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 A B S T R A C T 
 

The accelerated proliferation of Internet of Things (IoT) apparatuses has rendered intrusion detection 
and incident response progressively arduous owing to device diversity, constrained resources, and 
concerns regarding data confidentiality. Addressing these challenges is paramount to sustaining secure 
and resilient IoT ecosystems. This manuscript introduces an innovative framework that amalgamates 
software-defined networking (SDN) with segmented federated learning (SFL) to augment the 
effectiveness and reactivity of anomaly detection within the IoT. The proposed methodology delineates 
the federated learning (FL) process, facilitating lightweight, localized model training customized to the 
capabilities of individual IoT devices. The SDN is utilized to dynamically regulate network flows and 
implement real-time incident response measures. The proposed architecture is structured to reduce 
communication overhead, safeguard data privacy, and support participation from resource-limited nodes. 
A simulation-based evaluation strategy is proposed, with both execution and empirical substantiation 
anticipated in forthcoming stages. This integrated SFL-SDN paradigm provides a scalable and privacy-
conscious solution for fortifying IoT infrastructures and is anticipated to surpass conventional centralized 
and nonsegmented FL methodologies in intricate, real-time threat scenarios. 

 

1. INTRODUCTION 

The phrase “Internet of Things" refers to a future in which physical things that are not typically associated with computers 
are linked to the internet in some way. [1] The expansion of IoT devices has fundamentally transformed numerous 
dimensions of modern existence, providing unmatched levels of connectivity and convenience. Nevertheless, the extensive 
incorporation of the IoT also introduces significant security challenges. A significant proportion of these devices are deficient 
in substantial intrinsic security protocols, thereby rendering them susceptible to cyber assaults. Additionally, the diverse and 
constantly evolving nature of IoT environments introduces layers of intricacy in the identification and mitigation of 
intrusions. 

Traditional FL systems fail to adapt to heterogeneous device constraints and lack real-time adaptability, which is essential 
in dynamic IoT ecosystems. Conventional intrusion detection systems (IDSs) encounter constraints in adequately securing 
IoT endpoints because of their fixed and centralized characteristics. Addressing these challenges, SDN has emerged as a 
promising framework that delivers centralized management and flexibility, enabling dynamic network administration and 
security reinforcement. By harnessing SDN, in conjunction with advancements in FL and cloud computing, a compelling 
strategy unfolds to enhance IoT intrusion detection and incident response capabilities. 

This work proposes an integration of SFL and cloud-based SDN for IoT intrusion detection and response. SFL promotes 
collaborative learning among IoT devices while ensuring data privacy and reducing bandwidth constraints. By segmenting 
the IoT network into clusters, SFL enhances model training and updates while preserving sensitive data confidentiality. 
Additionally, cloud resource integration enhances the scalability and robustness of the IDS. Cloud platforms offer significant 
computational and storage capabilities to support intensive intrusion detection processing tasks. Moreover, the cloud's 
elasticity facilitates scalable responses to varying workloads and evolving threats. 

By amalgamating the capabilities of SDN, FL, and cloud computing, our study aims to contribute to the advancement of 
resilient and adaptable security measures for IoT environments. The suggested framework can help improve rapid threat 
identification, expedite response to incidents, and strengthen the robustness of IoT infrastructures against evolving cyber 
hazards. 
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Initially, the core Foundational Knowledge will be presented. An examination of the pertinent literature will be subsequently 
carried out in the following section. The following section will focus on the methodology with a subsequent discourse, 
delving into prospective avenues for research. 

2. CHALLENGES AND LITERATURE REVIEW 

2.1 Existing challenges in IoT environments 

In contemporary times, there has been a notable escalation in both the volume and severity of aggressions aimed at IoT 
endpoints and cloud-based infrastructures. The matter of cybersecurity has ascended to prominence, considering the 
vulnerability of interconnected devices to cyberattacks and breaches of data integrity. The sheer scale of IoT deployments, 
as illustrated by the projected growth of connected devices in Figure 1, exacerbates these vulnerabilities. 

 

Fig. 1. Global Growth of Connected Devices (in Billions), 2019--2030. [1] 

Furthermore, the challenge of interoperability arises, as a wide array of IoT devices frequently encounter difficulties in 
establishing efficient communication channels. The task of overseeing a vast number of interconnected devices poses a 
significant challenge within the current swiftly developing technological environment. With the continuous growth of the 
IoT, the intricacy of coordinating these interlinked systems has also increased. The provision of smooth communication, 
compatibility, and protection throughout such an extensive array of devices presents substantial obstacles. The increasing 
interconnectivity of a multitude of devices has resulted in the continuous generation of a substantial volume of data, 
encompassing both sensor information and user engagement activities. The increase in data volume projected to surpass 
500% from 2019--2025, as shown in Figure 2, poses challenges in storage, processing, and analysis. Dealing efficiently with 
this vast quantity of data requires a robust infrastructure and advanced analytical skills. 

 

Fig. 2. Projected Growth of IoT Data Volume (in Zettabytes), 2019--2025. [2] 

Ensuring user privacy in the face of extensive data collection remains a crucial issue, demanding clear policies and strong 
encryption protocols to countermeasure the interoperability and security challenges of the IoT.[3] Resource constraints on 
many IoT endpoints further complicate the integration of sophisticated security procedures directly on devices. 

2.2 Literature Review on Security Approaches for the IoT 

2.2.1 SDN and the Cloud for IoT Security 

When considering the combination of SDN and the Cloud for enhancing IoT security, one crucial aspect to explore is the 
interoperability between SDN controllers and cloud-based security solutions. By leveraging the dynamic programmability 
of SDN in conjunction with the scalability and resource availability of the cloud infrastructure, a robust security framework 
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can be established for IoT devices. This cooperative synergy enables immediate monitoring, recognition of potential threats, 
and prompt response strategies to safeguard IoT ecosystems from imminent cyber risks, encompassing zero-day 
vulnerabilities and advanced persistent threats [4]. Furthermore, the enhanced security features are caused by the integration 
of SDN and the Cloud for IoT security; another critical aspect to consider is the utilization of artificial intelligence (AI) 
algorithms in threat detection and mitigation strategies. By incorporating AI-driven solutions into the security framework, 
IoT devices can benefit from advanced anomaly detection capabilities, predictive analysis of potential security breaches, and 
adaptive response mechanisms. These AI-powered tools can continuously learn and adapt to new cyber threats, ensuring a 
proactive defense mechanism that stays ahead of malicious activities targeting interconnected IoT networks [5]. 

2.2.2 Intrusion Detection in IoT 

In cybersecurity, IDSs play a crucial role in safeguarding interconnected devices within the IoT. These systems are vital for 
monitoring network traffic, detecting potential vulnerabilities, and issuing alerts when unauthorized access or malicious 
activities are identified. By leveraging advanced algorithms and Machine Learning (ML) techniques, IDSs can effectively 
analyse patterns and anomalies in data flow to thwart cyber threats before they escalate [6]. As the IoT landscape continues 
to expand, robust and adaptive IDS solutions are paramount. Innovations such as blockchain for secure data transactions and 
decentralized storage are being explored to construct more resilient frameworks against data breaches and network 
vulnerabilities [7]. However, traditional IDSs often struggle with the scale and heterogeneity of IoT data and may impose 
significant computational loads, making them unsuitable for direct deployment on resource-constrained devices. 

2.2.3 Securing IoT with FL 

FL in IoT security has emerged as a revolutionary approach for processing and securing data within interconnected devices. 
By leveraging FL techniques, IoT networks can now collectively learn from decentralized data sources without 
compromising individual privacy or security. This methodology facilitates the creation of resilient models that augment the 
comprehensive resilience of systems in the face of threats to actors while simultaneously upholding data integrity among the 
diverse nodes within the network [8]. The implementation of FL in IoT security has not only enhanced data processing and 
security measures within interconnected devices but also paved the way for a more collaborative and privacy-preserving 
approach toward ML. This innovative technique enables IoT networks to collectively learn from distributed data sources 
without jeopardizing the confidentiality of individual information or network security. By adopting FL, robust models have 
been developed that enhance the comprehensive robustness of systems in the face of cyberattacks, thereby fortifying data 
integrity across different nodes in the network [9]. 

2.3 Incident Response Mechanisms 

Traditional incident response mechanisms have long been the cornerstone of cybersecurity practices. However, as technology 
evolves and threats become more sophisticated, there is a growing need to adapt and innovate in this space. One emerging 
trend is the use of AI and ML algorithms in incident response strategies. By leveraging AI capabilities, organizations can 
improve their ability to detect, analyse, and respond immediately to security incidents, thereby strengthening their overall 
cyber-defense posture. This shift towards AI-driven incident response not only enables quicker threat identification but also 
empowers teams to proactively mitigate risks before they escalate [10]. 

The amalgamation of SDN with cloud-based systems has revolutionized the way in which cybersecurity incidents are 
handled. By leveraging the flexibility and centralized control offered by SDN in conjunction with the scalability and resource 
optimization of cloud computing, organizations can now respond to security threats with unprecedented speed and efficiency. 
This innovative methodology not only improves the identification and management of incidents but also optimizes the 
comprehensive incident response procedure, ultimately bolstering the resilience of modern digital infrastructures [11]. 
Furthermore, the combination of SDN and cloud-based incident response allows for real-time threat intelligence and 
automated responsive measures, enabling organizations to proactively defend against evolving cyber threats. 

2.4 Related Works and Gap Analysis 

2.4.1 Related Works: Overview of FL Approaches in IoT Security 

The landscape of FL for IoT intrusion detection has evolved significantly, with early foundational works establishing core 
privacy-preserving principles while revealing fundamental challenges, as summarized in the comparative analysis in Table 
1. Pioneering studies by Sun et al. [12] introduced segmented FL for large-scale networks, which demonstrated adaptability 
across diverse network participants but encountered stability issues and efficiency limitations for resource-constrained 
devices. Rey et al. [13] advanced the field by developing FL specifically for malware detection, showcasing real-world 
applicability through comprehensive performance comparisons with traditional approaches, yet exposing critical 
vulnerabilities to adversarial attacks and substantial synchronization requirements that hindered scalability. The integration 
of FL with software-defined networks (SDNs) gained prominence through Duy et al. [14], who achieved remarkable 
accuracy in anomaly detection for the Industrial IoT while maintaining privacy preservation, although their approach suffered 
from inadequate performance consumption optimization and persistent interoperability challenges. 
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TABLE I.  SUMMARY OF RELATED WORKS ON FL AND SDN FOR IOT SECURITY, HIGHLIGHTING ADVANTAGES AND LIMITATIONS 

Year 
ML/DL 

Method 
Ref. 

SDN 

based 

Segme

ntation 

-based 

Advantage Limitations 

2020 FL [12] No Yes 
Good adaptability to various network 

participants 

Stability of the learning model, 

Efficiency for IoT devices 

2021 FL [13] No No 

Applicability to Real-World IoT Scenarios; 

Performance Comparison with Traditional 

Approaches 

Limited Number of Clients 

Vulnerability to Adversarial Attacks; 

Synchronization Requirements 

2021 FL [14] Yes No 
Privacy preservation; High-rate accuracy in 

anomaly detection 

No emphasis on Performance consumption; 

Unsupported interoperability issue 

2021 
FL, Continual 

learning 
[15] No No 

Robustness to Hyperparameter Changes; 

Continual Learning Approaches; 

Heterogeneous Privacy Framework 

Reduced Performance on Rarer Classes; 

Inherent Limitations of DP Algorithms; 

Dependency issue in dynamic or unpredictable 

environments 

2022 

FL, Energy 

Flow 

Classifier, 

Autoencoders 

[16] No No 

Improved Performance on Non-IID Data 

Superior to Traditional Methods using ML 

and DL algorithms 

Generalization Capability in achieving 

satisfactory performance across diverse 

datasets 

2022 FL [17] No No 

Privacy Preservation; Improved Efficiency; 

Collaborative Learning with FL and 

semisupervised learning 

Scalability Issues when dealing with vast 

amounts of unlabelled data; 

Communication Overhead 

2022 FL [18] Yes No 
High-rate accuracy; low 

power consumption 

No emphasis on interoperability issue on 

general IoT devices 

2022 SVM & KNN [19] Yes No 

Focus on Known Attack Vectors; 

Scalability and Robustness; Use of Multiple 

ML Techniques: Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN) 

Dataset Dependency; 

False Positive Rates; 

Performance Overhead 

2023 FL [20] No No 
Privacy Preservation; Increased Accuracy; 

Noise considerations are integrated into FL. 

Complexity in Implementation; 

Adaptability to new types of attacks 

2023 FL [21] No No 
Privacy preservation improved, acceptable 

computation performance 

Scalability with a higher number of devices 

and complex network 

2023 FL [22] No No 

High-rate accuracy close to the accuracy of 

conventional centralized ML models; 

Improved Model Performance 

No emphasis on interoperability; 

Scalability Issues; 

Communication Overhead 

2023 FL [23] Yes No 

High Detection Accuracy; 

Low False Positive Rate; 

Enhanced Network Management 

Potential for Overfitting; 

Dependence on Quality of Training Data 

2023 

Random 

Subspace 

Learning, 

KNN, AFSA, 

HSAFS 

[24] Yes No 

Efficient Attack Detection: By employing 

the Harmony Search algorithm based 

Feature Selection (HSAFS) method; 

Optimization of Detection Process using 

Artificial Fish Swarm Algorithm (AFSA) 

Experimental Validation 

Adaptability to New Threats; 

Scalability Issues; 

Dependence on Quality of Data; Complexity in 

Implementation 

2023 
SVM & 

Decision Tree 
[25] Yes No 

High-rate accuracy in detecting attacks in 

industrial IoT. 

interoperability issue on general IoT devices; 

No emphasis on privacy and performance 

2023 

FL, Deep 

Belief 

Networks, 

Deep Neural 

Networks 

[26] No No 

Enhanced Data Privacy; 

Scalability and Performance with Realistic 

Evaluation Conditions; 

Improvement with Pretraining 

Heterogeneous Data Impact; 

Realistic Data Distribution Conditions; Data 

Normalization Challenges; Dependence on 

Pretrained Models 
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Contemporary research has focused on sophisticated methodologies addressing privacy, scalability, and performance 
optimization through innovative architectural designs. Chathoth et al. [15] introduced groundbreaking integration of FL with 
differential privacy neural networks and continual learning, demonstrating exceptional robustness to hyperparameter changes 
while establishing heterogeneous privacy frameworks, although significant performance degradation for rare attack classes 
was encountered. Bertoli et al. [16] developed stacked-unsupervised FL approaches specifically designed for heterogeneous 
networks, which achieve superior performance on non-IID data compared with centralized methods but face generalizability 
limitations across diverse datasets. Recent domain-specific implementations have targeted specific IoT operational 
environments: Friha et al. [18] developed FELIDS for agricultural IoT applications that achieve high detection accuracy with 
low power consumption, whereas multiple researchers have explored SDN integration with varying degrees of success [19, 
20, 22, 23, 24], as detailed in the comparative analysis table showing their respective advantages and limitations. 

2.4.2 Critical Research Gaps 

The comprehensive analysis reveals a fragmented landscape where individual solutions excel in specific domains but fail to 
address holistic requirements of modern IoT ecosystems. While privacy preservation has been consistently achieved across 
multiple studies [12, 14, 15, 17, 20, 21, 26], scalability challenges remain pervasive, with most solutions [13, 15, 17, 19, 21, 
22, 24] encountering limitations when dealing with large-scale deployments and complex network topologies. 
Communication overhead emerges as a critical bottleneck [13, 17, 22, 25], significantly impacting real-time performance 
requirements essential for effective intrusion detection. Interoperability issues persist across heterogeneous IoT 
environments [12, 14, 18, 25], with most approaches lacking comprehensive solutions for diverse device capabilities and 
communication protocols. The analysis demonstrates that no existing approach comprehensively integrates dynamic 
segmentation, SDN orchestration, real-time response capabilities, and privacy preservation in a unified, scalable framework, 
necessitating holistic solutions that can dynamically adapt to diverse IoT environments while efficiently managing resources 
across heterogeneous devices. The critical analysis of these works results in several persistent gaps: 

 Device Heterogeneity and Resource Constraints: Many FL solutions do not adequately cater to the wide variance in 
the computational capabilities of IoT devices, leading to the exclusion of weaker nodes or inefficient training. 

 Communication Overhead and Scalability: Transmitting full model updates in large-scale IoT networks remains a 
significant bottleneck, impacting latency and energy consumption. 

 Lack of Integrated Dynamic Segmentation and Orchestration: While some works explore segmentation or SDN 
independently, a unified framework that combines adaptive model segmentation is needed. 

 Real-Time Adaptability and Response: Traditional FL lacks the ability to respond immediately to detected threats, a 
capability that SDN can provide. 

 Interoperability and Stability in Diverse Environments: Ensuring stable learning and interoperability across highly 
heterogeneous and dynamic IoT ecosystems remains a challenge. 

A comprehensive solution that effectively merges adaptive segmentation of IoT devices with SDN orchestration for real-
time, scalable, and privacy-conscious intrusion detection across diverse IoT ecosystems appears to be an area that warrants 
further exploration. In the next section, we present the proposed architecture. 

3. DESIGN OF THE PROPOSED SCHEME 

3.1 Objectives 

This paper introduces a novel security framework that integrates SFL with SDN and cloud computing to enhance 
detection and response in IoT domains. The proposed design addresses critical challenges in scalability, privacy preservation, 
and real-time threat mitigation by leveraging the programmability of SDN and the distributed efficiency of the SFL. The key 
objectives of this study are as follows: 

 To design a hybrid SDN-cloud architecture that enables centralized, dynamic network control for rapid security 
incident response in distributed IoT systems. 

 To implement SFL as a privacy-preserving collaborative learning framework, IoT devices train localized model 
segments without sharing raw data. 

 To improve intrusion detection accuracy, model segmentation can be optimized on the basis of device capabilities, 
ensuring efficient resource utilization. 

 To reduce detection latency through real-time SDN reconfiguration and automated threat mitigation strategies. 

 To enhance scalability, we dynamically allocate computational tasks across cloud and edge resources, accommodating 
heterogeneous IoT networks. 
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 To introduce an adaptive model segmentation strategy that tailors SFL submo0064els to device constraints (e.g., 
computing power and memory), maximizes participation and detection performance, and directly addresses the 
noninclusivity of resource-constrained devices 

 To ensure cross-platform compatibility with existing IoT security protocols and diverse device ecosystems. 

The proposed framework advances current approaches by unifying SFL’s decentralized, privacy-aware training with SDN’s 
programmable traffic management. Unlike conventional FL, which relies on a single global model, our methodology 
partitions the learning process into optimized segments, reducing communication overhead and computational strain. The 
SDN controller orchestrates critical functions—including device clustering, anomaly detection, and network policy 
updates—to enable an immediate threat response. Additionally, the adaptive segmentation mechanism intelligently 
distributes model fragments on the basis of real-time device conditions, ensuring equitable participation across resource-
constrained nodes. By integrating these innovations, the framework achieves a robust, scalable, and energy-efficient security 
solution. 

3.2 Model Architecture 

The architecture presented in Figure 3 exemplifies a hierarchical FL system specifically designed for IoT environments, 
integrating Cloud, SDN, and IoT layers to facilitate the efficient management of decentralized model training. The Cloud 
Layer accommodates the Global FL Server (GFLS), which is responsible for the initiation and coordination of the global 
model. Within this layer, each segmented FL server (SFLS) oversees model training in a cluster (e.g., C1, C2), thereby 
enabling resource-efficient updates tailored for heterogeneous IoT devices. Performance metrics, including segment 
accuracy and gradient variance, are routinely evaluated within the GFLS to ascertain uniform learning across various clusters. 
Each SFLS executes a weighted segment aggregation procedure predicated on the quality of the updates received, employing 
trust-weighted averaging or momentum-based fusion methodologies to achieve stability in the learning process. The SDN 
layer functions as an orchestration layer, wherein an SDN controller is tasked with segmentation, network orchestration, and 
incident response. This controller adeptly routes data, manages traffic, and ensures security through real-time monitoring 
and threat containment, effectively linking the cloud infrastructure and IoT devices via both northbound and southbound 
interfaces. The IoT layer encompasses a variety of IoT devices, including robots, vehicles, and sensors, which engage in 
localized model training on the basis of segmented models received from the cloud. These devices transmit updates via the 
SDN layer, where aggregation and orchestration processes are executed. This multilayered architecture significantly 
enhances scalability, security, and adaptability within the FL paradigm, optimizing resource utilization and safeguarding 
data across IoT ecosystems. 

 

Fig. 3. Proposed Multi-Layered Architecture for SDN-Cloud Incident Detection and Response with SFL for IoT 



 

 

677 Harchi et al. , Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 671-684 

Each IoT endpoint interfaces with a segmentation engine regulated by the SDN controller, which dynamically assesses a 
spectrum of parameters, including device functionalities, data pertinence, trustworthiness levels, and communication 
dependability, to allocate an appropriate subset of model parameters for training. In contrast to traditional FL methodologies 
that disseminate a uniform global model to all nodes, this context-sensitive and adaptive segmentation guarantees that each 
device acquires a customized model segment aligned with its operational profile and contribution potential. The system 
architecture comprises three strata: the IoT layer, which consists of terminal devices; the SDN layer, which is accountable 
for orchestration, segmentation, and routing; and the Cloud layer, which accommodates the GFLS and oversees centralized 
aggregation and storage. 

3.3 Key Contributions 

The proposed SFL model presents multiple significant contributions that effectively mitigate the prevailing shortcomings 
associated with FL in heterogeneous IoT environments. These contributions serve to increase the efficiency, scalability, and 
security of distributed learning across various IoT networks: 

 Adaptive Hybrid Segmentation Strategy: The proposed hybrid segmentation methodology serves to differentiate this 
framework by correlating each model segment with the authentic operational role of the device and its corresponding 
trust context. This SDN-oriented approach facilitates customized engagement, which is inclusive of low-resource 
nodes, while ensuring the preservation of scalability and precision of detection. 

 Privacy and Scalability Optimization: The suggested architectural framework bolsters privacy by maintaining data 
in a localized context and augments scalability via the implementation of segmented training, thereby rectifying the 
constraints inherent in conventional FL and centralized IDS models. 

 SDN-Orchestrated Real-Time Response: Utilizes SDN for effective clustering, segment allocation, and immediate 
intrusion response, enhancing capabilities absent in previous FL frameworks. 

 Improved Model Robustness and Fault Tolerance: The SFL framework aims to ensure stability during device 
failures or communication disruptions in IoT environments. Segmenting the learning process mitigates the adverse 
effects of individual device failure on training outcomes. This modular approach enhances the resilience of the global 
model, enabling it to adapt to the evolving challenges of IoT networks. 

 Hierarchical Model Aggregation: The proposed framework delineates the deployment of the SFLS and a GFLS, 
thereby facilitating effective localized training and promoting scalable synchronization on a global scale. 

 Detailed Implementation Plan and Evaluation Strategy: An elaborate evaluation framework grounded in simulation 
methodologies is delineated, focusing on critical performance indicators, including latency, device engagement, and 
communication efficacy. 

3.4 Functions & workflow of the proposed SFL-SDN framework 

3.4.1 General Workflow of the Proposed SFL-SDN Framework 

This segment elucidates the operational dynamics of the proposed SFL framework, explicating the processes involved in 
model segmentation, training, and incident response as they transpire across the IoT-SDN-cloud layers. Although 
comprehensive implementation is scheduled for future research endeavors, the present design and algorithm are predicated 
on pragmatic constraints identified in diverse IoT environments. 

The workflow proposed in Figure 4 for SFL within IoT environments encompasses a meticulously organized, multifaceted 
approach aimed at optimizing distributed learning across diverse devices while simultaneously safeguarding privacy and 
augmenting capabilities for anomaly detection. Initially, each IoT device autonomously gathers data from its local 
surroundings, thereby engendering decentralized datasets throughout the network. To accommodate the heterogeneous 
attributes of IoT endpoints, such as computational limitations, data pertinence, levels of trust, and communication 
dependability, the proposed strategy incorporates an adaptive hybrid segmentation strategy. This methodology disaggregates 
the global model into more manageable, context-sensitive segments that are not only congruent with the computational 
capabilities of each device but also customized to align with its data efficacy and trustworthiness. This approach guarantees 
substantive engagement from all nodes, irrespective of their constraints, while simultaneously improving training efficacy 
and the overall robustness of the model. Segmentation is a dynamic process; the SDN controller systematically reassesses 
the allocation of segments at regular intervals or in response to significant occurrences such as hardware malfunctions, 
deterioration of trust metrics, or the integration of new devices. This practice facilitates real-time responsiveness in the 
context of rapidly evolving IoT landscapes. 

This workflow is designed on the basis of insights and methodologies established in our earlier work [27], which provided 
the foundational principles for FL in IoT environments. Building upon that framework, we integrate segmentation and SDN-
based incident response to address scalability and interoperability challenges. 
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Fig. 4. General workflow of the proposed SFL-SDN framework for IoT intrusion detection and response 

The overarching workflow comprehensively exemplifies the complete end-to-end process of the proposed SFL-SDN 
framework. It distinctly articulates the interactions among IoT devices, the SDN controller, the federated server, and the 
segmentation logic. 

3.4.2 Parameter-Driven Segmentation and Trust-Oriented Allocation Strategy 

Our framework employs an adaptive segmentation strategy based on a weighted score function, which is implemented in 

accordance with the guidelines established in [28]. This approach enables the precise allocation of model segments tailored 

to device capability, trust, and data context. Each model parameter pj is evaluated for a given device di via the following 

scoring function: 

Score(pj,di)=α1⋅CompMatch(pj,di)+α2⋅Relevance(pj,di)+α3⋅Trust(di)+α4⋅DataAffinity(pj,di) 

where: 

 CompMatch: computational compatibility (based on CPU/RAM/energy) 

 Relevance: importance of the parameter to the device's task/data type 

 Trust: node’s historical integrity and behavior score 

 DataAffinity: match between the parameter’s function and the device’s dataset 

The coefficients αi ∈ [0,1] control the influence of each factor: 

 Empirical tuning is applied during simulation to find combinations that optimize accuracy, latency, and 
overhead. 

 Contextual adaptation in deployment prioritizes trust (α3) in adversarial settings or compatibility (α1) in 
heterogeneous environments. 

Si={pj ∈ P ∣ Score(pj,di ) ≥ θi} 

Here, θi represents a variable threshold derived from the capabilities of the device and the established training priorities. 

The trust metric is calculated as follows: 

 SDN-flagged anomaly reports, 

 Update coherence with expected gradients, 

 Historical participation reliability. 
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Low-trust devices may receive fewer critical segments or be excluded entirely, reinforcing the system’s resilience to 

poisoning or failure. This methodology significantly augments the resilience of the model and fosters substantial 

engagement from a diverse array of devices operating within the SFL framework. Table II illustrates this allocation across 

device types. 

TABLE II.  ILLUSTRATIVE EXAMPLE OF SCALABLE PARAMETER ALLOCATION AND TRAINING FREQUENCY IN THE SFL FOR DIVERSE IOT DEVICE 

TYPES 

Device Type Resources Assigned Segment # Parameters Training Frequency 

Sensor Node Low (CPU, RAM) Segment 1 5,000 Once per 3 rounds 

Smart Camera Medium Segment 2 10,000 Once per 2 rounds 

IoT Gateway High Segment 3 50,000 Every round 

This table illustrates a singular result of the hybrid scoring methodology. While the dimensions of the segments align with 
the capabilities of the devices depicted in this illustration, the actual allocations are determined through the hybrid scoring 
mechanism, which additionally takes into account factors such as trust, task pertinence, and data affinity. 

This dynamic, SDN-orchestrated process signifies a significant shift from conventional FL methodologies that depend on a 
static and homogeneous distribution of models. It guarantees that each IoT endpoint plays a substantial role, commensurate 
with its capabilities and its contextual relevance within the learning ecosystem. Upon the identification of an anomaly, the 
SDN controller commences the process of updating flow rules to isolate the compromised node effectively and subsequently 
reallocates roles in the forthcoming training cycle. These responsive interventions are implemented in real time, thereby 
minimizing latency and preserving the continuity of training. 

3.4.3 Parameter Determination Details 

The precise calibration of the weighting coefficients (αi ) is planned through an iterative optimization methodology executed 
within the simulation phase. This approach systematically assesses various αi combinations, potentially utilizing techniques 
such as grid search or more sophisticated Bayesian optimization, against key performance indicators such as detection 
accuracy, response latency, and resource utilization under diverse simulated IoT scenarios. The contextual adaptation of 
these coefficients, for instance, prioritizing trust (α3) in suspected adversarial conditions, will be guided by predefined 
policies triggered by network state analytics provided by the SDN controller, allowing for dynamic adjustment on the basis 
of the operational context. 

Determining the adaptive threshold (θi) for each device involves a dynamic calculation performed by a dedicated module, 
likely residing in the SDN controller or a management plane component. This calculation will directly map real-time device 
resource metrics (e.g., processing capacity, memory availability, reported energy levels) and current network trust 
assessments against the overarching strategic training priorities, such as balancing model segment complexity with device 
participation rates. This ensures that θi is responsive to both the instantaneous capabilities of individual devices and the 
broader objectives set for the learning cycle, facilitating more nuanced and effective segmentation. 

The establishment of these training priorities is envisioned as a configurable aspect of the system on the basis of strategic 
operational goals such as maximizing detection coverage across diverse device types, minimizing false positives in critical 
segments, or explicitly favouring energy conservation on battery-powered nodes. These high-level priorities are translated 
into quantifiable target functions or constraint sets that directly influence the dynamic calculation of θi and the optimization 
objectives for the αi coefficients. Furthermore, initial baseline values and permissible operational ranges for both αi and θi 
will be established from domain knowledge, literature on FL in heterogeneous IoT environments, and refined through 
preliminary simulation experiments to ensure a robust starting point for the detailed, adaptive optimization processes. 

3.4.4 Algorithm workflow for the SFL-SDN framework 

The provided algorithm outlines the framework's core functions—model segmentation, localized training, secure 
aggregation, anomaly detection, and SDN-based incident response—serving as a foundational blueprint for its future 
implementation. While this algorithm captures the methodology's key rationale, the actual execution and detailed parameter 
refinement are planned for subsequent research phases. The immediate goal is to evaluate the framework's effectiveness 
across various IoT devices, with a focus on metrics such as detection accuracy, training efficiency, communication load, and 
responsiveness in dynamic settings. This algorithmic design is crucial for building a comprehensive system whose later 
execution is expected to validate the model's scalability, security, and operational efficiency within complex IoT 
environments. 
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Algorithm: Adaptive Segmented Federated Learning with SDN-Based Real-Time Threat Response 

 

Input: IoT device data {D1, D2,…,DN} initial global model Mglobal 

Output: Aggregated global model Mglobal ready for deployment 

// 1. Data Collection 

Function DataCollection(devices)  collected_data ← ∅ 

for each device D_i ∈ devices do 

D_i_data ← CollectLocalData(D_i) 

         collected_data ← collected_data ∪ {D_i_data} 

   end for 

return collected_data 

// 2. Model Segmentation and Initialization 

Function InitializeSements(devices, global_model): 

for each device D_i ∈ devices do 

Segment_i ← SegmentModel(global_model, D_i.resources) 

       InitializeModel(D_i, Segment_i) 

  end for 

end Function 

// 3. Local Model Training 

Function LocalTraining(devices, data, epochs)   local_models ← ∅ 

for each device D_i ∈ devices do   w_i ← InitializeLocalWeights() 

for epoch e ← 1 to epochs do 

for batch b in data[D_i] do 

                   g ← ComputeGradient(D_i, w_i, b) 

                  w_i ← ClientOptimizer(w_i, g, η, e) 

            end for 

         end for 

          local_models ← local_models ∪ {w_i} 

   end for 

return local_models 

// 4. Model Aggregation 

Function ModelAggregation(local_models): 

M_global ← Aggregate(local_models) 

return M_global 

// 5. Model Update 

Function UpdateGlobalModel(devices, M_global): 

for each device D_i ∈ devices do 

UpdateModel(D_i, M_global) 

end for 

end Function 

// 6. Evaluation and Validation 

Function ValidateModel(devices, M_global, data)  isValid ← True 

for each device D_i ∈ devices do 

if not ValidateModelOnDevice(M_global, data[D_i])   

then   isValid ← False   

     end if 

end for 

return isValid 

Main Algorithm Execution 

Devices ← {D_1, D_2, ..., D_N} 

Data ← DataCollection(Devices) 

InitializeSegments(Devices, GlobalModel) 

repeat 

LocalModels ← LocalTraining(Devices, Data, epochs) 

M_global ← ModelAggregation(LocalModels) 

UpdateGlobalModel(Devices, M_global) 

if ValidateModel(Devices, M_global, Data) then 

break // Proceed to deployment if validation is OK 

     end if 

until False 

DeployModel(Devices, M_global) 

 

// 7. Anomaly Detection and Maintenance 

Function AnomalyDetectionAndMaintenance(devices): 

for each device D_i ∈ devices do 

if  DetectAnomaly(D_i) then 

               SDNIncidentResponse(D_i) 

          else 

               PerformOngoingMaintenance(D_i) 

end if 

end for 

end Function 

// 8. SDN Incident Response 

Function SDNIncidentResponse(device): 

IsolateDevice(device) 

TriggerIncidentResponse(device) 

end Function 

 

Algorithm 1: Adaptive Segmented Federated Learning with SDN-Based Real-Time Threat Response 

Input: IoT_devices (D1, D2, ..., DN), initial_global_model 
Output: aggregated_global_model_Mglobal_ready_for_deployment 

//1. Data Collection 

Function DataCollection(devices): 
    collected_data_phi = {} 

    For each device d_i in devices: 

        D_i_data = CollectLocalData(d_i) 
        collected_data_phi[d_i] = D_i_data 

    Return collected_data_phi 

 
//2. Model Segmentation and Initialization 

Function InitializeSegments(devices, global_model): 
    For each device d_i in devices: 

        segment_i = SegmentModel(global_model, D_i_resources)//Assumes D_i_resources is known 

        InitializeModel(d_i, segment_i) 
 

//3. Local Model Training 

Function LocalTraining(devices, data, epochs): 
    local_models = {} 

    For each device D_i in devices: 

        w_i = InitializeLocalWeights()//Or get from segmented initialization 
        For e in 1 to epochs: 

            For batch b_data in data[D_i]://Assuming data is structured per device 

                g = ComputeGradient(D_i, w_i, b_data) 
                w_i = ClientOptimizer(w_i, g, learning_rate, etc.)//Optimizer like SGD 

        local_models[D_i] = w_i 

    Return local_models 
 

//4. Model Aggregation 

Function ModelAggregation(local_models): 
    M_global = Aggregate(local_models)//e.g., Federated Averaging 

    Return M_global 

 
//5. Model Update 

Function UpdateGlobalModel(devices, M_global)://This seems to imply distributing the new global model 

    For each device D_i in devices: 
        UpdateModel(D_i, M_global)//Client updates its local model to new global model 

 

//6. Evaluation and Validation 
Function ValidateModel(devices, M_global, data): 

    isValid = True 

    For each device D_i in devices: 
        If not ValidateModelOnDevice(M_global, data[D_i])://Assuming data[D_i] is validation data 

            isValid = False 

            Break//Exit early if any device fails validation 
    Return isValid 

 

//Main Algorithmic Execution 
Devices = {D1, D2, ..., DN} 

Data = DataCollection(Devices) 

InitializeSegments(Devices, GlobalModel)//Initial GlobalModel 
 

Repeat: 

    LocalModels = LocalTraining(Devices, Data, epochs) 
    M_global = ModelAggregation(LocalModels) 

    UpdateGlobalModel(Devices, M_global)//Distribute new M_global for next round or for validation 

 
    If ValidateModel(Devices, M_global, Data) then//Assuming Data contains validation subsets 

       //Proceed to deployment if validation is OK 

        DeployModel(Devices, M_global)//Or mark M_global as ready 
        Break//Exit loop if model is validated and deployed 

    Else:        //Continue training or adjust parameters 

 
//7. Anomaly Detection and Maintenance 

Function AnomalyDetectionAndMaintenance(devices): 
    For each device D_i in devices: 

        If DetectAnomaly(D_i) then 

            SDNIncidentResponse(D_i) 
        Else:          PerformOngoingMaintenance(D_i) 

 

//8. SDN Incident Response 
Function SDNIncidentResponse(device): 

    IsolateDevice(device) 

    TriggerIncidentResponse(device)//Broader response actions 

End Algorithm 
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3.5 Implementation and evaluation plan 

The principal aim of the empirical assessment is to assess the SFL framework's effectiveness for IoT intrusion detection and 

incident response. Key goals include demonstrating improved detection accuracy, a reduced communication load, enhanced 

device interaction, and rapid responsiveness through SDN. Consequently, we outline essential performance metrics and 

expected results to guide our empirical analysis: 

TABLE III.  SUMMARY OF ASSESSMENT CRITERIA AND ANTICIPATED ADVANTAGES OF THE PROPOSED SFL FRAMEWORK 

Metric Expected Impact Justification 

Detection Accuracy Increased Segmentation allows devices with valuable local data to contribute effectively. 

Incident Response Time Decreased SDN enables dynamic reconfiguration and real-time isolation of threats. 

Training Time Reduced Devices train only on lightweight model segments tailored to their capacity. 

Communication Overhead Reduced Only segment updates are shared instead of full model parameters. 

Participation Rate Increased Even constrained devices can join training due to adaptive segmentation. 

Model Robustness Improved Segment redundancy and SDN recovery reduce the impact of device failure. 

Privacy Risk Lowered Raw data never leaves devices; segmentation further limits exposure. 

The SFL-SDN framework is tested in a controlled simulation environment via tools such as Mininet for network emulation 
and TensorFlow for FL implementation. This evaluation focuses on key performance indicators, including detection accuracy 
(precision, recall, and F1 score), training duration per round, overall convergence time, communication overhead (bytes 
transmitted), device participation rates (especially for constrained devices), and incident response latency. 

A synthetic IoT dataset, incorporating realistic network traffic and diverse temporal anomalies (e.g., DDoS, malware 
propagation, data exfiltration), will be utilized. Publicly available IoT security datasets (e.g., Bot-IoT, N-BaIoT) will be 
considered and potentially augmented to fit the specific SFL-SDN scenario. Emulated IoT devices with heterogeneous 
resource profiles perform local model training as federated clients. The SDN controller will manage network flows and 
implement real-time responses on the basis of alerts from the IDS components. The federated servers (SFLS and GFLS) use 
adaptive aggregation algorithms and track convergence across communication iterations. Metric trends are analysed, and 
comparative analyses against baseline standard FL models and centralized IDS approaches are conducted. 

As part of the implementation strategy, the intrusion detection component will be enhanced by integrating new approaches 
inspired by recent advancements in the field [29], [30]. While these techniques have shown promising results in improving 
detection accuracy and robustness, their integration within the SFL-SDN framework—particularly under IoT constraints of 
heterogeneity and resource limitations—requires careful exploration. The plan is to investigate how best to adapt these 
methods in a way that preserves system scalability, minimizes overhead, and aligns with the adaptive segmentation and trust 
logic already established in the architecture. This exploration ensures that the IDS component is both effective and 
compatible with the distributed, segmented learning paradigm. 

3.6 Results and Discussion 

This segment delineates the expected advantages and efficacy of the proposed SFL framework, as inferred from its 
foundational architectural principles. Leveraging the literature review articulated within this manuscript, a concise 
comparative assessment is offered in the ensuing Table IV: 

TABLE IV.  CONCEPTUAL PERFORMANCE COMPARISON OF THE PROPOSED FRAMEWORK AGAINST BASELINE INTRUSION DETECTION METHODS 

Method Comm. Overhead Device Inclusivity Privacy Level Response Latency Energy Efficiency 
Real-Time 

Support 

Centralized IDS High Low None Fast Low Moderate 

Standard FL Medium Medium Moderate Moderate Medium Moderate 

Proposed SFL-SDN Low High High Very Fast High High 
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As demonstrated in Table IV, the SFL-SDN framework is anticipated to offer significant advantages over traditional 
centralized IDS approaches and standard FL methodologies across multiple critical dimensions for IoT security: 

 Communication Efficiency (Low Overhead): The SFL-SDN framework is expected to achieve low communication 
overhead because devices transmit only updates for their assigned, potentially smaller, model segments instead of full 
model parameters (as in standard FL) or raw data (as in centralized IDS). 

 Enhanced Privacy (High Level): By design, FL keeps raw data localized on IoT devices, which is a fundamental privacy 
enhancement over centralized systems. SFL may further enhance this, as each device only trains and shares updates for 
a segment of the global model, potentially limiting the scope of information that could be inferred from any single update. 

 Device Inclusivity (High): The adaptive hybrid segmentation strategy is a core innovation designed to achieve high 
device inclusivity. By tailoring model segments to device capabilities, data relevance, and trust, even resource-
constrained IoT devices, typically excluded from complex FL tasks, can meaningfully participate. This contrasts sharply 
with centralized IDSs, which require powerful devices, and standard FL often assumes more homogeneity. 

 Real-Time Response (Very Fast Latency): The integration of SDN is pivotal for achieving a very fast incident response. 
Upon detection of an anomaly, the SDN controller can dynamically reconfigure network flows in real time to isolate 
compromised devices or mitigate attacks. This programmable and centralized control allows for much faster reaction 
times than traditional reactive mechanisms or slower consensus cycles of standard FL without SDN integration. 

 Scalability: The combination of segmented learning and hierarchical aggregation (SFLS and GFLS) is designed to 
support a growing number of diverse IoT endpoints and varied data types without overwhelming central servers or the 
network. This creates a more sustainable and scalable security framework. 

 Energy Efficiency (High): Optimized power consumption is anticipated through reduced communication (smaller 
segment updates) and potentially reduced local computation. This is vital for extending the operational lifespan of battery-
powered IoT devices, which is a significant concern in many IoT deployments. 

 Real-Time Support (High): Beyond rapid incident response, the SDN component enables continuous, real-time 
monitoring and dynamic policy enforcement, which, combined with the adaptive nature of SFL, provides robust real-
time security support for dynamic IoT environments. 

The SFL-SDN framework directly addresses the limitations identified in prior work by offering enhanced performance and 
adaptability. While Sun et al.'s segmented FL-IDS [12] achieved good adaptability, it struggled with stability concerns and 
efficiency limitations for resource-constrained devices. This framework overcomes these challenges by incorporating 
dynamic segmentation strategies that enable effective participation from devices with diverse computational capabilities. 
Similarly, Rey et al.'s FL approach [13] and Aouedi et al.'s FLUIDS [17] faced communication overhead and scalability 
challenges; the SFL-SDN mitigates these challenges by sharing only segment updates instead of full model parameters, 
significantly reducing communication demands and improving scalability in complex systems. Furthermore, unlike 
approaches such as that of Alshammari and Alserhani [19], who introduced noise for privacy but encountered 
implementation complexities and adaptability issues to emerging attack types, the SFL approach prioritizes privacy through 
data locality while aiming for a more streamlined and adaptive segmentation process facilitated by SDN orchestration. The 
analysis demonstrates that no existing approach comprehensively integrates dynamic segmentation, SDN orchestration, real-
time response capabilities, and privacy preservation in a unified, scalable framework, necessitating the holistic solution 
proposed through the SFL-SDN approach. 

The strength of the proposed framework lies in this synergistic integration. SFL makes distributed learning feasible and 
efficient for heterogeneous IoT devices, whereas SDN provides the network-level agility and control necessary for dynamic 
segmentation, efficient communication, and rapid incident response. The cloud layer offers the necessary computational 
backbone for global model aggregation and complex analytics. This holistic approach is anticipated to provide a more robust, 
scalable, and responsive security solution than systems relying on FL, SDN, or cloud computing in isolation or in simpler 
combinations. The planned simulation studies will be crucial in quantifying these expected advantages and empirically 
validating the framework's performance against existing methods. 

4. CONCLUSION & FUTURE WORK 

The safeguarding of IoT environments remains a paramount concern within computer information science, which is 
attributable to the intricate, heterogeneous, and sensitive nature of interconnected devices. This research presents a 
comprehensive framework that amalgamates SFL, SDN, and cloud computing to facilitate scalable, privacy-preserving 
mechanisms. By upholding data locality, enabling immediate threat response, and dynamically adapting model segments to 
align with device profiles, the proposed system proficiently addresses three fundamental security dimensions: (1) data 
confidentiality, (2) swift detection and containment, and (3) interoperability across various IoT ecosystems. The architecture 
fosters inclusive participation by tailoring training tasks to correspond with device capabilities, trust levels, and data 
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pertinence—thereby eliminating the necessity for centralized aggregation or homogeneous models. Although the 
methodology has considerable potential, its practical application necessitates further scrutiny to confront prospective 
deployment and orchestration challenges. 

In the forthcoming phase of the research initiative, our attention will shift toward the implementation of the proposed 
architecture to convert the extant theoretical model into a fully operational system. This endeavor will necessitate the coding 
of the devised algorithms and segmentation logic within an operational framework capable of processing IoT data and 
executing intrusion detection decisions. Subsequent to the implementation phase, a series of empirical experiments are 
conducted to evaluate the detection accuracy, training efficiency, and system robustness across a variety of IoT scenarios. 
Particular emphasis will be placed on juxtaposing the SFL methodology with both conventional FL and centralized intrusion 
detection systems to ascertain its practical advantages. 

Moreover, it is imperative to recognize that the current design predicates a fundamental level of trust in the SDN controller 
and presently lacks mechanisms to authenticate the integrity of gradient updates, which could mitigate the risk of model 
poisoning attacks. Furthermore, challenges such as segment drift and latency variability among clusters may adversely 
impact performance in large-scale deployments—these issues are earmarked for future examination. 
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