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A B S T R A C T 

 

With the rapid advancement of technology, the transmission of digital media over the internet has 
become easier and more efficient, leading to its widespread use across various fields. However, this 
progress has also been accompanied by increased risks of breaches, theft, and unethical digital media 
manipulation. Therefore, watermarking is considered one of the most essential techniques for 
protecting, verifying, and authenticating digital media by embedding imperceptible information 
within it. This paper presents a comprehensive literature review that differs from previous studies in 
its thorough analysis of both traditional and deep learning-based watermarking developed over the 
last nine years, as well as its adoption of hybrid approaches for adaptive watermarking, accompanied 
by various image and video datasets. This versatility makes it valuable for numerous applications, 
including the military, healthcare, and entertainment fields. The results highlight the necessity of 
adopting adaptive techniques to address the growing digital challenges. Future directions can 
concentrate on integrating deep learning with dynamic watermarking models to harness the 
effectiveness and efficiency of watermarking.

 

1. INTRODUCTION 

The enormous volume of multimedia content, such as images, videos, and audio, transferred from one place to another via 

social media or across other various platforms creates the necessity for the protection of intellectual property, copyright, and 

content integrity, as well as the prevention of unauthorized distribution [1]. As a result, numerous strategies have emerged, 

such as encryption, steganography, and digital watermarking, which have become indispensable approaches for protecting 

digital assets, including health care, entertainment, social media, and the military, because they  have the ability to protect, 

verify, and authenticate digital media. Among these, digital watermarking has gained fame because of its  dual functionality 

of robust media authentication and tamper detection, while it also embeds imperceptible identifiers [2]. Watermarking 
performance depends on the key metrics of imperceptibility, robustness, and  capacity, which are affected by the algorithm, 

noise, watermarking size, and mode of operation. These aspects need to be carefully balanced; for example, an improvement 

in robustness can compromise imperceptibility and vice versa [3]. Furthermore, digital media has been progressively 

manipulated by several advanced techniques; therefore, watermarking techniques must evolve to resist new types of attacks 

while preserving usefulness. 
The components of the watermarking are a host media and a watermark to be embedded into the host media. The 
watermarked media is transferred across the channel. When the recipient receives it, the watermark is extracted [1]. Figure 
1 depicts this process by presenting the general framework of a digital watermarking system, including the embedding and 
extraction stages. Formally, the embedding process, 𝐹, and the extraction process, 𝐸, can be represented by Equations 1 and 
2, respectively [2]. 

 𝑀′ = 𝑤 + 𝛼 𝐹(𝑀, 𝑤)                                                                                () 

where 

𝑀 represents the host media in which the watermark is embedded, 

𝑤 is a watermarking that can involve text, images, or any other type of data to be embedded in 𝑀, 

𝐹 is the function or algorithm used to insert the watermark, 𝑤 , into the media. 𝑀.  
And 𝛼 is the weight factor or threshold that determines the extent of the watermark's effect on the media. This factor helps 

determine the strength of the effect applied to the original data during the insertion process. If α is large, the effect on the 

original media will be strong, whereas if α is small, the impact will be less noticeable. 
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𝑤 = 𝐸(𝑀′, 𝑘)                                                                                    () 

𝑘 is a parameter or value that can be used in the extraction process to determine how to handle the modified media M' during 
retrieval. 

 

Fig. 1. General Framework of a Digital Watermarking System 

Early techniques of digital watermarking operated in spatial domains via immediately changing pixel values [2] or 

frequency domains to embed watermarks in transform coefficients [3]. While these techniques provide imperceptibility, 

they struggle with robustness. For example, spatial-domain techniques such as least significant bit (LSB) substitution [4] 

are computationally easy; however, they are distinctly inclined to noise, whereas frequency-domain approaches, although 

more robust, confront trade-offs between payload ability and distortion [3]. 

Deep learning has revolutionized digital watermarking by leveraging architectures such as convolutional neural networks 

(CNNs) and generative adversarial networks (GANs) to optimize robustness and imperceptibility. Unlike traditional 

methods, these models learn adaptive embedding strategies, embedding watermarks in frequency domains or resilient 

regions to withstand geometric distortions and compression attacks. However, challenges such as computational 

complexity, adversarial attacks, and dependency on large-scale datasets persist [5]. 
Despite significant progress in traditional watermarking techniques as well as deep learning-based techniques, many gaps 

and challenges remain that have not been addressed. These gaps include several issues. First, we need to realize a balance 

among imperceptibility, robustness, and capacity since larger watermarks increase robustness and decrease imperceptibility. 

Second, as deep learning becomes more widespread, watermarking systems must evolve to take advantage of these 

techniques while being aware of issues such as overfitting, adversarial attacks, and increasing operational complexity. 

Finally, the volume of digital media has increased, which requires scalable and effective solutions across all platforms. 

This review provides a comprehensive analysis of watermarking techniques up to 2025, covering traditional and deep 

learning-based methods. Additionally, a specialized and actionable set of recommendations for future research is presented, 

ensuring a more targeted and effective method. Consequently, this paper aims to provide a thorough analysis of digital 

watermarking techniques, and it differs from previous works in that it focuses on traditional and deep-learning 

watermarking techniques. Furthermore, it presents the limitations of the practical implementation of deep learning and 

suggests how to address these limitations. Additionally, it provides a structured taxonomy, different dataset analyses, and 

assessments of up-to-date watermarking techniques, which makes it a valuable resource for researchers. The contributions 

of this study are as follows: 
1. To provide a detailed analysis of watermarking techniques, including a review of traditional and deep learning-

based watermarking models, to provide a basic understanding. 

2. To highlight the challenges of watermarking systems, including robustness, imperceptibility, and computational 

efficiency. 

3. To understand the current situation of digital watermarking and identify key areas for future research. 

The remainder of this paper is organized as follows: Section 2 presents a taxonomy of watermarking techniques. Sections 3 

and 4 discuss common attacks on watermarked content and challenges in watermarking. Section 5 explores watermarking 

applications in digital media. Section 6 outlines benchmark datasets commonly used in watermarking research. Section 7 

reviews traditional and deep learning-based watermarking techniques. Finally, Section 8 summarizes the key 

recommendations presented in this paper. 
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2. TAXONOMY OF WATERMARKING 

Figure 2 depicts the classification of watermarking techniques on the basis of the host media, process, embedding method, 

perceptibility, robustness, domain, and embedding location. It provides a structured overview of different watermarking 

methods in digital media applications. The taxonomy aims to encompass all essential aspects of watermarking techniques, 

providing a foundation for designing appropriate models. The following subsections present the watermarking taxonomy to 

understand how they are used, how well they work, and their limitations in different states. 
 

 

Fig. 2. Classification of Digital Watermarking Techniques Based on Multiple Factors. 

2.1 Perceptibility 

Watermarking can be categorized according to perceptibility into three types: visible watermarking is designed to be seen 
by the human eye, such as a logo or text that stands out in the image or video. In invisible watermarking, the watermark is 
hidden and cannot be seen by the human eye. It is used for data authentication and prevents illegal copying of content. Dual 
watermarking combines visible and invisible watermarks to provide an extra layer of protection in which a visible watermark 
is added to the digital media. Then, an invisible watermark is embedded into the watermarked image or video [4]. 

2.2 Robustness 

Robustness is crucial for protecting the copyright, as attackers may try to alter the watermarked image. Robustness means 

that the watermark can be detected even when digital media changes. The robust procedure often involves embedding the 

watermark multiple times to make it harder to remove or distort. They are used in copyright where the watermark must 

withstand manipulations to confirm the owner’s authenticity [5]. 

Fragile watermarks are designed to detect even the smallest changes in an image. If any modifications are made, the 

watermark will be destroyed, signalling tampering. This type of watermark is mostly used for verifying the integrity of 

content, as even minor alterations can be detected, making it useful for content authentication [5]. 
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Semifragile watermarks are a balance between robust and fragile types; they can withstand minor changes such as 

compression but fail if larger modifications occur. These watermarks are often used to validate the authenticity of an image, 

detecting unauthorized modifications while allowing some acceptable alterations [5]. 

2.3 Domain 

With respect to the domain where the data are embedded, there are two domains: spatial and transform. 

Spatial-domain watermarking embeds watermark information directly into the pixels of an image. It alters the image's spatial 

or time domain. Although spatial domain techniques are easy to implement, provide low complexity, and allow for high 

embedding capacity, they are often less robust against attacks such as compression or modification. The least significant bit 

(LSB) approach is the most commonly employed spatial domain. LSB involves incorporating the watermark into LSBs of 

digital media (images or videos); this method alters the least amount of crucial information with the watermark bits, making 

them virtually undetectable. The watermark can be placed anywhere within the image or video, either spread out or in one 
spot, without harming how the image or video looks. However, the watermark is easily removed because of the vulnerability 

of the least significant bit to various attacks [6]. Furthermore, another approach for a spatial domain is a spatial spread 

spectrum in which the watermarks spread across the spatial domain depending on the pseudorandom sequence. 

On the other hand, transform domain watermarking is characterized by its strength and robustness against common attacks 

compared with the spatial domain. However, it requires a greater number of computational operations. Therefore, it may not 

be ideal for applications that require real-time performance and speed or when resources are limited [7]. Watermarks can be 

embedded into several transforms, as illustrated below. 

For example, a watermark can be embedded into frequency  components by modifying the frequency coefficients via the 

discrete cosine transform (DCT). The watermarked image is passed through the inverse discrete cosine transform (IDCT) to 

obtain the original image and hidden watermark [7]. The discrete Fourier transform  (DFT) then decomposes the digital 

media into a sum of complex exponential functions that are harmonically related. Its output is a periodic discrete signal that 

is convenient for frequency analysis on  digital media [7]. Moreover, to embed a watermark, the discrete wavelet transform 

(DWT) offers good time and frequency localization and hence provides a better frequency resolution at different frequencies, 

as digital media are divided into several components called wavelets [7]. Additionally, embedding the watermark in the 

singular values and subsequently obtaining it via singular value decomposition (SVD) even after tampering is more efficient 

[7]. Watermarking via SVD is more robust against noise, compression, and attacks. Finally, contourlet transform usage 

separates digital media into various components to examine essential qualities for watermark concealment. Two primary 

processes are involved: the Laplacian pyramid (LP) and the directional filter bank (DFB) [8]. The LP process decomposes 
the media into different frequency bands that effectively capture details at various resolutions, and the DFB process analyses 

other features of the media in multiple directions. 

2.4 Embedding location 

A watermark system embeds its information either throughout the entire digital media content or inside selected areas of that 

media [9]. Local watermarking strategies embed digital watermarks in specific regions of digital content where they can 

protect certain areas of the media. Specific protection of digital media parts becomes possible through this method in 

applications. Local attacks such as cropping present risks to this method, but the quality of nonvital areas remains intact. 

Watermarks provide complete media protection by embedding information throughout the entire content. The technique 

provides better defense against attacks because it becomes more difficult to remove or alter the data. 

2.5 Host media 

Various media formats, including images, audio and video files, and text documents, support the watermark application. As 

a method of image protection, the inclusion of a watermark features transparent copyright marks or pixels embedded with 

hidden symbols that protect legal documents and photography from unauthorized copying or any type of alteration. Audio 

files include watermarks that incorporate hidden tones, frequencies, or subtle variations, which preserve the embedded 

content intact during audio modifications or compression. Videos can incorporate watermarks such as subtitles and logos 

alongside timestamps, which authenticate original ownership as well as prove video content integrity and nonpiracy to their 

owners. A text document watermark takes the form of a distinctive barcode, digital signature, or company logo to 

permanently guard its content against unauthorized use [10]. 
 

2.6 Extraction process 

Watermarking can be classified into three distinct categories according to process type: nonblind, blind, and semiblind [11] 

[12]. In nonblind watermarking, both the watermarked content and the original content are required for watermark retrieval. 

During blind watermarking extraction, only the watermarked media is needed to extract hidden information since access to 
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the original content is not needed, for example, to protect content that is not accessible, such as copyright protection and 

multimedia distribution. The process of semiblind watermarking demands the use of both the watermark and the 

watermarked media to extract hidden information for verifying digital media authenticity. 

2.7 Embedding method 

Based on the embedding method, watermarking can be classified into two main methods: additive and multiplicative [13]. 

In additive watermarking, a small amount of noise is added to reveal the unauthorized cover. However, this method can 

lead to inefficient system implementation in detecting stealthy attacks. On the other hand, in multiplicative watermarking, 

the system parameters are modified to insert a watermark. This method has the advantage of maintaining the system’s 

performance, and it is better at revealing accuracy. Multiplicative watermarking is generally considered better than 

incremental watermarking, as it is unable to reduce the performance and provides more effectiveness. Quantization-based 

watermarking (QIM) is a nonlinear method that is distinct from additive or multiplicative approaches. It embeds watermarks 

by quantizing host features into predefined intervals. There are other ways to embed watermarks, including deep learning 

methods and hybrid methods, where deep learning methods such as convolutional neural networks (CNNs), generative 

adversarial networks (GANs), and transformers take advantage of neural networks to embed watermarks adaptively with 

host media [14],[15]. 

3. ATTACKS ON WATERMARKS 

With the increasing popularity of watermarks as a means of protecting digital media, they have simultaneously become a 

target for various attacks, which need to be addressed to maintain the security and integrity of watermarking [16]. Robust 

countermeasures must be implemented to mitigate the impact of attacks on watermarking systems. Effective techniques 

include adaptive watermarking, cryptographic security, and advanced detection algorithms. Moreover, successful attacks on 

watermarking systems may have significant implications, including economic losses for content creators and businesses that 

rely on copyright protection. As digital media continues to evolve, ongoing research is essential to address emerging threats 

and enhance the effectiveness of watermarking techniques. 

Watermarking attacks can be categorized depending on the aim of the attacker into degradation and removal attacks, as 

shown in Figure 3. Degradation attacks occur when the watermark is not intentionally targeted for removal but is altered or 

weakened by various factors. These attacks can increase the detectability of the watermark or integrity and reduce the 
protective function that should be performed. Common examples of degradation attacks are as follows: 

a. Compression: Reducing the file size by eliminating redundant or less important details. When the compression 

rate is too high, it can distort or even erase the watermark, making it undetectable upon extraction.  For example, 

JPEG compression can negatively impact embedded watermarks, potentially resulting in their permanent loss 

of detectability. 

b. Filtering: Image processing methods such as blurring, sharpening, or median filtering aim to enhance the visual 

quality of the content. However, these operations may affect the elements containing the watermark, which 

complicates the watermark extraction process. 

c. Noise: Noise introduced by factors such as sensor flaws during capture or transmission errors can degrade the 

watermark. Additionally, intentional noise addition (e.g., Gaussian or salt-and-pepper noise) for artistic effects 

may lead to random variations in watermark values, making accurate detection more difficult. 

d. Geometric attacks such as rotation, scaling, translation, or cropping change the spatial arrangement of media 

content. Since many watermarking methods depend on spatial domain integrity, these transformations may 

misalign the watermark and result in detection failures. Even slight rotations could misplace the watermark. 

The removal attacks serve as intentional attacks since their goal is to eliminate or reduce the presence of watermarks 

from digital content. These attacks work to eliminate or prevent the functioning of embedded watermarks that make the 

digital content vulnerable and defeat its intended security measures. The main examples of this category of attack include 
both cryptographic and protocol attacks. The main goal of cryptographic attacks is to protect the watermark's security 

protocols. Attacks on the authenticity of the original content can be executed by guessing, followed by the extraction or 

reverse engineering of the encryption keys or algorithms that are used for watermarking purposes unless they claim to 

compromise the authenticity of the original content [16]. Protocol attacks take advantage of the weaknesses present in 

the step-by-step processes used in watermarking methods and exploit them. An attacker can eliminate digital watermarks 

to trick claims of ownership through copy attacks, collusion attacks, or forgery, and the watermarks serve their preventive 

objectives [17] since they are intended to prevent watermark attacks. 



 

 

 

 

458 Naem et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 453–476 

 

 

Fig. 3. Classification of attacks on watermarks 

 

4. APPLICATIONS OF WATERMARKING IN DIGITAL MEDIA 

Digital watermarking can be used for copyright protection by embedding ownership information into digital media. For 
example, Digimarc's ImageBridge solution adds watermarks to images, which can be identified through software such as 
Adobe Photoshop. When a user opens a watermarked image, the software detects the watermark and retrieves the owner's 
contact information, allowing others to request permission for use. This helps protect the rights of the original creator.  
A watermark can be used to track the source or recipients of a specific copy of a multimedia file. Each file distributed to 
different users is embedded with a unique identifier, such as a serial number. These watermarks must remain invisible and 
resistant to attacks such as compression or filtering. Additionally, the method needs to prevent a "collusion attack," where 
multiple users might combine their versions to remove the watermark, ensuring that only one unique ID is embedded in any 
given file. 
Watermarks can also prevent illegal copying by embedding a fragile watermark in digital content. When a media player 
detects this watermark, it will only play the file if a valid watermark is found, stopping unauthorized copying [18]. 
Forensic techniques and measures to deter piracy involve embedding situational metadata, such as the recipient's IP address, 
received format, transmission time, and a distinct forensic watermark, into digital content at one or multiple distribution 
stages. The forensic watermark can be retrieved as evidence, which can help us determine the source of leakage and take 
legal action. 
Broadcast monitoring allows the ownership of digital content to be proven. By embedding data during production and 
broadcasting, one can detect who, when, and where the content is broadcast. Additionally, metadata such as the author, 
content type, and title can be included or linked to a database with more details. The watermark extracted from the content 
can be quickly analysed, and the broadcasting details can be confirmed with radio and TV stations [18]. 
Locating content online can be accomplished by embedding a watermark ID into digital content, allowing authors to search 
for their uniquely watermarked content on the internet. The web pages are constantly scanned for a unique watermark, and 
any results can be reported to notify the content owner for necessary action [18]. 
Auditing can be improved by having distributors embed an identifier for each licenced asset. This allows any use of the 
owner's assets, whether in whole or in part, to be automatically and quickly audited via digital watermarking technology 
[19]. 
Recent work in generative AI–driven cyber defense shows that GAN and deep reinforcement learning (DRL) such as 
CryptoGenSec, outperforms static intrusion detection baselines by 95 % in breach prevention success rate. Regarding 
security, the watermarking process can be integrated into this framework, providing an additional layer of protection that is 
continuously updated and evolves in parallel with the ongoing development of threats [20]. 
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5. CHALLENGES OF WATERMARKING 

Despite advancements in watermarking techniques, several challenges remain. These challenges arise from the need to 
balance various factors, such as maintaining the original quality of the content, ensuring the watermark's resilience against  

tampering or processing, safeguarding it from unauthorized removal or attacks, managing the amount of hidden 

information, minimizing computational costs, and, in some cases, allowing for the recovery of the original content. In what 

follows, challenges related to imperceptibility, robustness, security, capacity, computational cost, and reversibility are 

presented [3]. 

It is essential first to address the issue of imperceptibility, which means that the watermark must remain hidden while 

ensuring that the quality of the original content is preserved. Ideally, the watermarked content should look exactly like the 

original content, with no noticeable changes. To accomplish this, specialized methods must embed the watermark without 

causing any visible alterations [18]. 

Next, attention to the robustness of the model that embeds the watermark is important and considered fundamental to the 

process. The watermark must resist a variety of processing operations, such as compression, resizing, or filtering, without 

losing its detectability. Watermarking techniques differ in their ability to withstand these types of changes. Some worked 

well against attacks but failed against others. Therefore, the continuous development and improvement of watermarking 

techniques to counter different attacks are needed [2]. 

In addition, the security of watermarking is an important issue to consider. Powerful and new encryption methods are 

needed to maintain security, which requires improvements to continue combating attacks [4]. 

Furthermore, capacity refers to the amount of information to be embedded in the host. The challenge is to embed a 
watermark without introducing visible distortions. As more data are embedded, the probability of degradation increases, 

which is particularly concerning in applications where clarity and precision are critical [5]. 

Furthermore, computational cost is a significant issue in the embedding and extraction processes. It is possible to produce 

robust watermarks with high capacity, but the computational load can be heavy, especially in real-time and online 

applications. Therefore, a balance between accuracy, watermark strength, and cost is required [5]. 

Finally, a critical issue in watermarking is reversibility, in which the watermark can be extracted and the host can be restored 

[4]. 

 

6. BENCHMARK DATASETS OF WATERMARKING 

Watermarking techniques can be evaluated on different benchmark datasets, so it is important to examine the dataset that is 
used in assessing and comparing watermarking techniques. Figure 4 depicts the datasets commonly used in watermarking. 
There are several image and video datasets with different characteristics, as reported in Table I. 

 

Fig. 4. Categorization of Video and Image Datasets Used for Watermarking 

 

TABLE I.  AVAILABLE IMAGE AND VIDEO DATASETS FOR WATERMARKING 

Dataset Type Size Year Link Access level 
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6.1 Image datasets 

Image datasets for watermarking research play a crucial role in evaluating and comparing the performance of various 

watermarking techniques. In this work, the datasets selected for experimentation were meticulously selected because of 
their broad acknowledgement and regular use in prominent watermarking research publications. 

One of the prominent datasets is the Common Objects in Context (COCO) dataset, which offers diverse 1000-color images 

showing complex scenes with various objects in real-world settings [21]. Another significant dataset is RAISE, in which 

native images are captured via a Nikon D90 camera, comprising 8170 high-luminance, uncompressed images [22]. The 

Standard Test 

Image 

Image ~1,700 images 

(multiple 

categories) 

1997 http://sipi.usc.edu/database/ Public 

CG-1050(v1) Image 1,050 images 

(computer-

generated vs. 

photographic) 

2005 Shared by authors/research groups Public/Request 

CIFAR-10 Image 60,000 32×32 

color images 

(10 classes) 

2009 https://www.cs.toronto.edu/~kriz/cifar.html Public 

GRIP Image Varies (often a 

smaller set for 

image 

forensics) 

2010 Shared by research groups Public/Request 

BOSSBase Image 10,000 

grayscale 

images (for 

steganalysis) 

2010 https://www.kaggle.com/datasets/lijiyu/bossbase Public 

CoMoFoD Image Up to 260 

base images 

(several 

subsets; 

thousands 

total) 

2012 http://www.vcl.fer.hr/comofod Public 

CASIA-v1.0 Image 1,721 images 

(800 authentic 

+ 921 

tampered) 

2013 http://forensics.idealtest.org/ Public 

Common 

Objects in 

Context 

Image >330,000 

images 

2014 https://cocodataset.org/ Public 

RAISE Image 8,156 RAW 

images 

2015 https://loki.disi.unitn.it/RAISE/ Public 

COVERAGE Image ~100 base 

images (copy–

move forgery 

dataset) 

2017 https://github.com/wenbihan/coverage Public/Request 

CelebA-HQ Image 30,000 high-

resolution face 

images 

2017 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html Public 

UCF101 Video 13,320 video 

clips 

2012 https://www.crcv.ucf.edu/research/data-sets/ucf101/ Public 

YouTube-8 M Video 6.1 million 

videos 

2016 https://research.google.com/youtube8m/ Public 

Something-

Something 

V2 

Video 220,847 video 

clips 

2017 https://paperswithcode.com/dataset/something-something-v2 Public 

FaceForensics 

++ 

Video 1,004 videos 

(500,000+ 

frames) 

2018 https://niessnerlab.org/projects/roessler2018faceforensics.html Request 

Celeb-DF Video ~5,639 videos 

 

2019 https://cse.buffalo.edu/~siweilyu/celeb-deepfakeforensics Public 

Kinetics-700 Video ~650,000 

video clips 

2019 https://github.com/cvdfoundation/kinetics-dataset Public 

EPIC-

KITCHENS-

100 

Video ~100 hours of 

egocentric 

video 

2020 https://epic-kitchens.github.io/ Public 

http://sipi.usc.edu/database/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/lijiyu/bossbase
http://www.vcl.fer.hr/comofod
http://forensics.idealtest.org/
https://cocodataset.org/
https://loki.disi.unitn.it/RAISE/
https://github.com/wenbihan/coverage
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://www.crcv.ucf.edu/research/data-sets/ucf101/
https://research.google.com/youtube8m/
https://paperswithcode.com/dataset/something-something-v2
https://niessnerlab.org/projects/roessler2018faceforensics.html
https://cse.buffalo.edu/~siweilyu/celeb-deepfakeforensics
https://github.com/cvdfoundation/kinetics-dataset
https://epic-kitchens.github.io/
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COVERAGE dataset was forged with copy-move images, including annotations, with dimensions of 400 × 486 pixels, 

consisting of 200 images (100 original and 100 tampered) [23]. 

Additionally, the Standard Test Image (USC-SIPI Image) dataset offers images in various dimensions, such as 256 × 256, 

512 × 512, or 1024 × 1024 pixels, and includes grayscale images at 8 bits/pixel and color images at 24 bits/pixel that are 

used to support image processing and machine vision research. It is a benchmark for comparing new watermarking 

techniques with existing methods on standard images such as Lena, Baboon, and Barbara. SIPI also includes 44 benchmark 

images, 16 colors, and 28 monochromes of different sizes: 14 at 256 × 256, 26 at 512 × 512, and 4 at 1024 × 1024 pixels 

[24]. 
In the domain of deep learning-based watermarking, CASIA-v1.0 is a commonly used dataset consisting of 800 original and 

921 tampered JPEG images with dimensions of 384 × 256 pixels [25]. Another notable dataset is CG-1050 (v1), which 

contains 1050 images of various dimensions organized into two main directories: training and validation with subdirectories 

for original and manipulated cropped images, where the manipulated area ranges from 25% to 75% of the cropped region 

[26]. Moreover, CoMoFoD consists of multiple sets of forged images available at two resolutions: smaller images at 512 × 

512 and larger images at 3000 × 2000, which are saved in JPEG and PNG formats. Images are grouped into five manipulation 

types: translation, rotation, scaling, combination, and distortion. Both authentic and manipulated images undergo various 

postprocessing techniques, such as JPEG compression, blurring, noise addition, and color reduction [27]. The GRIP dataset 

is another important resource that includes ground truth images that align with various forgery types, including copy-paste, 

rotation, noise, scaling, and JPEG compression [28]. 

Among datasets focusing on human imagery, CelebA-HQ is a high-quality dataset consisting of 30,000 images at 1024×1024 

resolution, images of human faces that represent 6,217 unique identities. It contains three groups for training, validation, and 

testing [29]. Additionally, the CIFAR-10 dataset contains 60,000 color images with a size of 32x32 pixels that are categorized 

into 10 different classes, with 6,000 images per class. It includes 50,000 images for training and 10,000 images for testing 

[30]. Finally, BOSSBase consists of 10,000 grayscale images of size 512x512 that were taken via seven different cameras 

in portable gray map format [31]. 

6.2 Video Datasets 

In digital watermarking, video datasets serve as foundational tools for evaluating the effectiveness and resilience of 

watermarking techniques. Video datasets typically encompass a range of resolutions, frame rates, and motion dynamics, 

ensuring comprehensive assessments of watermarking performance. 
Among the notable datasets in this field is Celeb-DF, a large DeepFake dataset with 5,639 videos and over 2 million frames 
from YouTube clips of 59 celebrities. The videos were produced via better synthesis techniques with fewer visual issues to 
make Celeb-DF a challenging dataset for testing and advancing DeepFake detection algorithms [32]. The dataset serves as 
a common evaluation tool for researchers to test detection systems. [33]. 
Another significant resource is Kinetics-700, with 650,000 clips that cover 700 human action classes. The videos show 
people interacting with objects, such as playing instruments, as well as people interacting with each other, such as shaking 
hands and hugging. Each action class has at least 700 video clips. Each clip is labelled with an action class and is 
approximately 10 seconds long [34]. 

Additionally, among the largest video datasets available to researchers, YouTube-8 M contains 6.1 million YouTube videos. 

These videos cover 3,862 categories, from cooking to extreme sports, which we have aggregated into 24 high-level verticals 
for easier browsing. This dataset contains a subset of more than 237,000 meticulously annotated portions of video, 5 seconds  

long, from 1,000 categories. YouTube-8 M was originally announced with "8 million" videos in it (hence the name) and has 

become a default resource for anyone looking for a source for video classification and understanding research, owing to rich 

content without needing to store  terabytes of data [35]. 

Something-Something V2 provides a large collection of labelled video clips that capture basic human actions with everyday 

objects, including 220,847 videos, with 168,913 for training, 24,777 for validation, and 27,157 for testing, covering 174 

labels [36]. EPIC-KITCHENS-100 is a collection of 100 hours, 20 M frames, and 90K actions in 700 variable-length videos 

[37]. UCF101 is an expanded version of UCF50, comprising 13,320 video clips into 101 categories, including body 

movements, human interactions, human-object interactions, playing musical instruments, and sports, with a total video 

time of over 27 hours, a fixed frame rate of 25 FPS and a resolution of 320x240, sourced from YouTube [38]. 
Finally, FaceForensics++ is a dataset of 1000 original videos modified via four automated facial manipulation techniques: 
Deepfakes, Face2Face, FaceSwap, and NeuralTextures. The videos were sourced from 977 YouTube videos, and all 
contained mostly frontal, trackable faces without occlusions, enabling the creation of realistic forgeries [39]. 

 

7. REVIEW OF THE EXISTING METHODS 
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This review was conducted by performing a literature search of existing studies on digital watermarking techniques from 
2016--202525. A complete literature search was carried out through Google Scholar, IEEE Xplore, and Scopus via Boolean-
formatted key phrases (e.g., "digital watermarking," "deep learning-based watermarking," and "copyright safety"). The initial 
results (250 studies) were screened for relevance on the basis of titles, abstracts, and publication quality. Nonpeer-reviewed 
articles, nonEnglish papers, and studies missing empirical validation data were excluded. After duplicates were removed and 
rigorous filtering was applied, 150 outstanding papers were retained for full-textual content overview. To ensure credibility, 
priority was given to legitimate journals (e.g., IEEE, Elsevier, and Springer) and recent peer-reviewed meetings. From those, 
69 formative works were selected. We extracted the primary data from the selected studies, including the year of publication, 
research methods, main contributions, and empirical data. These data were organized into tables to facilitate comparisons 
between different studies. Next, we discuss the research, trends, benefits, and limitations, as the aim of the presented review 
research is to provide deep and valuable insights to researchers in the field of watermarking. 

7.2 Literature on Traditional Techniques 

Several traditional watermarking techniques exist; however, they typically fail to address the balance of imperceptibility, 

robustness, and capacity. This section identifies and addresses significant current gaps. Table II summarizes the main 

differences between these techniques. 

A method for embedding a watermark into the host image via fractals, which are mathematical shapes that exhibit self-

similarity and irregularity, was proposed in [40]. The watermark is encoded and embedded into selected blocks of the image 

via fractal coding. The blue component of the image is used for the watermarking process because it is less sensitive to noise 

attacks. The results were strong and stable, and the famous Lena and Baboon images with signal-to-noise ratios above 40 

dB were used. The use of fractals for watermarking takes advantage of their self-similarity and irregularity, making them 

resistant to noise attacks. However, the method's performance is measured via images such as Lena and Baboon images, 

which may not fully represent the diversity of images encountered in real-world applications. 

The quantization index modulation (QIM) technique for hiding watermarks in 3D meshes to protect ownership was proposed. 

It modifies geometric properties, including distances between vertices and directions, to embed hidden information [41]. 

Techniques, including transformation, rotation, and noise addition, were used to increase the resistance of the watermark to 
attacks. The Princeton 3D mesh benchmark dataset was used for evaluation, and the results revealed a high capacity for 

watermark concealment, distortion control, and strong resistance to attacks. However, the reliance on geometric 

transformations such as rotation and noise addition to resist attacks could raise concerns about the visual quality of 3D 

models. 

A patchwork technique for audio watermarking [42] that embeds a secret image as a watermark into the audio signal via 

LSB encoding and Base64 was proposed. The WAV audio files "future bells.wav" and "bars.wav" were used, and the results 

revealed high audio and image quality. The PSNR for the audio data was 30 dB, and for the image, it was 40 dB, with a very 

low bit error rate of 0.036%. The method might struggle with the trade-off between robustness and imperceptibility, 

especially when subjected to more severe audio transformations such as compression, reverb, or filtering. 

DWT and DCT were used to embed a watermark within the host media to take advantage of the frequency domain properties 

of both DWT and DCT to secure copyright protection [43]. The image is divided via the DWT method into subbands, with 

a focus on the HL1 and HH1 bands in the process of embedding the watermark with the host image. This allows the 

watermark to be embedded in the midfrequency band coefficients of 16x16 blocks via the DCT method. The dataset includes 

the famous “Lena” image sized 512x512 as the cover image and another grayscale image sized 256x256 as the watermark. 

The results of the hybrid method showed a significant performance improvement compared with using either DWT or DCT 

separately, especially in the embedding and extraction of the watermark under different conditions. The method's reliance 

on specific subbands (HL1 and HH1) for embedding could limit its adaptability to different image types or sizes. 
In [44], the spread spectrum technique was used to hide the watermark within the image while preserving its quality. The 

spread spectrum works by distributing the watermark across a wide frequency range, making it robust against noise attacks. 

Researchers have also used the discrete wavelet transform (DWT) to embed the watermark in the low-frequency subbands 

of the DWT. The IIUC image was used as the dataset, and after applying attacks such as noise and rotation, strong tamper 

resistance with an effectiveness of approximately 80% was achieved. 

SVD and DWT were used to embed watermarks in printed and scanned images. First, the image was transferred into the 

DWT, and the watermark was embedded in the singular values of the low frequency of the DWT [45]. The experiments were 

conducted on Lena and Baboon images and demonstrated that the method strongly resists distortion, with PSNR values 

reaching 30 dB, ensuring minimal image degradation. However, this method's effectiveness in real-world settings where 

scanning and printing introduce variations in image quality remains to be fully examined. 

A method for embedding watermarks in images that combines DFT and particle swarm optimization (PSO) to balance 

robustness against attacks while preserving the imperceptibility of the embedded watermark was proposed [46]. The PSO 

algorithm was used to improve watermarking by optimizing the embedding region. The dataset used in this work includes 
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1000 color images from the COCO dataset, and the results show that PSO harnesses the robustness of watermarking 

compared with other methods. 

[47] produced a novel image watermarking technique that benefits the integer wavelet transform (IWT) power and parity-

bit checking to detect tampering effectively and ensure authentication. The IWT is based on the lifting scheme to provide a 

direct way to convert image pixels' integer values to integer coefficient values rather than floating point coefficients. This 

method produces a robust approach to safeguarding the integrity of the original image by embedding the watermark bits in 

the low- and mid-frequency components of a two-level wavelet decomposition and maintaining even parity in each block. 

The results obtained on the Lena, Girl, and Barbara datasets, with PSNR values reaching up to 46.56 dB and SSIM values 
exceeding 0.99, underscore the efficacy of this technique. The technique's robustness and high PSNR and SSIM values 

suggest its effectiveness, but further comparison with other advanced methods and its scalability to handle large datasets or 

high-resolution images would be beneficial. 

DCT and linear modulation were used for embedding the watermark in grayscale images [48]. First, the image was divided 

into 8x8 blocks, and then the DCT transform was applied. The watermark is then embedded using the least significant bits 

(LSB). This hybrid technique ensures both imperceptibility and robustness against attacks. The experiments were conducted 

on Lena and Baboon, and the quality was high, with PSNR values exceeding 40 dB. The results demonstrated that the 

watermark extraction was successful without any significant degradation in its quality or the host image, maintaining a 

balance between the imperceptibility and robustness of the watermark. However, the scalability of this technique for larger 

or more complex images and its resistance to other attacks require further study. 

The least significant bit (LSB) technique was used to hide the watermark integrated with Canny edge detection [49]. Canny's 

method selects the best locations in the image for embedding the watermark to avoid embedding in smooth areas of the 

image. Additionally, an extra layer of protection was added by scrambling the watermark via a chaotic substitution box. This 

method remains simple but offers an enhancement in overall performance. The SIPI image dataset with grayscale images. 

The results show that the method provides minimal visual distortion and strong robustness against attacks, and the watermark 

was successfully extracted without degradation. However, the method may struggle with highly textured or complex images. 

A perceptual watermarking system was proposed to combat deepfake face-swapping techniques by embedding invisible 
watermarks by personal identity information into the original image, allowing the detection of facial manipulation and tracing 

of the source of the image. The CelebA-HQ and LFW datasets are used, and the results demonstrate a 96% success rate in 

watermark extraction and a 97% success rate in deepfake detection [50]. However, this method may be limited in its scope, 

as it focuses primarily on face-swapping detection. 

[51] introduced a video watermarking approach that leverages Galois field (GF) multiplication tables, with a focus on three 

irreducible polynomials, and an adaptive thresholding technique for scene-based frame selection. By watermarking only 

20% of the video frames, the method enhances efficiency while preserving video quality. Experiments were conducted on 

six videos. The results demonstrate that using the irreducible polynomial x4 + x3 + 1 yields the highest PSNR values, reaching 

over 53 dB when embedding smaller watermarks. This method remains strong against various attacks while maintaining a 

high level of similarity and normalized correlation (NC) between the original and watermarked videos. On the other hand, 

the adaptive threshold selects the most relevant frames without making the watermark noticeable. Overall, it provides a 

strong balance between watermark invisibility, computational efficiency, and resilience across diverse video scenarios. 

However, the method was tested on a limited set of videos, and it may not perform as effectively with highly dynamic or 

fast-moving scenes. 

The hybrid method was proposed in [52], which combines SVD and the Mojette transform to enhance the trade-off between 

imperceptibility, robustness, and capacity in image watermarking. By applying Mojette projections to the singular values of 

both the host and the watermark images, the method embeds the watermark into geometrically distributed bins that maximize 
payload capacity while minimizing perceptual impact. The results achieved a high imperceptibility of PSNR equal to 45.2373 

dB and robustness against geometric and nongeometric attacks, with normalized cross-correlation (NCC) values exceeding 

0.95. However, the testing was confined primarily to gray images, and the impact of payload size on performance remains 

undefined. 

[53] proposed a method for hiding the blind watermark inside color images via the fast four-dimensional qubit 

decomposition method FQSD, which is performed by encoding the color channels of the RGB image jointly in a four-

dimensional matrix. The watermark is hidden above the energy coefficients by modifying the quantization index 

modulation, as FQSD allows the matrix to be decomposed into upper triangular blocks. The watermark is encrypted by a 

two-dimensional logistic-adjusted sine map (LASM) chaotic map to mix the pixel distributions. The method achieves a 

PSNR close to 38 dB, an SSIM of 0.95, and a robustness of 0.96 NC against multiple attacks (JPEG compression, noise). 

The drawback of this method is that it incurs a high computational cost compared with other spatial methods. 

A robust method for digital watermarking that combines the dither modulation (DM) algorithm with just noticeable 

distortion (JND) perceptual models to address modern and advanced attack challenges was proposed in [54]. The algorithm 

enhances traditional quantization-based watermarking by adaptively adjusting the embedding strength via Weber’s law and 
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Watson-based JND thresholds, which consider the adaptation of brightness and contrast within and between blocks and the 

sensitivity of the DCT coefficient. The method achieved success when tested on the BOSSbase dataset, and the results were 

as follows: PSNR greater than 22 dB and bit error rate (BER) less than 0.3 when traditional attacks were used. For DnCNN 

attacks based on artificial intelligence, the result was a BER of 0.26, outperforming DC-only. However, it does not include 

the extent to which the JND model affects the quality of visual perception of the watermark in terms of visual invisibility. 

A watermarking method was proposed to embed a watermark in the DFT amplitude‒frequency coefficients via polar 

coordinate mapping, and a machine learning model was used to estimate the scaling parameters to accurately recover the 

watermark [55]. The proposed method was tested on the COCO2017 and BOSSBase-1.0 datasets. It achieved high visual 
quality with a PSNR of ~39 dB and an SSIM of 0.9707 on COCO2017. The results for BOSSBase were a PSNR of ~44 

dB and an SSIM of 0.9816. Watermarks are successfully extracted from very small regions up to 10% of the original image.  

The proposed method uses both polar coordinate transformation and a machine learning model to estimate the scaling 

parameters. This may result in an increased computing load. 

TABLE II.  COMPARISON OF DIFFERENT TRADITIONAL WATERMARKING TECHNIQUES 

Reference year Technique Description Dataset Advantage Disadvantage Results 

[40] 2016 Fractal 

Coding 

Using self-

similar fractal 

shapes to embed 

watermarks in 

specific image 

blocks. 

Lena and 

Baboon images 

robust embedding 

and blue 

component 

utilized to 

minimize noise 

sensitivity 

Limited to 

specific image 

blocks 

High stability 

with SNR above 

40 dB, 

demonstrating 

robustness 

against noise 

[41] 2017 Quantizatio

n Index 

Modulation 

Embedding 

hidden 

information by 

modifying 

geometric 

properties in 3D 

meshes. 

Princeton 3D 

mesh benchmark 

dataset 

Strong watermark 

concealment, 

distortion control, 

and resistance to 

transformation, 

rotation, and noise 

attacks 

Limited to 3D 

mesh 

applications 

High capacity for 

watermark 

concealment 

with strong 

resistance to 

various types of 

attacks 

[42] 2019 Patchwork embedding a 

secret image in 

audio signals 

using LSB 

encoding and 

Base64. 

"future 

bells.wav" and 

"bars.wav" 

WAV audio files 

High audio and 

image quality 

with low bit error 

rate; adaptable for 

audio 

watermarking on 

low-power 

devices like 

Raspberry Pi 

Limited to audio 

applications 

PSNR of 30 dB 

for audio, 40 dB 

for image, with 

very low bit error 

rate of 0.036% 

[43] 2019 Hybrid 

DWT-DCT 

Combining  

DWT and DCT 

techniques to 

embed 

watermarks in 

mid-frequency 

band 

coefficients. 

Lena image 

(512x512) and 

grayscale image 

(256x256) 

Utilizes the 

frequency domain 

properties of 

DWT and DCT, 

improving 

robustness and 

efficiency in 

embedding and 

extraction 

Complexity in 

combining two 

transforms may 

increase 

the computationa

l load 

Significant 

performance 

improvement in 

watermark 

embedding and 

extraction 

compared to 

using DWT or 

DCT alone 

[44] 2020 Spread 

Spectrum 

Distributing 

watermark 

across a wide 

frequency range; 

implemented 

using DWT. 

IIUC image 

library 

Distributes 

watermark across 

a wide frequency 

range, enhancing 

robustness against 

noise 

higher 

computational 

resources due to 

the frequency 

spread 

Achieved 

approximately 

80% resistance 

to tampering, 

with strong 

effectiveness 

against noise and 

rotation attacks 

[45] 2020 Hybrid 

SVD-DWT 

Embedding 

watermarks 

using SVD and 

DWT, 

maintaining 

robustness in 

printed/scanned 

images. 

Lena and 

Baboon images 

Strong resistance 

to printing and 

scanning 

distortions; 

minimal impact 

on image quality 

Limited to low-

frequency 

embedding, may 

reduce flexibility 

in high-

frequency areas 

Achieved PSNR 

values above 30 

dB, ensuring 

minimal image 

degradation even 

after printing and 

scanning 

[46] 2021 DFT with 

Particle 

Swarm 

Optimizing 

embedding 

region to balance 

COCO (1000 

color images) 

Balances 

robustness and 

imperceptibility; 

resists geometric 

require high 

computational 

resources for 

optimization 

Significant 

improvement in 

robustness and 

image quality, 
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Optimizatio

n 

robustness and 

imperceptibility 

distortions (e.g., 

rotation, scaling); 

strong against 

JPEG 

compression and 

noise 

outperforming 

traditional 

methods in real-

world scenarios 

[47] 2021 Integer 

Wavelet 

Transform 

Utilizing the 

lifting scheme 

for 

watermarking in 

low/mid-

frequency 

components. 

Standard 

grayscale 

images: Lena, 

Girl, Barbara 

 

Utilizes IWT for 

integer-to-integer 

transformations, 

avoiding floating-

point rounding; 

maintains high 

imperceptibility 

and robustness; 

detects tampered 

regions effectively 

 

Some tampered 

blocks may not 

be detected if 

parity remains 

unchanged; 

limited 

robustness due 

to parity bit 

vulnerabilities. 

 

PSNR ≈ 44.4367 

dB (Lena: 

44.2416, Girl: 

46.5576, 

Barbara: 

42.5110); SSIM 

≈ 0.9956; 

Embedding time 

≈ 15.7 seconds 

(Lena), 

Extraction time ≈ 

16.4 seconds 

(Lena) 

[48] 2023 DCT with 

Linear 

Modulation 

 

Dividing images 

into 8x8 blocks, 

applying DCT, 

and embedding 

watermarks 

using LSB. 

Lena, Baboon 

(grayscale 

images) 

Ensures 

imperceptibility 

and robustness; 

effective against 

attacks like JPEG 

compression, 

Gaussian noise, 

and rotation 

Limited to 

grayscale images 

High-quality 

results with 

PSNR > 40 dB; 

successful 

watermark 

extraction 

without 

significant 

degradation in 

quality or host 

image 

[49] 2023 LSB 

Watermarki

ng with 

Canny 

Edge 

Detection 

 

Embedding 

watermark in 

selected areas 

using Canny 

edge detection, 

with added 

scrambling for 

protection. 

SIPI (grayscale 

images 512x512, 

watermark 

32x32) 

Simple and 

efficient; 

improved security 

through Canny 

edge detection 

and chaotic 

substitution; 

resistant to noise 

and geometric 

attacks 

Limited to 

grayscale 

images; 

potentially weak 

to direct 

detection in 

smooth areas 

without Canny. 

High PSNR, 

SSIM, and NC 

values; minimal 

visual distortion; 

robust against 

salt-and-pepper 

noise, Gaussian 

noise, cropping, 

and rotation; 

successful 

watermark 

extraction 

without quality 

loss 

[50] 2024 Perceptual 

 

Embedding 

invisible 

watermarks 

containing 

personal identity 

information for 

deepfake 

detection. 

CelebA-HQ, 

LFW 

Enables detection 

of face 

manipulation and 

tracing of image 

source; high 

success rates in 

extraction 

Limited 

application 

scope, primarily 

focused on face-

swapping 

detection 

96% success in 

watermark 

extraction, 97% 

success in 

deepfake 

detection 

[51] 2024 Video 

Watermarki

ng with 

Galois 

Field 

Multiplicati

on 

Utilizing Galois 

Field 

multiplication 

for 

watermarking 

scene changes in 

videos; adaptive 

thresholding 

employed. 

Private Camera 

Data and Public 

Web Data 

(Foreman, 

Akiyo, 

Coastguard 

videos; 

watermark 

images with 

225×225 and 

100×100 

resolutions) 

High 

imperceptibility, 

robustness, 

adaptive scene 

selection, 

dynamic 

thresholding, low 

computational 

time 

 

Limited 

performance 

with very short 

videos due to 

insufficient 

scenes; trade-off 

between 

imperceptibility 

and robustness 

 

PSNR values: 

~54.54 dB 

(Akiyo), ~53.25 

dB (Foreman), 

~52.91 dB 

(Coastguard); 

Robustness 

metrics with NC 

> 0.98 under 

various attacks 

 

[52] 2024 SVD with 

Mojette 

Transform 

 

Combining 

Singular Value 

Decomposition 

and Mojette 

Transform to 

embed 

Standard test 

images (e.g., 

Lena, 

Cameraman) 

 

High 

imperceptibility 

(PSNR ~45 dB.  

Robust to noise, 

filtering, 

compression, 

Payload capacity 

requires further 

analysis; Tested 

only on 

grayscale 

images. 

PSNR of 45.24 

dB at 1% scale 

factor; Extracted 

watermarks show 

NCC >95% 

under attacks 
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watermarks in 

projection bins 

of host images. 

Mojette 

Transform 

enhances 

robustness 

through 

geometric 

projections. 

rotation, and 

cropping (NCC 

>95%). 

 

 (noise, filtering, 

compression, 

rotation, etc.). 

 

[53] 2024 Fast 

Quaternion 

Schur 

Decomposi

tion 

(FQSD) 

 

Embedding 

watermarks 

using quaternion 

Schur 

decomposition 

and quantization 

index 

modulation 

(QIM), 

leveraging color 

channel 

correlations. 

Standard images 

(Athens, 

Peppers, 

Butterfly1, etc.) 

from CVG-

UGR/USC-SIPI 

 

High efficiency 

(structure-

preserving 

algorithms), 

robustness to 

common/geometri

c attacks, and 

color 

synchronization. 

 

Requires image 

correction for 

geometric 

attacks 

 

PSNR >38 dB, 

SSIM >0.95, NC 

>0.96 (common 

attacks), NC 

>0.90 

(geometric). 

 

[54] 2025 DCT-

domain 

Dither 

Modulation 

(DM) + 

JND 

 

Combining DCT 

quantization 

with perceptual 

JND models 

(Weber/Watson) 

to embed 

watermarks 

adaptively. 

Resists AI-

driven attacks 

(DnCNN), 

volumetric 

scaling, and 

histogram 

equalization. 

BOSSbase101 Robust against 

modern AI 

attacks; adaptive 

embedding 

strength via HVS 

models. 

 

Computationally 

intensive due to 

JND 

calculations; 

limited to 

grayscale 

images. 

 

PSNR >22 dB 

(imperceptibility

), BER <0.3 

(traditional 

attacks), BER 

0.26 (DnCNN 

attacks). 

 

[55] 2025 DFT-based 

polar 

coordinate 

mapping + 

ML 

 

Embedding 

watermarks in 

DFT frequency 

domain; uses 

ML for scaling 

parameter 

estimation and 

padding for 

arbitrary 

resolutions. 

BOSSBase-101, 

COCO2017 

 

Robust to 

arbitrary 

scaling/cropping 

and supports any 

resolution; it has a 

high PSNR. 

 

Performance 

degrades with 

<10% cropped 

area; ML adds 

computational 

overhead. 

 

PSNR ~44 dB 

(BOSSBase), 

~39 dB (COCO); 

BEQ as low as 

0.0090. 

 

 

7.3 Literature on Deep Learning-Based Watermarking 

This section presents the watermarking literature, which is based on deep learning algorithms that have been recently used 

to improve the performance of watermarking algorithms. Table III summarizes the main differences between these 

techniques. 
In [56], an end-to-end trainable deep learning framework was presented as HiDDeN for data hiding that is applicable to 

steganography and digital watermarking. This framework relies on CNNs for encoding and decoding data, ensuring that 

hidden information remains invisible and can withstand distortions such as noise. This makes it suitable for real-world 

applications where images are compressed, cropped, or otherwise modified. The framework integrates an encoder network 

to embed the watermark into the cover image and produces a watermarked image and a decoder network to reconstruct and 

extract the watermark, even when the image has been distorted. The addition of an adversary network allows the model to 

be trained to detect whether an image contains hidden data, providing an adversarial loss that improves the quality of 

watermarked images by making them harder for adversaries to detect. Image distortion loss (L2) ensures that the 

watermarked image closely resembles the original image, and message distortion loss (L2) maximizes the accuracy of the 

decoded message. The adversarial loss further ensures that the watermarked image is indistinguishable from the original 

image in terms of detection by adversaries. The framework was tested against various types of noise, such as Gaussian 

blurring, pixelwise dropout, cropping, and JPEG compression, with noise layers placed between the encoder and decoder to 

ensure robustness. The COCO dataset was used for training, and the BOSS dataset was used for testing in steganalysis 
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experiments, with the results showing that the method can hide large amounts of data 0.203 bits per pixel (BPP) with minimal 

distortion, demonstrating high capacity and robustness against common noise types such as Gaussian blurring and JPEG 

compression. However, this method may require large datasets for training and could benefit from optimization for real-time 

applications where computational efficiency is crucial. 

In [57], an image watermarking method with unsupervised deep learning was proposed to automate watermark embedding 

and extraction. The watermarking was treated as an image fusion task, blending the watermark and cover image features for 

invisibility while ensuring resilience. The GAN network includes an embedder for embedding, an extractor for retrieval, and 

an invariance layer that enhances fidelity, robustness, and correlation between the watermark and fused image features. This 
unsupervised training enhances the system's resilience against image-processing distortions and enables challenging 

applications to extract watermarks from camera-captured images. Using ImageNet (128x128 datasets for training, COCO 

for cover images, and binary CIFAR as watermark test sets), real-world testing involved mobile phone-captured image 

resamples. The results revealed high fidelity with a PSNR of 39.72 dB and low BER rates under distortion: 11.6% for JPEG 

(Quality 10), 7.8% for 65% cropping, 32.2% for 20% Gaussian noise, and 12.3% for 90% salt-and-pepper noise. However, 

the method's performance may decrease when it is exposed to more complex distortions or images with more intricate details. 

A CNN-based watermarking method was used in [58] to protect the intellectual property of digital images. It is blind, robust, 

and invisible. These networks adjust the resolution of the watermark to match that of the host image. The BOSSbase dataset 

contains 10,000 images for training purposes, and the watermarks are generated randomly. The results report an average 

PSNR of 43.23 dB during training and 40.58 dB during evaluation. The method was tested against several attacks, such as 

pixel value changes and geometric attacks, Gaussian filtering, median filtering, and salt-and-pepper noise. The results show 

the method's resistance to various attacks with BERs lower than 0.1. However, the random generation of watermarks could 

result in challenges in watermark consistency, and further refinement might be required for fine-tuning watermark 

embedding. 

A deep learning-based watermarking model named ReDMark in [59] combined two fully convolutional neural networks 

(FCNs) with residual structures for embedding and extraction to improve speed and robustness. CIFAR10 and Pascal 

VOC2012 are adopted for training, and Granada's dataset is used for testing. Additionally, various simulated attacks, 
including JPEG compression, Gaussian noise, and other real-world distortions, were applied to the dataset to allow the 

watermark data to diffuse across a wide area of the image. The results show that the model has high resistance to attacks, 

with a PSNR of 35 dB and a structural similarity index (SSIM) of 0.96. While the model’s results showed promising 

performance under simulated attacks, it may face challenges when exposed to more advanced adversarial techniques or large-

scale data. 

In [60], a supervised GAN watermarking model was presented to embed invisible watermarks into images to verify 

ownership and protect intellectual property. The structure of a GAN consists of a pretrained encoder-decoder network that 

injects a watermark into each image, allowing for efficient and seamless ownership verification. The decoder remains frozen 

during GAN training, guiding the watermark’s embedding, whereas a combined loss function ensures that the watermark is 

preserved in generated images, even under fine-tuning. The model’s robustness is further strengthened by data 

augmentations—such as JPEG compression, noise addition, and color transformations—applied during training, enabling 

the watermark to withstand various postprocessing distortions. The CelebA, LSUN-Bedroom, FFHQ, and VGG Flowers 

datasets are used for model evaluation. The model achieves watermark bit accuracy (approximately 99%) and retains high 

image quality, with PSNR values above 45 and SSIM values above 99%. However, its reliance on pretrained networks could 

limit its adaptability to new types of distortions and data. 

In [61], a deepfake prevention method combining a GAN and 3D CNN was proposed to invisibly embed encrypted 

watermarks in video frames. This method starts by creating an attention model by training the 3D CNN to identify features 
within frames, guiding the optimal watermark placement. The GAN then uses this attention model to seamlessly embed a 

human-invisible watermark into the frames. UCF101 was used for training, Hollywood2 was used for validation, A2D was 

used for testing, and TikTok trending videos were used for additional short-form social media validation. Testing included 

watermarked videos subjected to deepfake attacks with DeepFaceLab 2.0, where tampering was detected by comparing 

original and altered watermark probabilities. This method demonstrated impressive performance, achieving 99.7% accuracy 

in embedding, a 100% success rate in deepfake prevention, a PSNR of 13.98 (indicating low noise and high quality), and an 

SSIM of 0.301 (showing high similarity and low distortion). 

In [62], the ARWGAN model was developed for watermarking via an encoder-decoder GAN framework enhanced by 

attention mechanisms and feature fusion to overcome limitations. The model’s feature fusion module (FFM) integrates 

shallow and deep features across layers, boosting watermark robustness. Moreover, an attention module (AM) generates an 

attention mask that highlights regions ideal for embedding and focuses on textured and less noticeable areas for minimal 

visual impact. Additionally, the noise subnetwork simulates attacks such as cropping, blurring, and JPEG compression to 

improve robustness against real-world distortions. The ARWGAN was trained on COCO with over 100,000 images and 

tested on 3,000 images, with further cross-dataset tests on Pascal VOC2012, ImageNet, and EUVP. The model excelled in 
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both image quality and robustness: on Pascal VOC2012, it achieved an average PSNR of 36.83 dB and an SSIM of 0.9698; 

on COCO, it scored 35.87 dB in PSNR and 0.9688 in SSIM. ARWGAN’s robustness averaged 98.39% on COCO, 

outperforming competitors such as MBRS (96.92%), and on Pascal VOC2012, it maintained 98.89% robustness, achieving 

94.45% under JPEG compression (quality 50) and 100% against Gaussian noise (σ = 2.0), consistently surpassing other 

models across all conditions. 

In [63], a hybrid architecture for the encoder-decoder framework that combines CNNs and transformers was introduced. The 

encoder extracts primary features from the cover image via convolutional layers, whereas the decoder integrates CNNs and 

Swin transformers to capture both local and global image features. The multiscale attentional feature fusion module (MA-
FFM) merges local and global feature contexts, allowing more effective interaction between local and nonlocal pixels. This 

method was trained on the COCO dataset. The results demonstrated that the imperceptibility achieved PSNR > 40 dB and 

SSIM > 0.95 across various noise types, including Gaussian, salt and pepper, dropout, and JPEG compression. While this 

method has significant potential, further exploration of its performance across different media types, such as video or audio, 

and its computational efficiency could help assess its real-world applicability. 

The DNN watermarking introduced in [64] includes the Kuribayashi white-box approach to embedding watermarks into 

convolution layers (e.g., VGG16, ResNet50) via constant weight codes (CWCs). By encoding watermarks into fixed-weight 

codewords and adjusting thresholds for weight parameters, the method achieved an accuracy of 97% on flower datasets. 

However, the method focused on convolutional layers, which restricts its applicability, especially for architectures with fewer 

parameters in these layers. Furthermore, the dependency on specific models and datasets raises concerns about generalization 

across diverse contexts. 

[65] used a DNN watermarking method that prevents the modification of model weights by encoding watermarks through 

secret key-based matching of weight binary codes in convolutional layers. The experiments revealed that the watermark 

remained robust against Gaussian noise attacks, with a bit error rate (BER) of 6.2% when noise occurred with a standard 

deviation of 0.5 times. The limitation of the method was not tested against advanced pruning and fine-tuning, and it depends 

on specific model architectures. 

In [66], a CNN with a quantized activation function (QAF) uses a series of hyperbolic tangent (tanh) functions across the 
image’s DCT. For training, 50,000 images from the CIFAR-10 dataset were used, and for testing, a set of 49 grayscale 

images (512x512 pixels) was used. The evaluation metrics, including the structural similarity index measure (SSIM) and 

peak signal-to-noise ratio (PSNR), are used to assess the image quality of the watermarked images. The QT-QAF-Net method 

demonstrated the effectiveness of the QAF layer in enhancing robustness while maintaining high image quality. However, 

while the method shows promise, it may benefit from more extensive testing with larger datasets and additional distortions 

to assess its scalability and robustness in real-world applications, particularly for complex images or videos. 

In [67], a GAN-based information-hiding technique for digital images named GANMarked was proposed. It consists of three 

main components: an autoencoder network that securely encodes watermarks by merging two watermark images into one, 

adding an extra layer of security and efficiency to watermarking, and a decoder that allows the recovery of each watermark 

from the encoded representation. A distinctive feature of GANMark is its secure trigger key, which protects the model itself, 

not just the watermark, ensuring model ownership verification and making it highly useful for protecting intellectual property 

in artificial intelligence (AI) and machine learning models. The datasets used include the DIV2K (a high-quality image set), 

COCO (for diverse robustness testing), and COVID-19 and Cats & Dogs datasets, adding variety for cross-domain testing 

and evaluating metrics such as the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), normalized 

correlation (NC), and bit error rate (BER), and GANMarked achieves high PSNR and SSIM scores, indicating that the 

watermark is invisible to human eyes. With an NC of 0.999 and a BER of 0, it displayed perfect robustness and resilience 

against hybrid attacks, demonstrating its strength and practicality for real-world applications. Despite these strengths, future 
research could explore the model’s application to more varied datasets and evaluate its performance under extreme 

conditions, such as highly compressed images or video data, to confirm its resilience in real-world scenarios. 

In [68], the proposed Npix2Cpix method combines a U-Net-based conditional generative adversarial network (GAN) for 

denoising watermarked images with a Siamese network designed for one-shot classification. The GAN component 

effectively removes handwriting and background noise, achieving a PSNR of approximately 24 dB and an SSIM of 

approximately 0.85, demonstrating its ability to manage class variances while leveraging one-shot learning to contend with 

limited datasets. However, the method encounters difficulties in extremely noisy environments and struggles to scale 

effectively to accommodate various watermark designs. 

[69] introduced neural network-based watermarking that integrates a quantized activation function (QAF) into a conditional 

GAN framework, allowing it to accurately mimic the standard JPEG quantization process. The U-Net-based generator 

embeds the watermark into the blue channel of the image, whereas the discriminator is optimized via both SSIM and cross-

entropy loss. The experimental results show that the method achieves an approximately 24 dB PSNR, an approximately 0.85 

SSIM, and a bit error rate as low as 0.003% under common distortions. Although the technique significantly enhances 
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watermark invisibility and adapts well to the conditions of social network distribution, its reliance on standardized 

quantization tables restricts its flexible performance. 

Zhu et al. [70] developed a combination of U-Net++ attention and dense skip connections to enhance the model's ability to 

localize features and embed messages precisely. The architecture also uses a quadratic nonlinear loss weight strategy inspired 

by the WGAN to optimize the balance between invisibility and robustness. The experimental results revealed advantages in 

terms of both visual quality and resilience to simulated and real-world attacks. However, using a complex architecture with 

attention mechanisms and dense layers may lead to a significant increase in the computational load. 

 A method to embed watermarks in audio was proposed in [71]. It relies on deep learning and resisting audio-recording (AR) 
distortions and embeds watermark bits in low-frequency spectrum frames to ensure imperceptibility. DeepAWR was tested 

and evaluated on the FMA and Aidatatang-200zh datasets. The model extracted a near-perfect watermark with an ACC of 

approximately 1.0 under AR distortions and at varying distances of 50–150 cm. However, this method suffers from the 

complexity of high decoding and a capacity limit of 100 bps. 

Deep-based watermarking methods have made significant progress in enhancing watermark robustness and imperceptibility, 

utilizing advanced deep learning architectures such as GANs, CNNs, U-Nets, DNNs, and transformers. However, there 

remains an area for improvement in terms of computational efficiency, overfitting, and further robustness testing in real-

world, complex environments. The complexity and resource demands may limit their applicability in real-time scenarios or 

on devices with restricted processing capabilities. 

TABLE III.  COMPARISON OF DIFFERENT DEEP LEARNING-BASED WATERMARKING TECHNIQUES 

Reference Year Technique Description Dataset Advantage Disadvantage Results 

[56] 2018 HiDDeN 

 

End-to-end deep 

learning 

framework for 

data hiding; uses 

CNNs for 

encoding and 

decoding 

watermark. 

COCO 

(training), 

BOSS 

(testing) 

High capacity and 

robustness; can 

withstand 

distortions like 

noise, cropping, 

and JPEG 

compression; 

adversarial loss 

enhances 

watermark 

invisibility 

require high 

computational 

resources due to 

adversarial 

training 

 0.203 bits per 

pixel (BPP) 

data hiding 

with minimal 

distortion, 

demonstrating 

robustness 

against 

Gaussian 

blurring and 

JPEG 

compression 

[57] 2019 Unsupervised 

GAN 

Automates 

watermark 

embedding and 

extraction as an 

image fusion task; 

uses an embedder 

and extractor 

network. 

ImageNet, 

COCO, 

CIFAR 

Fully automated; 

resilient in real-

world distortions, 

suitable for 

camera-captured 

images 

Higher BER for 

severe noise 

levels; requires 

adaptation for 

specific distortion 

types. 

PSNR: 39.72 

dB; BER: 

11.6% (JPEG 

Q10), 7.8% 

(cropping), 

32.2% 

(Gaussian 

noise), 12.3% 

(salt-and-

pepper) 

[58] 2020  CNN Blind and robust 

watermarking 

method; adjusts 

watermark 

resolution to fit 

host images. 

BOSS dataset 

(10,000 

images, 512 × 

512 pixels, 

downscaled to 

128 × 128 for 

training) 

Blind, robust, and 

invisible 

watermarking; 

adaptable to any 

resolution; 

includes a scaling 

factor to balance 

invisibility and 

robustness; 

provides attack 

simulations. 

Lower scaling 

factor values may 

reduce robustness 

High 

invisibility 

with PSNR of 

43.23 dB 

during 

training and 

40.58 dB 

during 

evaluation; 

BERs lower 

than 10% 

under attacks 

like Gaussian 

filtering, 

median 

filtering, and 

salt-and-

pepper noise 

[59] 2020 ReDMark 

 

Combining two 

fully 

convolutional 

networks for 

embedding and 

CIFAR10, 

Pascal 

VOC2012 

(training), 

High resistance to 

attacks (JPEG 

compression, 

Gaussian noise, 

Limited 

generalization 

information may 

require high 

PSNR > 35 

dB, SSIM ≈ 

0.96, robust 

against real-
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extraction 

improves speed 

and robustness. 

Granada 

(testing) 

cropping, grid-

based removals) 

computational 

power for training 

world 

distortions 

[60] 2022 Supervised 

GAN 

 

Embedding 

invisible 

watermarks into 

images for 

ownership 

verification; uses 

a pretrained 

encoder-decoder 

structure. 

CelebA, 

LSUN-

Bedroom, 

FFHQ, VGG 

Flowers 

Efficient 

ownership 

verification with 

minimal 

computational 

cost; robust to 

postprocessing 

distortions; 

protects pretrained 

GANs 

Potentially limited 

to GAN-generated 

images; requires 

specific training 

setup. 

Near-perfect 

watermark 

accuracy 

(~99%); 

PSNR > 45, 

SSIM > 99% 

[61] 2022 GAN-3D 

CNN 

Invisibly embed 

encrypted 

watermarks in 

video frames to 

enhance security 

and ownership 

verification. 

 

UCF101 

(training), 

Hollywood2 

(validation), 

A2D, TikTok 

trending 

videos 

(testing) 

High accuracy in 

deepfake 

prevention; 

invisible 

watermarking; 

adaptable to 

various video 

platforms 

PSNR and SSIM 

scores indicate 

some level of 

noise and lower 

visual quality in 

certain cases 

99.7% 

embedding 

accuracy, 

100% 

deepfake 

prevention 

success, 

PSNR: 13.98, 

SSIM: 0.301 

[62] 2023 ARWGAN An attention-

guided robust 

watermarking 

model that uses a 

GAN framework 

with feature 

fusion 

COCO 

(training), 

Pascal 

VOC2012, 

ImageNet, 

EUVP 

(testing) 

High robustness; 

minimal visual 

impact; adaptable 

to various real-

world attacks 

Computationally 

intensive due to 

attention 

mechanisms and 

feature fusion 

COCO: 

PSNR 35.87 

dB, SSIM 

0.9688; 

Pascal 

VOC2012: 

PSNR 36.83 

dB, SSIM 

0.9698; 

Robustness: 

98.39% on 

COCO, 

98.89% on 

Pascal 

VOC2012, 

94.45% under 

JPEG 

compression, 

100% against 

Gaussian 

noise 

[63] 2023 Hybrid CNN-

Transformer 

 

Combining CNNs 

and Swin 

Transformers for 

enhanced feature 

extraction, 

COCO 

dataset 

(10,000 

images, 

resized to 

128x128, split 

into training, 

validation, 

and testing 

sets) 

High 

imperceptibility 

and robustness 

Potentially high 

computational cost 

due to hybrid 

model complexity 

Achieved 

PSNR > 40 

dB, SSIM > 

0.95; Low 

BER; robust 

against 

Gaussian, Salt 

and Pepper, 

Dropout, and 

JPEG 

compression 

[64] 2023 DNN with 

CWC & NFTs 

 

Embedding 

watermark into 

convolution layers 

(VGG16, 

ResNet50) using 

Constant Weight 

Codes (CWC). 

 

Flower 

dataset, 

ImageNet 

99% pruning 

resilience; 

Maintains 97% 

model accuracy; 

NFT integration 

enhances security 

 

Limited to 

convolution-layer 

architectures; 

Untested 

generalization 

across diverse 

models/datasets 

 

99% 

robustness 

against 

pruning 

attacks; 97% 

accuracy on 

flower 

dataset; 

Statistical 

MSE 

detection 
[65] 2023 Weightless 

White-box 

Watermarking 

 

Embedding 

watermarks via 

code matching 

between 

watermark bits 

CIFAR-10 

 

No training 

overhead; 

Undetectable via 

weight analysis; 

Robust to 

Vulnerable to 

LSB-targeted 

attacks; Untested 

on 

nonconvolutional 

BER <20% 

under 

Gaussian 

noise (std ≤2); 

0% accuracy 
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and LSBs of 

weight binaries 

without 

modifying 

weights. 

pruning/fine-

tuning. 

 

models (e.g., 

transformers). 

 

loss; Survives 

pruning; Fails 

at std=5 (46% 

BER, 52.8% 

accuracy 

drop). 

 

[66] 2024 Quantized 

Activation 

Function 

 

The proposed 

neural network 

employs a 

quantized 

activation 

function (QAF) 

using hyperbolic 

tangent curves to 

approximate 

JPEG 

compression's 

quantization table, 

integrated into a 

GAN framework, 

enhancing 

robustness against 

JPEG attacks and 

reducing 

watermark 

extraction errors 

compared to 

noise-based 

simulations. 

CIFAR-10 

(50,000 

images, 

32x32 pixels); 

49 grayscale 

images 

(512x512 

pixels) with 

embedded 

4x4 bit 

watermarks 

QAF layer 

simulates JPEG 

compression more 

accurately, 

improving 

robustness and 

preserving image 

quality; 

outperforms 

standard noise 

addition layers 

Complex 

architecture due to 

integration of 

QAF layer 

Higher SSIM 

and PSNR 

scores 

indicate better 

image quality 

and less 

visual 

degradation; 

Lower BER, 

particularly at 

JPEG 

compression 

levels Q ≤ 70, 

[67] 2024 GANMarked 

 

A secure 

watermarking 

technique that 

utilizes a secure 

trigger key for 

model ownership 

verification, 

DIV2K, 

COCO, 

COVID-19, 

Cats & Dogs 

High security with 

a key-based 

autoencoder; 

handles diverse 

robustness with 

cross-domain 

testing; suitable 

for IP protection. 

Computational 

cost due to GAN 

High PSNR 

and SSIM; 

NC of 0.999; 

BER of 0, 

showing 

robustness 

and resilience 

to hybrid 

attacks 

[68] 2024 U-Net GAN + 

Siamese One-

Shot 

 

Combining a 

modified U-Net-

based conditional 

GAN 

(Npix2Cpix) for 

denoising 

historical 

watermarks with 

Siamese networks 

for one-shot 

classification. 

Large-scale 

historical 

watermark 

dataset 

(>16,000 

images) 

 

95% one-shot 

classification 

accuracy; Robust 

to 

handwriting/noise; 

Preserves 

watermark spatial 

consistency 

 

Computationally 

intensive; 

Struggles with 

severe degradation 

scenarios 

 

PSNR: 32.4 

dB; SSIM: 

0.89; 95% 

classification 

accuracy; 

Outperforms 

SOTA by 15-

20% accuracy 

 

[69] 2024 Template-

based NN 

extraction + 

Polar Codes 

 

Combining neural 

network-based 

watermark 

extraction with 

polar codes for 

error correction. 

Employing CA-

SCL decoding 

with CRC for 

robustness. 

Custom 

dataset (1,000 

HD images 

from movie 

trailers; tested 

on 7 

platforms: 

Facebook, 

VK, 

Telegram, 

etc.) 

High robustness to 

real-world social 

network 

distortions (BER 

≤ 0.01); adaptable 

to multiple 

platforms via 

nested polar 

codes; no 

auxiliary data 

needed. 

Computational 

overhead from 

polar code 

decoding (SCL list 

size = 8); 

dependency on 

prefiltering (JPEG 

QF=90) to exclude 

unstable 

containers. 

PSNR=39.66, 

SSIM=0.987; 

watermark 

capacity 650-

1600 bits for 

1920×1080 

images; BER 

< 3% on 

Telegram/Sna

pchat, <20% 

on Pinterest 

after 

transmission. 

 

[70] 2024 Attention U-

Net++ 

 

A digital image 

watermarking 

scheme based on 

attention U-Net++ 

structure 

 

MIRFLICKR Superior visual 

quality and 

robustness 

effectively extract 

image features 

and find optimal 

Better 

performance 

requires careful 

tuning of the loss 

function weights; 

it relies on 

Watermarked 

images show 

higher PSNR 

(up to 37.39 

dB) and 

SSIM (up to 



 

 

 

 

472 Naem et al., Mesopotamian Journal of Cybersecurity Vol.5, No.2, 453–476 

pixel space for 

embedding 

messages. 

 

simulated noise 

layers during 

training. 

 

0.982) values; 

maintain bit-

accuracy 

above 98% 

for various 

attacks 

including 

perspective 

warp, 

Gaussian 

noise, and 

JPEG 

compression; 

outperform 

HiDDeN, 

StegaStamp, 

and RIHOOP 

in both visual 

quality and 

robustness 

metrics. 

[71] 2025 Deep Learning 

+ ReDS 

Simulator 

 

Embedding bits in 

low-frequency 

spectrogram 

frames; uses 

ReDS for AR 

distortion 

simulation. 

FMA, 

Aidatatang-

200zh 

 

Robust to AR 

(ACC ≈1.0); high 

SNR (34–36 dB). 

 

High decoder 

complexity; 

limited to 100 bps. 

 

ACC >0.98 

under AR; 

bACC ≈1.0 

(50 cm), 

0.9997 (150 

cm); SNR 

34–36 dB. 

 

7.4 Comparison of Watermarking Techniques 

Traditional and deep learning-based watermarking methods differ significantly in methodology, robustness, 

imperceptibility, and computational complexity. Table IV provides a comparative analysis based on key characteristics. 

Traditional and deep learning-based watermarking techniques have emerged as crucial tools for protecting digital content, 

each offering distinct advantages and challenges. While traditional methods remain suitable for stable environments 

requiring fast performance with limited capacity to withstand advanced attacks, deep learning approaches represent a 

significant leap in adapting to evolving threats. Owing to their ability to resist attacks, offer superior imperceptibility, and 

handle diverse datasets efficiently, these methods signify the future of digital content protection. Although deep learning 

demands more computational resources, continuous advancements in acceleration techniques and performance 

optimization are making it the ideal solution for advanced applications in the long run. This research suggests a hybrid 

approach that combines the reliability of traditional embedding with the adaptive power of deep learning to 

address complex threats and provides a balanced strategy, enhancing digital security and safeguarding intellectual property 

rights. 
TABLE IV.    COMPARISON BETWEEN TRADITIONAL AND DEEP-LEARNING-BASED WATERMARKING  

 

Characteristic Traditional watermarking method Deep-learning based watermarking 

Method DCT, DWT, SVD, Fractal Coding, and LSB 

encoding 

CNNs, GANs, Transformers 

Data Types Used Primarily images, some audio, and 3D models Images, videos, and possibly other media types 

Robustness Good against basic attacks (e.g., noise, 

compression). Vulnerable to specific attacks 

High robustness, capable of coping with complex and 

adaptive attacks 

Imperceptibility Often high, but can be compromised with 

larger watermarks 

Highly imperceptible due to adversarial training 

techniques 

Computational 

Complexity 

Generally, lower, suitable for real-time 

applications 

Higher computational costs may not be ideal for real-

time usage 

Performance Metrics PSNR is typically above 40 dB; SSIM scores 

depend on the method 

High PSNR (e.g., >43 dB) and varied BER performance 

depending on the model used 

Scalability May struggle with large datasets and diverse 

applications 

More adaptable to varying data sizes and types 

Application Suitable for stable datasets with predictable 

attacks 

High adaptability in dynamic, varied real-world 

conditions 
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Adaptability Limited adaptability; often tailored for specific 

types of media 

Strong adaptability across various media and conditions 

Ease of Implementation Simpler to implement due to established 

techniques 

Requires expertise in deep learning frameworks and 

models 

 

8. CONCLUSIONS 

This paper examines several state-of-the-art advancements in digital watermarking from 2016--2025. It presents traditional 

watermarking methods in the spatial and frequency domains, which shows their simplicity and efficiency. However, they 

face challenges in robustness and adaptability, making them vulnerable to advanced threats and manipulations. Therefore, 

watermarking techniques have evolved to develop robust watermarking methods that keep up with the evolution of 

watermarking technologies. One of the efficient techniques for watermarking is the use of deep learning; however, 

overcoming challenges related to high resource consumption, ensuring model efficiency, and developing reliable detection 

mechanisms are necessary. These challenges require the development of new solutions that provide intellectual property 

protection while maintaining the effectiveness and performance of deep learning models.  The future of watermarking focuses 

on adopting hybrid models that combine the power of deep learning, adaptive techniques, and dynamic schemes to improve 

imperceptibility, robustness, and security and address the continuing diversity of challenges posed by unauthorized data 

manipulation and access.  Furthermore, establishing standardized datasets is necessary for benchmarking performance and 

fostering meaningful comparisons across different watermarking techniques. Collaboration across academia and industry 

will be crucial to driving these advancements and addressing the ongoing challenges in digital watermarking. 
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