamic multihop energy efficient routing protocols (DMEERPs) ensure energy efficiency and reliable multihop 

communication but face scalability issues and increased routing overhead in more extensive networks [22]. Asymmetric 

link quality routing (ALQR) protocols improve network performance on the basis of link quality but require complex 
maintenance of link quality information [23]. 

Hybrid optimisation algorithms, such as chimp optimisation and hunger game search, have been used for clustering and 

multihop routing, enhancing energy efficiency and sustainability. However, these algorithms can be computationally 

complex and converge slowly [24]. Region-based source distributed routing accommodates sink mobility to increase 

efficiency but is complex to manage [25]. 

Surveys on mobility-based routing protocols provide insights for optimising such protocols in UWSNs but often lack 

practical implementation and real-world validation [14]. Grid-based routing minimises the hop count and improves data 

transmission but may be inefficient in dynamic environments [15]. Power-efficient routing protocols aim to reduce power 

consumption and extend network lifetime but must balance this with data delivery reliability [26]. 

Although computationally complex[40], multiobjective evolutionary routing schemes balance energy efficiency and data 

reliability in the internet of Underwater Acoustic Sensor Networks (IoUASNs) [27]. Cluster-based routing via butterfly 

optimisation and ant colony optimisation enhances network performance but increases complexity and computational 

overhead [28]. 

Energy efficiency routing protocols for UAV-aided WSNs minimise energy consumption and increase data collection 

efficiency but face challenges in managing UAV mobility [29]. Trilateration-based node localisation combined with RSA 

for energy-efficient routing in UWSNs optimises node localisation and routing paths, yet maintaining accurate localisation 

information is complex [30]. Hybrid evolutionary techniques manage congestion and enhance network performance in 
WSNs but are computationally intensive [31]. 

 
TABLE I.  SUMMARISES THE RELATED ARTICLES REGARDING THE ROUTING PROTOCOLS IN WSN AND UWSN. 

Research 
Routing 
Protocol 

Method 
Optimisation 

Methods 
Evaluation Metrics Application Issues 

[1] 

Stretched 
Holding Time 

Difference 
(SHTD) 

SHTD-based 

routing 

Minimises 
collisions and 

energy 
consumption 

Packet Delivery 
Ratio, Energy 

Consumption, 
Latency 

Underwater 
Wireless Sensor 

Networks 
(UWSNs) 

Limited scalability and 

potential for increased delay 
in large networks 

[2] Multiple Sinks 

Secure data 
aggregation 

and 

authentication 

Optimises data 
aggregation and 
authentication 

processes 

Data Integrity, 
Authentication 
Success Rate, 

Latency, Energy 

Consumption 

Underwater 
Vehicular 

Wireless Sensor 
Networks 

(UVWSNs) 

Higher complexity and 
potential bottlenecks at sink 

nodes 

[3] 
Deep 

Reinforcement 
Learning (DRL) 

Topology 
control 

Dynamically 

adjusts network 
topology based 

on 

environmental 
conditions 

Network Topology 

Stability, 
Transmission 
Reliability, 

Optimisation 

Efficiency, Delay, 
Energy Consumption 

Underwater 
Wireless Sensor 

Networks 

(UWSNs) 

High computational overhead 
and complexity in real-time 

applications 

[4] k-Connectivity 

Mixed-Integer 
Linear 

Programming 

(MILP) 

Balances 
between 

extending 
network lifetime 

and maintaining 
connectivity 

Network Lifetime, k-
Connectivity, Energy 

Consumption 

Underwater 
Wireless Sensor 

Networks 

(UWSNs) 

Complexity and scalability 
issues with large-scale 

networks 

[5] 

Advanced 
Particle Swarm 
Optimisation 

(PSO) 

Energy-
efficient 

routing 

Minimises 
energy 

consumption 

and extends 
network lifetime 

Energy Consumption, 
Network Lifetime, 
Quality of Service 

(QoS) 

Underwater 
Sensor 

Networks 

(UWSNs) 

Potential for premature 
convergence and suboptimal 

solutions 

[6] 

Delay Aware 

Routing 
(DRAR) and 
Cooperative 

Delay Aware 
Routing (Co-

DRAR) 

Delay and 
reliability-

aware routing 

Balances 
reliability and 

delay in routing 

decisions 

Reliability, Delay, Bit 
Error Rate (BER), 

Energy Efficiency 

Underwater 
Wireless Sensor 

Networks 

(UWSNs) 

Increased complexity and 
potential for higher energy 

consumption 
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[7] 
Opportunistic 

Routing 
Robust routing 

Enhances 

routing 
efficiency under 

varying 
conditions 

Reliability, Quality of 
Service (QoS), 

Simulation Results 

Underwater 
Sensor 

Networks 
(UWSNs) 

Potential for high latency and 
packet loss in dynamic 

environments 

[8] 
Sector-Based 

Routing 

Energy-
efficient 
routing 

Minimises 
energy 

consumption 
and improves 

communication 

reliability 

Energy Efficiency, 

Reliability, 
Communication 

Delay 

Underwater 

Wireless Sensor 
Networks 
(UWSNs) 

Limited adaptability to 
network changes and node 

mobility 

[9] 

Shifted Energy 

Efficiency and 
Priority 

Priority-based 

routing 

Optimises 
routing based on 

energy levels 
and data priority 

Energy Efficiency, 

Priority Handling, 
Network Performance 

Underwater 
Wireless Sensor 

Networks 
(UWSNs) 

Complexity in managing 

priority levels and energy 
efficiency 

[10] 
Dynamic Multi-

Hop Routing 

Energy-
efficient 

routing 

Ensures energy 
efficiency and 

reliable 

multihop 
communication 

Energy Efficiency, 
Path Reliability, 

Network Lifetime 

Wireless Sensor 
Networks 

(WSNs) 

Scalability issues and 
increased routing overhead in 

large networks 

[11] 

Asymmetric 
Link Quality 

Routing 
(ALQR) 

Link quality-
based routing 

Improves 

network 
performance 
based on link 

quality 

Link Quality, Energy 
Efficiency, Network 

Lifetime 

Heterogeneous 
Wireless Sensor 

Networks 
(WSNs) 

Complexity in maintaining 
link quality information 

[12] 

Hybrid Chimp 

Optimisation 
and Hunger 

Games Search 
Algorithms 

Clustering and 
multihop 
routing 

Enhances 

energy 
efficiency and 
sustainability 

Energy Efficiency, 
Network Lifetime, 

Clustering Efficiency 

Underwater 

Wireless Sensor 
Networks 
(UWSNs) 

High computational 
complexity and potential for 

slow convergence 

[13] 

Region-Based 
Source 

Distributed 
Routing 

Sink mobility-

aware routing 

Accommodates 
sink mobility to 

enhance 
efficiency 

Energy Efficiency, 
Network Lifetime, 

Data Delivery Ratio 

Underwater 
Sensor 

Networks 

Complexity in managing sink 
mobility and ensuring data 

delivery 

[14] 
Grid-Based 

Routing 

Minimum hop 
count-based 

routing 

Minimises hop 

count and 
improves data 
transmission 

Hop Count, 
Reliability, Energy 

Efficiency 

Underwater 

Wireless Sensor 
Networks 
(UWSNs) 

Potential for routing 
inefficiencies in dynamic 

environments 

[15] 
Power-Efficient 

Routing 

Power-

efficient 
routing 

Minimises 
power 

consumption 
and extends 

network lifetime 

Power Consumption, 

Network Lifetime, 
Data Delivery Ratio 

Underwater 
Wireless Sensor 

Networks 
(UWSNs) 

The tradeoff between power 

efficiency and data delivery 
reliability 

[16] 
Multi-Objective 

Evolutionary 

Routing 

Energy-
efficient and 
reliable data 

gathering 

Balances energy 
efficiency and 

data reliability 

Energy Efficiency, 
Reliability, Data 

Gathering Efficiency 

Internet of 
Underwater 

Acoustic Sensor 

Networks 
(IoUASN) 

High computational 
complexity and potential for 

slow convergence 

[17] 

Butterfly 
Optimisation 

Algorithm and 
Ant Colony 

Optimisation 

Energy-
efficient 

clustering and 
routing 

Enhances 
energy 

efficiency and 
network 

performance 

Energy Efficiency, 
Network Lifetime, 
Cluster Efficiency 

Wireless Sensor 
Networks 
(WSNs) 

Increased complexity and 
potential for higher 

computational overhead 

[18] 
Energy 

Efficiency 
Routing 

Data collection 
optimisation 

Minimises 

energy 
consumption 
and enhances 
data collection 

efficiency 

Energy Efficiency, 
Data Collection 

Efficiency, Network 
Lifetime 

UAV-Aided 
Wireless Sensor 

Networks 
(WSNs) 

Challenges in managing UAV 
mobility and ensuring reliable 

data collection 

[19] 
Hybrid 

Evolutionary 
Techniques 

Congestion-

aware 
multipath 
routing 

Manages 

congestion and 
enhances 
network 

performance 

Congestion 

Management, Energy 
Efficiency, Network 

Lifetime 

Wireless Sensor 
Networks 
(WSNs) 

Complexity and potential for 
high computational overhead 

[20] 

Hybrid Path 
Finder-Based 

Vortex Search 
Algorithm 

Node 

placement and 
routing 

Optimises node 

placement and 
routing paths 

Energy Efficiency, 
Network Lifetime, 

Node Placement 
Efficiency 

Underwater 
Wireless Sensor 

Networks 
(UWSNs) 

Complexity in optimising 

node placement and routing 
paths 

 
The hybrid path-finder-based vortex search algorithm optimises node placement and routing paths in UWSNs, although it 

is complex to implement and optimise effectively [21]. These protocols and methods highlight the diverse strategies and 
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ongoing challenges in developing efficient and reliable routing solutions for underwater sensor networks. TABLE  

summarised the routing protocol, method, optimisation methods, evaluation metrics, application, and shortcomings. 

3. LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHMS FOR UWSNs 

UWSNs work in resource-constrained environments, so constructing and selecting efficient cryptographic algorithms is 

crucial. Lightweight cryptographic algorithms achieve a balance between security, performance, and energy efficiency, 

which are essential for UWSNs. This section checks various lightweight cryptographic algorithms and their possible 

applications in UWSNs. We summarise the newest algorithms in Table 2. 

The advanced encryption standard (AES) has been adjusted for voice cryptography, concentrating on performance 

evaluation for encryption and decryption across various patterns. This adaptation has shown constant performance with 

efficient performance times, making it convenient for UWSNs with voice-based communication. However, its relevance 

to nonvoice data remains limited and needs further exploration [34]. 

A lightweight cryptosystem explicitly designed for the IoT in innovative city conditions presents scalability and energy 

efficiency, which are necessary for resource-constrained systems. This algorithm is optimised for IoT applications, making 

it a good candidate for UWSNs because of its alignment with constrained network requirements. Despite its strengths, its 

relevance is primarily concentrated on the IoT and innovative city conditions, necessitating [35]. The NIST lightweight 

cryptography standard uses permutation-based primitives to perform certified encryption and hashing. Its heightened 

security and efficiency make it explicitly suitable for low-power sensor nodes in UWSNs [36]. TentLogiX uses chaos-
driven 5-bit S-boxes [37], PHOTON [38], SIMON, and SIMECK [39], leverages chaotic systems for low computational 

costs; PHOTON provides energy-efficient hashing for data integrity; and SIMON/SIMECK balances encryption efficiency 

and security for constrained networks. Specific UWSN requirements, including energy availability, data types, and 

computational capabilities, should guide the adoption of these algorithms. 

 
TABLE II.  SUMMARISES THE RECENT LIGHTWEIGHT CRYPTOGRAPHY SOLUTIONS.  

Algorithm Key Features Strengths Weaknesses Suitability for UWSNs 

AES for Voice 

Cryptography [34] 

Performance evaluation of 

AES for voice encryption 

across patterns 

Consistent performance 

across different voice 

patterns, efficient execution 

time 

Focused on voice data, 

limited to certain use 

cases 

Suitable for UWSNs with 

voice-based communication; 

needs further testing for 

nonvoice data 

Lightweight Cryptosystem 

for IoT [35] 

Lightweight 

cryptographic algorithm 

for IoT in smart cities 

Energy-efficient, scalable 

for constrained devices 

Specific to IoT and smart 

city environments 

Promising for UWSNs; aligns 

well with constrained network 

requirements 

Ascon [36] 
Lightweight authenticated 

encryption and hashing 

High security, efficient for 

constrained devices 

New; requires further 

analysis for vulnerabilities 

Highly suitable for low-power 

sensor nodes in UWSNs 

TentLogiX [37] 
Chaos-driven 5-bit S-

boxes 

Low computational cost, 

chaotic robustness 

Limited validation for 

diverse applications 

Promising for UWSNs; further 

evaluation needed in 

underwater environments 

Lightweight Hash 

Functions (PHOTON) [38] 

Lightweight 

cryptographic hash 

function 

Low energy consumption, 

resistance to attacks 

Primarily focused on 

hashing applications 

Suitable for data integrity 

verification in UWSNs 

SIMON and SIMECK 

[39] 

Block ciphers for 

lightweight encryption 

Efficient for IoT, heuristic-

based improvements for 

cryptanalysis 

Limited key length and 

controversies surrounding 

security 

Suitable for UWSNs, 

especially in low-resource 

scenarios 

 

4. PROPOSED TBO-MOK PROTOCOL  

The TBO-MOK protocol, proposed to optimise UWSNs by considering crucial parameters such as cluster identification, 

energy dissipation, and cluster head selection, aims to increase their practical performance and lifetime. In detail, the 

algorithm is first initialised with random initial cluster centers. Each sensor node is assigned to the closest center, which 

reduces the intracluster distance via the Euclidean distance. Energy dissipation is modelled in terms of the energy dissipated 

through consumables during data transmission and reception to best use it, extending network lifetimes. 

The cluster head selection phase is optimised on the basis of the tiger beetle hunting procedure, through which the TBO 

algorithm can identify advanced areas and create hot prospects through mechanisms for excavating holes in the exploration 

procedure. The reproduction of larvae further refines the search because it generates solutions around the best current 

configuration. The process of cyclic optimisation continually updates potential solutions, reassesses the fitness values of 

possible solutions, and selects the best solutions until termination. 

Furthermore, the TBO-MOK protocol can optimise UWSNs on the basis of balanced exploration and exploitation, 

adaptability to changed conditions, and a practical approach to consider multiple conflicting objectives. Energy 
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consumption is optimised, the load distribution is balanced, and network connectivity and robustness are maintained; this 

approach has dramatically improved overall performance and efficiency compared with the existing methods. 

3.1.  Cluster identification 

Clustering is the most critical process in enhancing network performance and resource management in UWSNs. Cluster 

formation is optimised through a proposed algorithm based on the foraging characteristics exhibited by the tiger beetle. 

After that, the cluster starts by setting some essential variables where the number of clusters and sensor nodes is set at 

initialisation together with a maximum iteration. A few sensor nodes are randomly represented as cluster centers. The 

clustering quality for evaluation is designed in the fitness function with respect to energy consumption, load balancing, and 

connectivity, providing practical solutions for the real-world optimisation of UWSNs. 

Each sensor node is assigned to the nearest cluster center via Eq. (1). Energy dissipation for each cluster head. The sensor 

node is calculated, considering both transmission and reception energy (Eq. (4)). Promising areas in the search space, or 
"hunt areas," are identified where optimal solutions are likely to be found. New potential solutions, or "holes," are generated 

around these areas through a process inspired by the hunting behaviour of tiger beetles. This involves creating new solutions 

by perturbing existing ones, ensuring diversity, and exploring the search space. 

 

𝑑(𝑠𝑖, 𝑐𝑗) = √(𝑥𝑠𝑖 − 𝑥𝑐𝑖)2 + (𝑦𝑠𝑖 − 𝑦𝑐𝑖)                                                                        (1) 

 

After the assignment, the cluster centres are updated to the mean position of the nodes assigned to each cluster via Eq.(2). 

𝑐𝑗 =
1

|𝐶𝑗|
∑ 𝑠𝑖

𝑠𝑖∈𝐶𝑗

                                                                                       (2) 

where 𝐶𝑗 is the number of nodes in cluster j. The fitness of each potential solution is recalculated on the basis of updated 

cluster assignments and energy dissipation. This iterative optimisation process continues, with the positions of the solutions 

updated and new solutions generated around the best ones, until the stopping criteria, such as maximum iterations or 

convergence of fitness values, are met. The last outcome is the optimal cluster centers and the assignment of sensor nodes 

to clusters. This strategy of assigning nodes and updating cluster centers is redundant iteratively. In each iteration, nodes 

are assigned again on the basis of the updated cluster centers, and the centers are calculated again until the assignments 

stabilise or the maximum number of iterations is reached. The final step outputs the list of nodes assigned to each cluster. 

This iterative method confirms that sensor nodes are optimally grouped into clusters, enhancing communication efficiency, 

minimising energy consumption, and improving overall network reliability. 

Hunt area selection is a crucial step. It is a search process for regions in the solution space where optimal or near-optimal 

solutions are likely to be found. Through Eq. (3), hunt area selection can be used to identify UWSN clusters. 

𝐻(𝑇𝐵𝑖) = [1 − 𝑒𝑥 𝑝 (
𝑓(𝑇𝐵𝑖)

𝑓(𝑊(𝑡))
)] . 𝐻𝑚                                                                          (3) 

where 𝐻(𝑇𝐵𝑖) denotes the number of holes around the position of 𝑇𝐵𝑖 and where 𝐻𝑚  is the maximum number of holes a 

TB can dig. 𝑓(𝑇𝐵𝑖) is the fitness of the ith TB, and 𝑓(𝑊) is the fitness of the worst TB. 

The ability of the tiger beetle to dig holes and reproduce larvae was inspired by its behaviour. These steps involve generating 

new potential solutions and enhancing exploration around promising areas. New potential solutions can be generated for 

each promising area by perturbing the current solution. This mimics the digging behaviour of tiger beetles, where they 

explore new regions around a promising spot via Eq. (4). 

𝑇𝐵𝑛𝑒𝑤 = {
𝑇𝐵𝑜𝑙𝑑 + 𝑅. 𝑆𝐷(𝑡). 𝑟𝑎𝑛𝑑 𝑟 ≤ 0.5

𝑇𝐵𝑜𝑙𝑑 − 𝑅. 𝑆𝐷(𝑡). 𝑟𝑎𝑛𝑑 𝑟 > 0.5
                                                                (4) 

𝑇𝐵𝑛𝑒𝑤  is the new potential solution. 𝑇𝐵𝑜𝑙𝑑 is the current solution. R is a random number within [1, 2]. 𝑆𝐷(𝑡) is the standard 

deviation at iteration t. rand is a random number within [0, 1]. In addition, r is another random number within [0, 1] to 
determine the perturbation direction. The best solutions from the current population are identified on the basis of their 

fitness values, and exploration is enhanced by generating new solutions around the best solutions, mimicking the 

reproduction of larvae in resource-rich environments (Eq. (5)). 

TBlarvae = TBbest + α ⋅ rand                                                                           (5) 
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where TBlarvae   is the new solution generated around the best solution. TBbest is the best current solution. α is a small 

positive number controlling the perturbation range. Furthermore, rand is a random number within [0, 1]. 

3.2.  Cluster number selection 

The TBO-MOK protocol integrates the TBO algorithm with the k-means clustering method to optimise the placement of 

cluster centers in a wireless sensor network. The goal of determining the optimal locations for the cluster centers is to 
enhance the network's performance and energy efficiency. 

As shown in Algorithm 1, the process begins with randomly deploying sensor nodes within a defined area. A population 

of candidate solutions is initialised by the TBO algorithm, with each candidate representing a set of cluster centres. The K-

means clustering method, known as sum squared error (SSE), computes the compactness of the clusters in this fitness 

acquired for any candidate. In the next step, following the rules of the working algorithm of TBO, position updates are 

carried out for the candidate solutions at each iteration. This SSE has been taken as the fitness, which refers to compact 

clusters. Furthermore, at every iteration, position updating of candidate solutions is carried out through TBO rules such 

that the search procedure performs random steps of each candidate solution within a specific range, thus mimicking the 

search technique adopted by tiger beetles for hunting purposes. 

 The algorithm iteratively updates the population by selecting only candidate solutions with better fitness values. Iteration 

continues until the termination condition is met, for instance, when a maximum number of iterations is reached. These 

optimal cluster centres obtained from the TBO algorithm are then used as the initial centres for the K-means clustering 

algorithm, which refines the cluster assignments. 

3.3.  Energy dissipation in the UWSN 

Energy dissipation in UWSNs impacts the lifetime and efficiency of the network. A sensor node primarily wastes its energy 

in transmission and reception. If the energy dissipations during transmission and reception are calculated, we can calculate 

only the total power dissipated by a single sensor node. This information is paramount in fine-tuning the network 

configuration concerning cluster head selection and path organisation for data transmission to reduce energy consumption 

and maximise the network's lifetime. 

Algorthim1: optimal cluster number selection 

1. Initialise parameters: 

• num_beetles  # Number of beetles (population size) 

• max_iter  # Maximum number of iterations 

• search_space # Range of possible cluster numbers (e.g., minimum to maximum clusters) 

2. Create an initial population of beetles : 

For each beetle in num_beetles : 
     Randomly assign several clusters within the search_space 

3. Evaluate initial population : 

For each beetle: 
Calculate the fitness value using the fitness_function 

4. Repeat until max_iter is reached or convergence: 

For each beetle: 

• Generate new potential solutions by exploring the search space : 

• new_clusters = current_clusters ± random_value within search_space range 

• Evaluate new solutions using Eq.(6) 

• If the new solution is better (higher fitness value) : 

• Update beetle's position to the new_clusters 

• Update the global best solution based on the fitness values of all beetles. 

5. Select the number of clusters corresponding to the global best solution. 

6. Output the optimal number of clusters. 
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3.4.  Cluster head selection 

CH selection is part of optimising the connectivity and conserving energy to improve the lifespan of UWSNs. The process 

is initiated by initialising parameters for the number of CHs selected, the set of sensor nodes involved, and their initial 

energy levels. Clusters are initiated with parameters such as the number of clusters to be formed, the list of sensor nodes 

involved, and the maximum number of iterations. The initial cluster centers are sometimes randomly chosen among the 

sensor nodes. 

In this way, a multiobjective fitness function is defined to assess the quality of the possible solutions for energy 

consumption, load balancing, and connectivity. On the basis of these criteria, the fitness of each potential cluster head 

configuration is calculated. Each sensor node is assigned to the nearest cluster center on the basis of the Euclidean distance, 

Eq. (6). 

Fitness = 𝑤1 × Residual Energy + 𝑤2 × 𝑑 + 𝑤3 × Link Quality                                                   (6) 

where w1, w2, and w3 are weights assigned to each criterion. Residual energy is crucial for ensuring that CHs have enough 

power to manage their roles effectively. d is measured to minimise the distance between nodes and their CHs, thereby 

reducing energy consumption for communication, and link quality ensures robust and reliable connections. 

The energy dissipation for each cluster head is calculated, considering both transmission and reception energy. This helps 

in assessing the total energy consumption for each configuration. In the hunt area selection phase, promising areas (hunt 
areas) are identified on the basis of the fitness values of the current solutions. These areas are expected to contain optimal 

or near-optimal solutions. The residual energy is computed through Eq. (7). 

Residual Energy = Initial Energy − (Energy Consumed in Transmission + Energy Consumed in Receptio                       (7) 

The use of holes generates new potential solutions around these promising areas. This involves perturbing the current 

solutions to explore the search space effectively. The fitness of these new solutions is evaluated, and the best solutions are 

updated. 

To enhance exploration, larvae reproduce by generating new solutions around the best current solutions. This ensures a 

thorough search of the solution space and avoids premature convergence. The process iteratively updates the positions of 

the solutions, reassigns sensor nodes to the nearest cluster centers, recalculates fitness values, and selects the best solutions 

for the next iteration. Poor solutions are removed to focus on high-quality regions of the search space. 

The iterative optimisation stops when the specified stopping criteria are met, after a maximum number of iterations or when 

the fitness values converge. It finally returns the optimum cluster heads and the assignment of sensor nodes within clusters. 

The comprehensive approach ensures that the selected cluster heads minimise energy consumption, balance network load, 

and have robust connectivity to enhance the overall performance and lifetime of the UWSN. 

The signal-to-noise ratio (SNR) can be used to measure the link quality. CHs are selected on the basis of their highest 

fitness values. Every sensor node connects itself back to the nearest CH by finding the minimum value of the calculated 

distances. All these operations proceed iteratively so that the positions of the CHs are chosen optimally, which ensures 

minimisation of energy consumption, balancing of communication loads, and maintenance of robust connectivity. 

3.5.  Load Balancing in a UWSN 

TBO accomplishes load balancing in UWSNs, guaranteeing that cluster heads are equally loaded with work. This ensures 

that no single node within the network is turned into a bottleneck—inefficiency or premature failure. To evaluate the 

effectiveness of possible clustering solutions, a fitness function is defined. This function includes more than one criterion: 

energy consumption, load balancing, and connectivity. This ensures minimum energy consumption by ensuring that the 

workload is equally distributed to all cluster heads, improving the network's overall performance. 

Each SN is assigned to the nearest CH on the basis of distance to achieve load balancing. The load of each CH is then 

calculated via Eq. (8). 

Load𝐶𝐻 = ∑ 𝐷𝑖

𝑁

𝑖=1

                                                                                                    (8) 

where Load𝐶𝐻 is the total load on the cluster head and where N is the number of sensor nodes assigned to it. 𝐷𝑖  is the data 

rate of the 𝑖𝑡ℎ   sensor node. It evens out the loads at all nodes, avoiding early failure of any node in the network, thereby 

increasing the lifetime. In this way, network performance increases due to fewer communication delays and bottlenecks. 

The cluster assignments and positions of CHs can be updated regularly to optimise the load distribution as the network 

conditions change. 
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3.6.  AES-Based TBO-MOK Security Enhancements 

To ensure the confidentiality and integrity of fitness data during the aggregation strategies in the TBO-MOK protocol for 

UWSNs, we incorporate a lightweight encryption mechanism based on the advanced encryption standard (AES). Given the 

resource-limited nature of sensor nodes and the vulnerability of underwater audio channels to attacks such as eavesdropping 

and data tampering, it is essential to use a secure and efficient encryption method at the same time. AES provides a 

substantial encryption standard that balances computational efficiency with strong security, making it highly suitable for 

the dynamic environments of underwater sensor networks. 

The cluster head selection in the TBO-MOK protocol depends on the transmission of sensitive fitness metrics from sensor 

nodes, such as residual energy (𝐸𝑟𝑒𝑠 ) and link quality (𝐿𝑞). To protect these data, each node encrypts its fitness metrics via 

AES before sending them to potential cluster heads. The encryption process is as follows: (1) Each sensor node 𝑆𝑖   computes 

its fitness metric 𝐹𝑖 , , which is defined in (9). 

𝐹𝑖 = 𝑤1 . 𝐸𝑟𝑒𝑠 +𝑤2 . 𝐿𝑞                                                                                 (9) 

Algorithim2: TBO-MOK protocol 
1. Initialise Parameters: 

- num_clusters (k): Number of clusters (CHNs) 
- sensor_nodes (S): List of sensor node coordinates 
- max_iterations (max_iter): Maximum number of iterations 
- weights (w1, w2, w3): Weights for energy, load balancing, and connectivity 
- initial_cluster_centers: Randomly select k initial cluster centres from S 

2. Define Fitness Function, Eq. (6) 
3. Initial Assignment: 

- For each sensor node si in S: 
- Calculate the distance to each cluster center cj, Eq. (1) 
- Assign si to the nearest cluster center cj. 

4. Calculate Initial Energy Dissipation: 
- For each cluster head cj: 
- calculate total energy dissipation for cj, Eq. (7): 

5. Hunt Area Selection: 
- For each tiger beetle TBi: 
- Calculate fitness f(TBi) and identify the worst fitness f(Wt), Eq. (3) 

6. Digging Holes: 
- For each promising area: 
- Generate new potential solutions (holes), Eq. (4) 

7. Evaluate New Solutions: 
- Calculate fitness for new potential solutions, Eq. (6) 
- Update best solutions, Eq.(4). 

8. Larvae Reproduction: 
- Identify the best solutions from the current population 
- Generate new solutions around the best areas, Eq. (5) 

9. Iterative Optimisation: 
- For each iteration until max_iter: 
- Update positions of TBs 
- Reassign nodes to the nearest cluster centers 
- Recalculate fitness values 
- Select the best solutions for the next iteration 
- Generate new solutions around best ones (Larvae Reproduction) 
- Remove poor solutions (Low-Quality Hole Destroying) 

10. Convergence Check: 
- Check if solutions have converged or if max_iter is reached 

11. Output: 
- Return optimal cluster heads and node assignments 
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where 𝑤1 and 𝑤2  are the weights assigned to the residual energy and link quality, respectively. (2) The computed fitness 

metric 𝐹𝑖  is encrypted via a symmetric key K that is shared between the sensor nodes and the cluster heads. The encrypted 

data 𝐶𝑖  are obtained as in (10): 

𝐶𝑖 = 𝐴𝐸𝑆𝐾𝐹𝑖                                                                                              (10) 

Here, AESK(⋅) represents the AES encryption function using the key K. (3) The encrypted fitness data 𝐶𝑖  are transmitted 

securely to the candidate cluster heads. This encryption ensures that even if the data are intercepted by an adversary, they 

cannot be deciphered without the symmetric key K. (4) Upon receiving the encrypted data 𝐶𝑖 , the cluster head decrypts it 

via the shared symmetric key K in Eq. (11). 

𝐹𝑖
′ = 𝐴𝐸𝑆𝐾

−1𝐶𝑖                                                                                             (11) 

where 𝐴𝐸𝑆𝐾
−1(. ) is the decryption function of AES. The decrypted fitness metric 𝐹𝑖

′ is then used for cluster head selection. 

The symmetric key K is initially exchanged securely via key exchange elliptic curve cryptography (ECC). The key K is 

periodically refreshed during the iterations of the TBO-MOK optimisation process, ensuring that a compromised key does 

not expose the network for an extended period. 

4. EPERIMENTAL RESULTS  

In our experimental evaluation, we implemented the TBO-MOK protocol in Python on a PC with 64 GB of RAM, an Intel 

Core i7 processor, and a Windows 10 operating system. We compared the performance of the TBO-MOK protocol with 

that of the traditional methods LEACH, PSO, and GA in a simulated underwater wireless sensor network environment. We 

focus on simulating key performance metrics, including network lifetime, energy consumption, load balancing, and data 

transmission reliability, for this testbed. 

4.1.  Setup simulation environment 

To set up the simulation environment for evaluating the proposed method in UWSNs via the TBO algorithm, we defined 

the network topology with 100 sensor nodes randomly deployed within a 1000 m × 1000 m area, as shown in Fig, and each 

node was initialised with 2 energy joules. The simulation parameters include selecting 5 clusters, setting a communication 

range of 100 m, and defining a maximum of 1000 iterations for the optimisation algorithm. The energy model calculates 

the transmission and reception energy at 50 nanojoules per bit, with a free space model threshold of 87 meters. Cluster 

head selection starts with five randomly chosen initial cluster centres and a fitness function that combines energy 
consumption, load balancing, and connectivity with weights of 0.5, 0.3, and 0.2, respectively. The algorithm parameters 

include an initial standard deviation of 0.1 and a perturbation range (α) of 0.1 for generating new solutions around the best 

solutions. The TBO algorithm is implemented by iterating up to 1000 times, updating cluster assignments, and recalculating 

energy consumption. Multiple simulation runs are executed to ensure statistical significance, and the results are tested under 

various conditions. We collected data on energy efficiency, network lifetime, load balancing, and connectivity and 

compared these results with those of the baseline methods LEACH, PSO, and the GA under consistent conditions. To 

comprehensively evaluate the performance of the proposed method, visualisations, including the network topology, energy 

consumption over time, cluster head distribution, load balancing, and fitness value convergence, are generated. 

 
Fig. 2.  Initial simulation environment for evaluation of the proposed method. 
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4.2.  Evaluation of the number of clusters 

Fig.  2 illustrates the results of TBO-MOK for determining the optimal number of clusters. The plot depicts the sum of 

squared distances (SSE) on the y-axis against the number of clusters on the x-axis. As the number of clusters increases 

from 1 to 15, the SSE sharply decreases, indicating a reduction in the variance within clusters. The steep decline in SSE 

from 1 to 3 clusters suggests a significant improvement in clustering quality. This implies that increasing the number of 

clusters up to 3 significantly enhances the homogeneity within each cluster, thus improving the overall clustering 

performance. However, beyond 4 clusters, the decrease in SSE slows down, indicating diminishing returns with additional 

clusters. This behaviour highlights that while adding more clusters can continue to reduce the SSE, the marginal 

improvement becomes less significant. 

 
Fig.  2. TBO-MOK is used to determine the optimal number of clusters. 

Selecting 15 clusters, as depicted in Fig.  4, ensures a more refined clustering approach that captures more intricate 

variations within the sensor node distribution. Although the SSE reduction rate slows beyond 4 clusters, continuing to 10 

clusters allows for more detailed and granular clustering, which can be crucial in scenarios requiring high precision in 

network management. This decision, supported by the TBO optimisation process, ensures that the clustering balances 

compactness and coverage and provides robust support for network operations by minimising communication overhead 

and enhancing energy efficiency. By adopting 15 clusters (Fig.  3), we leverage the comprehensive insight provided by the 

TBO-based K-Means method, ensuring that the network design is optimised for both performance and reliability, 

accommodating the specific needs of our wireless sensor network application. 

 
Fig.  3. Optimised deployment of sensor nodes and cluster centers with adjusted communication ranges 
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Fig.  4. A depicted scenario where 10 clusters are selected by the TBO-based K-means algorithm 

4.3.  Energy Efficiency Evaluation 

المرجع. مصدر  على  العثور  يتم  لم   displays the energy consumption over time for four different methods: TBO-MOK خطأ! 

(proposed protocol), LEACH, PSO, and the GA. All methods start with an initial energy level close to the same value. 

Compared with the traditional LEACH, PSO, and GA methods, TBO-MOK (the proposed protocol) has a distinct energy 

consumption pattern. While LEACH demonstrates energy efficiency, which means that its energy is relatively high 

throughout the iterations, in TBO- 
Fig.  6. Energy Consumption Comparison Over Time 

 

MOK, more aggressive consumption is evident. Sharp drops in the energy level of TBO-MOK are characteristic of intensive 

optimisation activity periods when the protocol dynamically adjusts cluster assignments to balance different objectives, 

such as energy efficiency, load balancing, and connectivity. Although this intensive use of energy increases the depletion 

rate, it improves the general performance of a network, making TBO-MOK an ideal choice under a highly operationally 

efficient and resilient scenario under dynamic conditions. 
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In contrast, PSO and the GA represent medium energy consumption patterns. While PSO shows a gradual decline 

interspersed with sharp intermittent drops, the GA maintains a relatively smooth decline but has noticeable energy drops. 

Although PSO and the GA balance energy efficiency with operational intensity, compared with TBO-MOK, they lack a 

balanced load distribution and overall network efficiency. The PSO optimisation activity is more pronounced, causing 

decreases in energy, whereas the GA has a more sedate approach to energy management and returns only moderate 

performance. While the above characteristics are predominant, TBO-MOK still outperforms PSO and the GA in terms of 

their balanced workload distributions among cluster heads, with multiple performance metric optimisations executed 

simultaneously. This analysis proves that TBO-MOK is superior in enhancing underwater wireless sensor network 
efficiency and reliability, especially in dynamic operational environments requiring demanding services. 

4.4.  Evaluating Load Balancing 

It is relevant to load balancing in a wireless sensor network so that no cluster head becomes overloaded. Overloaded cluster 
heads result in early energy exhaustion and, hence, a reduced network life. Load Balancing: Effective load balancing 

distributes the work among the available cluster heads proportionally to their capacity so that each works proportionally to 

increase overall energy efficiency and thereby enhance network efficiency. 

Figure 7 depicts the workload distribution for the 15 cluster heads in a wireless sensor network. Each portion of a pie chart 

represents the percentage of the total workload handled by any cluster head. The workload distribution is an essential 

measure for assessing load balancing in a network. 

Figure 7 shows the workload distribution over cluster heads by four clustering protocols: TBO-MOK, LEACH, PSO, and 

the GA. These graphs show how each protocol achieves a balanced workload distribution among cluster heads. In the TBO-

MOK protocol, most cluster heads have a workload between 3.0% and 11.0%; thus, their graph is relatively balanced. That 

is, TBO-MOK efficiently balances the load, ensuring that no single cluster head is overburdened. This becomes balanced 

workload dissemination, resulting in effective energy use and an expanded network lifetime—the much-needed feature in 

UWSNs. 

 

  

  
Fig.  5. Workload distribution among cluster heads: (upper-left) TBO-MOK, (upper-right) PSO, (bottom-left) LEACH, and (bottom-right) GA 
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In comparison, the LEACH protocol shows a more uneven workload distribution, with Cluster Head 14 handling 16.0% of 

the workload, which is significantly more than other cluster heads. This imbalance can lead to faster energy depletion in 

heavily loaded cluster heads, reducing the overall network lifetime. LEACH's approach to cluster head selection does not 

adequately account for load balancing, resulting in disparities. The PSO protocol results in a highly imbalanced workload 

distribution, with Cluster Head 13 handling 45.0% of the total workload and several other cluster heads handling 0.0%. 

This extreme imbalance indicates that PSO fails to distribute the workload effectively among cluster heads, severely 

impacting network performance and reliability. The GA protocol achieves a moderately balanced workload distribution, 

with cluster heads handling workloads ranging from 5.0% to 11.0%. Although it is better than PSO, it is not better than 
TBO-MOK. 

The TBO-MOK protocol outperforms the baseline methods in terms of workload distribution among cluster heads. The 

balanced workload distribution in TBO-MOK ensures efficient energy use that may improve the performance and lifetime 

of a network. LEACH and PSO have enormous imbalances that may lead to inefficiency, lowering a network's reliability. 

The GA changes to present a moderate improvement but falls short of the performance given by TBO-MOK. All these 

comparisons within this category prove that TBO-MOK can effectively optimise UWSNs for load balancing and network 

efficiency. 

4.5.  Evaluating Optimised Connectivity 

We focused on key metrics such as the average degree of connectivity, network coverage, and resilience to node failures 

to evaluate the network's optimised connectivity. Initially, the network exhibited sparse connectivity, with many nodes 

having few or no direct connections, resulting in multiple disconnected components and isolated nodes (Fig.  6). This 

structure hindered data transmission and compromised network reliability. By optimising the communication range and 

applying the TBO-MOK clustering method, we significantly improved the network's overall connectivity. The average 

degree of connectivity increased, and network coverage was increased, ensuring that almost all nodes were part of a single 

significant connected component (Fig.  7). 

 
Fig.  6. Initial Network Connectivity 
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Fig.  7. Optimised Network Connectivity 

After optimisation (Fig.  7), the network demonstrated greater redundancy and robustness. Multiple communication paths 

ensure that the network maintains connectivity even when some nodes fail. This redundancy is critical for the network's 
resilience and longevity. Furthermore, the optimised network exhibited a more balanced distribution of connections among 

nodes, facilitating even workload distribution and energy consumption. This balanced load is essential for prolonging the 

network's operational lifespan. In summary, the optimisation process effectively transforms the network into a more 

connected, robust, and efficient system capable of sustaining reliable communication and operation despite potential node 

failures. 

4.6.  Security evaluation 

The proposed TBO-MOK protocol stands out for its comprehensive approach to security and privacy, particularly by 

incorporating lightweight encryption based on the AES. This feature enables sensitive fitness-related data to be encrypted 

during the assembly process, ensuring confidentiality and reducing the risk of eavesdropping. Unlike traditional protocols 

such as LEACH, PSO, and the GA, which do not rely on encryption, TBO-MOK protects the vital information of nodes 

from unauthorised access (Table 2). 

In addition, the protocol relies on a secure handshake mechanism using elliptic curve cryptography (ECC) for dynamic key 

exchange, which provides strong authentication and prevents forgery attacks. This dynamic approach to key management 

enhances security by periodically updating cryptographic keys, a significant improvement over the static key systems used 

in other protocols such as DRAR and multiple sinks. 

In terms of data integrity and privacy, TBO-MOK incorporates advanced techniques to protect transmitted information. 

Using AES encryption, the protocol ensures that data remain intact and tamper-free during transmission, addressing a major 

vulnerability found in many basic methods. Furthermore, implementing differential privacy during data aggregation 

provides an additional layer of protection, obfuscating individual node metrics and reducing the risk of privacy violations. 

This feature is not available in competing protocols such as LEACH, PSO, and GA, which lack specific mechanisms to 

maintain data privacy. While the Multiple Sinks protocol offers simple anonymization, it falls short of the comprehensive 

privacy guarantees that TBO-MOK provides through its differential privacy approach. Finally, the scalability and efficiency 

of the security mechanisms in TBO-MOK are significant advantages, especially in large-scale underwater sensor networks. 

The adaptive nature of the protocol's key management system, combined with efficient AES encryption, ensures reduced 

overhead while maintaining strong protection against eavesdropping and tampering. 
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In contrast, protocols such as LEACH and PSO struggle to scale due to their fixed configurations, whereas the GA faces a 

high computational burden due to the complexity of the optimisation processes. DRAR and multiple sinks offer moderate 

scalability, but their static or periodic key refresh strategies add additional overhead. TBO-MOK's balanced and adaptive 

approach allows it to deliver strong security with efficient resource utilisation, making it a superior choice for securing 

dynamic and resource-constrained underwater environments. 

TABLE II. SECURITY COMPARISON OF TBO-MOK WITH STATE-OF-THE-ART PROTOCOLS 

Metric 
TBO-MOK 

(Proposed) 
LEACH PSO GA DRAR Multiple Sinks 

Encryption 

AES-based 

lightweight 

encryption of 

fitness data 

No encryption No encryption No encryption 

Partial 

(basic 

encryption) 

Asymmetric 

encryption (RSA) 

Data Integrity 

Ensured via 

AES 

encryption 

Not ensured Vulnerable Vulnerable Moderate High 

Authentication 

Secure 

handshake 

using dynamic 

key exchange 

(ECC) 

No 

authentication 

No 

authentication 
No authentication 

Moderate 

(basic 

checks) 

Strong (multisink 

authentication) 

Privacy of 

Fitness Data 

Differential 

privacy for 

aggregated 

data 

None None None None 
Basic 

anonymization 

Resilience to 

Eavesdropping 

High (AES 

encryption) 
Low Low Low Moderate 

High (encrypted 

communication) 

Resilience to 

Tampering 

High 

(encrypted 

fitness data) 

Low Low Low Moderate High 

Key 

Management 

Dynamic key 

exchange with 

periodic 

updates (ECC-

based) 

Static keys Static keys Static keys Static keys 
Periodic key 

refresh 

Overhead of 

Security 

Mechanism 

Moderate 

(AES, ECC 

efficient) 

Low Low 
High 

(computational) 

High 

(encryption 

overhead) 

Moderate 

Scalability of 

Security 

Measures 

High (adaptive 

key 

management) 

Low Low Moderate Moderate High 

The comparative analysis shown in Table 2 highlights the strength of the proposed TBO-MOK protocol in terms of security, 

privacy, and scalability for underwater sensor networks (UWSNs). Unlike traditional approaches such as LEACH, PSO, 

and the GA, which lack encryption or rely on static key management, TBO-MOK combines lightweight AES-based 

encryption to ensure data confidentiality and integrity during the collection process. Its use of dynamic key exchange via 

elliptic curve cryptography (ECC) enhances authentication and increases stability against eavesdropping and tampering. In 

contrast, protocols such as DRAR and multiple sinks demonstrate moderate or partial security features, such as raw 

encryption or multipoint authentication, but fail to provide comprehensive solutions for data privacy and adaptive key 

management. TBO-MOK's advantage of achieving low computational overhead is a significant advantage over the GA and 

DRAR, which suffer from high resource consumption due to the complexity of the encryption or optimisation processes. 

Additionally, TBO-MOK excels in scalability through adaptive key management, making it highly suitable for large-scale 

underwater sensor networks, whereas protocols such as LEACH and PSO suffer from limited security and scalability. 

Overall, the table shows how TBO-MOK addresses critical gaps in existing protocols, ensuring robust, efficient, and secure 

communications for dynamic, resource-constrained underwater environments. 

4.7.  Comparison with state-of-the-art methods 

PDR refers to the ratio of data packets delivered at their destination to the total number of sent packets. The higher the PDR 

is, the more reliable and efficient a routing protocol will be in handling data transmission in UWSNs. Hence, this metric is 

critical in evaluating routing protocols for efficiency in reducing losses and ensuring continuous and reliable 

communication over hostile underwater channels. 
Figure 10 compares the PDR under different routing protocols. The results obtained provide valuable information 

concerning the efficacy and reliability of each of these approaches in UWSNs. In particular, for the proposed TBO-MOK 

protocol, its PDR is approximately 92%, which is higher than those of all the other protocols. This is because the TBO 
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algorithm perfectly balances exploration with exploiting the solution space to ensure efficient energy use and reliable 

communication links. This high reliability makes TBO-MOK suitable in areas that require constant and reliable data 

transmission over long distances, such as environmental monitoring and underwater research. 

 
Fig.  8. Comparison of the packet delivery ratios (PDRs) across different protocols. 

Among the other protocols, delay-aware routing (DRAR) and cooperative delay-aware routing (Co-DRAR) also perform 

admirably, achieving a PDR of approximately 90%. This indicates the importance of delay management in enhancing 

packet delivery reliability. Multiple sinks are closely followed, highlighting the effectiveness of multipath routing in 

mitigating packet loss. However, protocols such as sector-based routing and opportunistic routing exhibit slightly lower 

PDRs, suggesting limitations in adaptability and handling dynamic network conditions. Overall, the results underscore the 

superior performance of TBO-MOK in ensuring high packet delivery rates, positioning it as a leading solution for 

enhancing UWSN reliability. 

Fig.  9 compares the total energy consumption across different protocols used in wireless sensor networks. The protocols 

compared include SHTD, multiple sinks, DRL, K-connectivity, PSO, DRAR, opportunistic, sector-based, energy priority, 

multihop, and TBO-MOK. Each bar represents the energy consumption in joules for a specific protocol. The SHTD 

protocol has the highest energy consumption, slightly above 140 joules, indicating that it may be less efficient in terms of 
energy usage than the other protocols are. On the other hand, the TBO-MOK protocol results in the lowest energy 

consumption, suggesting that it might be more energy efficient and potentially better suited for applications where energy 

conservation is critical. 

Analysing the overall trend, we observe that most protocols have relatively high energy consumption, with values clustered 

around the 130--140 joules range. Notably, protocols such as multiple sinks, DRL, and DRAR also have high energy 

consumption, close to that of SHTD. In contrast, the sector-based, energy priority, and multihop protocols result in slightly 

lower energy consumption, indicating some energy efficiency. However, TBO-MOK stands out for its lower energy usage, 

which could be due to its optimisation strategies in managing data transmission and network operations. This analysis 

highlights the importance of selecting appropriate protocols on the basis of specific energy efficiency requirements in 

wireless sensor network deployments. 

 
Fig.  9. Comparison of total energy consumption across various protocols. 
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Fig.  10 compares the average latency across different protocols used in wireless sensor networks. The protocols include 

SHTD, multiple sinks, DRL, K-connectivity, PSO, DRAR, opportunistic, sector-based, energy priority, multihop, and 

TBO-MOK. Each bar represents the average latency in seconds for a specific protocol. The chart shows that the DRAR 

protocol has the highest average latency, slightly exceeding 0.08 s, indicating potential delays in data transmission. In 

contrast, the TBO-MOK protocol results in the lowest average latency, below 0.05 s, suggesting that it is more efficient in 

terms of speed and response time. 

 
Fig.  10. Comparison of the average latency across various protocols. 

Analysing the data, we observe that most protocols have an average latency of approximately 0.07 seconds, indicating a 

moderate level of latency. Notable protocols, such as SHTD, K-connectivity, and multihop, exhibit relatively high latency 

and are close to DRAR. On the other hand, protocols such as Opportunistic and Energy Priority demonstrate slightly lower 

latency, approximately 0.06 seconds, indicating better performance in reducing delays. The TBO-MOK protocol's low 

latency highlights its advantages in applications where timely data transmission is critical. This analysis underscores the 

importance of selecting protocols on the basis of latency requirements, particularly in real-time or time-sensitive wireless 

sensor network applications. 

Fig.  10 compares the network lifetime across different protocols used in wireless sensor networks, measured in cycles. The 
protocols evaluated include SHTD, multiple sinks, DRL, K-connectivity, PSO, DRAR, opportunistic, sector-based, energy 

priority, multihop, and TBO-MOK. The TBO-MOK protocol has the highest network lifetime, slightly exceeding 220 

cycles, indicating superior efficiency in conserving energy and extending the operational lifespan of the network. In 

contrast, the DRAR protocol has the shortest network lifetime, falling just below 200 cycles, suggesting that it may be less 

efficient in energy management than other protocols are. 

 
Fig.  11. Comparison of network lifetimes across various protocols. 
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Analysing the overall trends, most protocols achieve a network lifetime around the 200-cycle mark, indicating relatively 

consistent performance across different methods. Notable protocols, such as multiple sinks, DRL, K-connectivity, and 

sector-based methods, exhibit network lifetimes slightly above 200 cycles, demonstrating good energy efficiency. The 

leading performance of the TBO-MOK protocol in extending network lifetime highlights its potential advantage in 

scenarios where prolonged network operation is crucial. This analysis underscores the importance of choosing protocols 

on the basis of specific requirements for network longevity, particularly in applications with limited maintenance and 

energy resources. 

5. DISCUSSION  

Extensive simulations show the TBO-MOK protocol and outline its advantages over traditional LEACH, PSO, and GA 

methods in optimising underwater wireless sensor networks. The main observations from the simulation results include 

that this protocol provides better energy efficiency. Different periods with intensive optimisation activity can distinguish 

energy consumption under the TBO-MOK protocol. In these time frames, the protocol dynamically changes cluster 

assignments to balance multiple objectives; hence, this method makes TBO-MOK ideal for scenarios that demand high 

operational efficiency and robustness under dynamic conditions. 

Another critical feature where TBO-MOK performs excellently is load balancing. The workload on 15 cluster heads in the 

network was more uniformly distributed in TBO-MOK than in LEACH, PSO, and GA. The mode of selection of cluster 

heads by LEACH leads to enormous workload imbalances in which the few cluster heads become overburdened, which 

causes faster energy depletion, thus reducing the network lifetime. In PSO, an even more imbalanced distribution is shown, 

with a few cluster heads taking a disproportionate workload and increasing network inefficiencies even more. The GA does 

relatively well but still cannot achieve the balance attained by TBO-MOK. In TBO-MOK, the energy is efficiently used 

since there is an equal workload distribution. It extends the whole network's lifetime, preventing any node from becoming 

a bottleneck. 

The effect of the protocol on network connectivity is also interesting. The network initially had very sparse connectivity, 
with many nodes having very few or no direct connections at all, thus forming multiple disconnected components and 

isolated nodes. Optimising the communication range and then applying the TBO-MOK clustering method considerably 

improved the overall connectivity of the network. Compared with the initial network, the postoptimisation network has 

more redundancies and is, therefore, more robust; that is, there are multiple paths for communications when some nodes 

fail. A network with redundancy can thus increase its resilience and lifetime and share connections more fairly between all 

nodes while optimising the energy consumed. This load is balanced to ensure a long life and reliable communications in 

case some nodes collapse. 

Another important revelation is evaluating the optimum number of clusters via TBO-MOK. The plot for the sum of squared 

errors vs the number of clusters shows a steep decrease up to three clusters, thus showing considerable improvement in 

clustering quality. Beyond four clusters, this drop in SSE slows down, conceivably indicating that further progress has a 

diminishing return with additional clusters. However, choosing up to 15 clusters makes the clustering fine-grained; that is, 

it will capture minor variations in dispersion while ensuring compactness and coverage of sensor nodes, which is critical 

in high-precision network management. 

This paper presents a comparative analysis of various protocols for wireless sensor networks in terms of energy 

consumption, latency, and network lifetime. Among them, the TBO-MOK protocol seems to be the most effective: given 

that it has the lowest values of energy consumption, latency, and network lifetime, it is highly optimised for saving energy 

but at the same time ensures timely data transmission and prolongs the life span of the network. The performance makes 
TBO-MOK especially appropriate if energy and fast responses are the major concerns for applications, such as 

environmental monitoring and emergency response systems, within WSNs. 

In contrast, SHTD and DRAR displayed high energy consumption and latency, whereas DRAR had the shortest network 

lifetime. This suggests that although the SHTD and DRAR can be suitable if specific needs of immediate fielding ease of 

use are more paramount than long-term efficiency, they are not suitable for applications requiring long-term operation with 

minimum energy consumption. High energy consumption when these protocols are used could result in increased battery 

replacement rates or recharging, which can be a high drawback, especially in remote or hard-to-deploy areas. Increased 

latency can hinder real-time data collection and processing, which is relevant for time-critical applications. 

All the remaining protocols, such as multiple sinks, DRL, and sector-based methods, exhibit average performance in all 

the measures. This is because their energy consumption and latency were slightly lower than those for SHTD and DRAR 

but could still not be compared to TBO-MOK itself; however, they showed a relative consistency regarding network 

lifetime that remained at approximately 200 cycles—an indication of a balance concerning energy management and 

corresponding performance in that sense. This balance makes these protocols realizable if a scenario offers acceptable 

energy efficiency, latency, and network longevity. The insight gained from this study can guide the selection of appropriate 
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protocols for WSN application requirements, hence optimising performance and resource utilisation in various deployment 

scenarios. 

The implications of the TBO-MOK protocol open further UWSNs. Its ability to optimise energy efficiency, load balancing, 

and secure data transmission can help other types of wireless sensor networks (WSNs), such as terrestrial, aerial, and IoT 

applications. For example, in terrestrial WSNs, where energy efficiency is essential for battery-operated nodes, TBO-

MOK's multiobjective optimisation framework could improve network lifetime and trustworthiness. Additionally, its 

dynamic clustering and secure transmission mechanisms are highly suitable for IoT networks, where scalability and data 

security are essential. The protocol's bioinspired optimisation approach also has likely applications in related areas, such 
as distributed robotics, smart grids, and environmental monitoring systems, where efficient resource sharing and robust 

data transmission are necessary. These more general implications underscore the adaptability of TBO-MOK and its 

potential to affect a wide range of resource-constrained network applications. 

6. CONCLUSIONS  

The approach presented in the article relies solely on the TBO-MOK protocol's efficacy for optimising UWSNs. TBO-

MOK inherently resolves some significant open challenges in UWSNs through energy efficiency, load balancing, and 

network connectivity by applying the adaptive, efficient searching capability of the TBO algorithm. The extensive 

evaluations show that TBO-MOK outperforms the conventional LEACH, PSO, and GA methods over crucial performance 

metrics. This protocol is also suitable for complex and dynamic underwater environments because of its dynamism in 

accommodating cluster assignments, balancing multiple objectives, and enhancing overall network performance. Balanced 

energy use, robust communication links, and optimal clustering ensure that TBO-MOK extends the operational lifespan 

and is reliable. These results demonstrate the great potential of TBO-MOK as a solid and effective solution for UWSNs 

and lead the way toward establishing more resistant and robust underwater sensor network designs. 

A comparison of various protocols' performances in projects from a wireless sensor network presents exceptional results 

from the protocol known as TBO-MOK. This approach results in the least energy consumption, low latency, and prolonged 
network lifetime. With such attributes, TBO-MOK will be very suitable for applications with strict energy efficiency and 

fast responsiveness. On the other hand, protocols such as SHTD and DRAR, which demonstrate greater energy 

consumption and latency, better suit applications with more minor demands on performance. In situations that require a 

tradeoff between efficiency and network longevity, protocols such as multiple sinks, DRL, and sector-based protocols offer 

a well-balanced approach. 

6.1. Key Takeaways from the Study 

The results of this study will create a good path for selecting the most appropriate protocol-based requirements for wireless 

sensor networking applications. TBO-MOK guarantees several notable advantages, such as being able to prolong the 

network lifespan, reduce energy consumption, and increase the fault tolerance of the whole ad hoc network in highly and 
dynamically changing environments. TBO-MOK fits good practical applications such as continuous environmental 

monitoring and underwater exploration because it has the advantages of flexible scheduling and scalable operations. 

This research also noted that the optimisation of UWSNs faces several contradictory objectives; hence, a critical balance 

is needed. Thus, in this paper, an effective and secure scheme of underwater communication is presented. In the process of 

presenting TBO-MOK, which is superior to the conventional protocols of LEACH, PSO, and GA, it actually indicates the 

potential that the technique may redefine the way performance can be optimised when underwater environmental resource 

constraints are the most influential. The key contributions of this work also concern multiobjective optimisation and secure 

data transmission, both principles that can be extended to other application domains, including terrestrial sensor networks 

and IoT applications. 

6.2. Limitations and challenges 

However, not all are rosy with TBO-MOK despite all the great developments it has achieved; it also has setbacks. 

Considering the limited processing capabilities, large-scale networks may find the optimisation procedures too complex to 

handle. Although the performance of the protocol was validated in simulation environments, real-world deployment may 

face completely unexpected challenges, such as time-varying underwater conditions and hardware constraints. 

6.3. Future Directions 

The search for innovative solutions to realise TBO-MOK performance improvements in both superior performance and 

adaptability for various WSN applications is one agenda of the future. Additionally, a low-power scheme would work well 

with such a module supported by cutting-edge energy harvesting technology that has been developed lately, but it should 
be dynamically changeable concerning real network parameters in running time via specific adaptive algorithms. This 
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further enhances the robustness of this protocol with AI and ML-based techniques, such as predictive maintenance and 

fault diagnostics, improving its reliability and efficiency. 

Future works may also focus on embedding TBO-MOK into other optimisation approaches for better performance. For 

example, it could be combined with several advanced metaheuristics, such as ant colony optimisation or genetic algorithms, 

to overcome some problems of the presented algorithm, such as fast convergence and scalability in large-scale networks. 

Other possible ways to enhance this protocol include the use of machine learning models, such as reinforcement learning 

or neural networks, which enable the protocol to adapt dynamically to changes in network conditions in real time. 

Another avenue for exploration involves testing the protocol in more complex underwater environments, such as those 
characterised by varying depths, dynamic current patterns, or interference from marine life. Real-world deployments and 

field tests provide invaluable insights into the protocol's resilience and identify further opportunities for refinement. 

This work lays the way for further development related to UWSNs to offer more reliable, efficient, and adaptive solutions 

to this particular class of communications over complex environments. 
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