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A B S T R A C T 
Deep learning–based classification of lung cancer from CT images can achieve high accuracy but is 
vulnerable to adversarial attacks that introduce imperceptible perturbations, potentially leading to 
misdiagnoses. Paying attention to neural networks in transfer learning could improve both the 
effectiveness and resistance to change. In this paper, we propose a hybrid framework that combines a 
MobileNetV2 backbone with channel–spatial attention modules and white‑box adversarial testing via the 
fast‑focused gradient sign method (FFGSM) and projected gradient descent under an L₂ norm constraint 
(PGDL₂). The model was trained end‑to‑end on a stratified CT dataset of 3,451 images (normal, benign, 
malignant) with adversarial examples injected during training (ε=4/255; PGDL₂: α=1/255, 7 steps). The 
evaluation of the performance was based on accuracy and precision, recall, the F1- score and the 
reduction in model performance due to adversarial attacks. For clean inputs, the attention‑augmented 
model achieved 86% accuracy (FFGSM) and 95% accuracy (PGDL₂), with balanced F1‑scores >0.90 
across classes. Under adversarial attack, the accuracy decreases to 78% (FFGSM) and 86% (PGDL₂), 
indicating a smaller robustness drop for PGDL₂‑augmented training. Having attention modules in the 
model significantly enhanced the ability to discern features, saving up to 9% in performance compared 
with the models without attention. These methods made it clear that the model was more focused on 
clinically important parts. Incorporating hybrid channel–spatial attention into transfer‑learning pipelines 
substantially improve the accuracy and resilience of lung cancer CT classification to strong adversarial 
attacks. The results of our study can help guide the development of strong AI tools for examining medical 
images.

1. INTRODUCTION 

Lung cancer classification from CT scans requires immediate and correct assessment because this disease continues to kill 
many people worldwide [1]. The high‑resolution imaging provided by CT technology demands tedious manual 
interpretation, which also suffers from observer variations in interpretations [2]. Deep learning models with convolutional 
neural networks excel at extracting hierarchical features from CT images, which yields better effectiveness than traditional 
diagnosis systems do [3]. Deep model training on small CT datasets usually results in poor generalization ability along with 
overfitting because medical data labelling remains a significant challenge [4]. The practice of transferring existing knowledge 
from natural image repositories such as ImageNet through fine-tuning becomes possible with transfer learning (TL) methods. 
The early network layers master basic features such as edges and textures in generic settings before later network layers 
specialize in lung-related patterns during fine-tuning [5]. The implementation of transfer learning for CNNs leads to 
decreased training duration and leaner data requirements and yields superior results, with more than 90% accurate nodule 
malignancy assessments through the use of 200 labelled scans [6]. Lung cancer applications record successful results from 
two TL methods: freezing convolutional weights while training a new classifier or conducting complete network fine-tuning 
[5]. CT-based lung cancer classification now uses DL with TL as its main operational practice. The combination of artificial 
intelligence technologies with test-time and learner variations enhances both early disease identification and robust 
diagnostic equipment for radiologists to better detect diseases early before mortality rates rise [3][6]. Deep learning has 
revolutionized healthcare while producing its most substantial effects in radiology [7, 8]. Deep learning-based tools have 
appeared in large numbers and have moved efficiently through development and deployment stages, securing several FDA 
approvals [9–11]. Healthcare institutions maintain an increasing pace of implementation for these technologies within their 
clinical operations [12–15]. The advance of information technologies increases the degree of security risk for potential 
cyberattacks. The security flaw called an adversarial attack has become the greatest concern in research [16, 17]. 

 

Mesopotamian Journal of Cybersecurity 

Vol. 5, No.2, pp.863-885 

DOI: https://doi.org/10.58496/MJCS/2025/049; ISSN: 2958-6542 

https://mesopotamian.press/journals/index.php/cybersecurity 

 

 

https://mesopotamian.press
https://orcid.org/0000-0002-7408-3270
https://orcid.org/0000-0001-9210-7080
https://creativecommons.org/licenses/by/4.0/
https://mc04.manuscriptcentral.com/mjcsc
https://doi.org/10.58496/MJCS/2025/049
https://mesopotamian.press/journals/index.php/cybersecurity


 Obaid et al., Mesopotamian Journal of Cybersecurity Vol. 5, No.2, 863–885 

 

864 

An adversary uses small changes in original input data combined with fabricated false information to force model mistakes 
during these attacks. The imperceptible disturbances that cannot be detected by humans can nonetheless misguide algorithms 
into mistaken decisions. Executing adversarial attacks requires certain specific steps that must be followed. Running an 
adversarial attack requires designing precise alterations that specifically strike at vulnerabilities of an algorithm and typically 
demands knowledge of the model design or extensive testing [18]. The modification of medical images in radiological 
contexts through attacks deceives deep learning systems so that they produce incorrect interpretations that lead to incorrect 
diagnoses. Artificial intelligence system security problems become evident because of these attacks, which affect safety-
critical domains. Recent research indicates that model robustness evaluation against such attacks has become critical because 
AI systems drive healthcare and autonomous vehicles along with cybersecurity [19]. 

 

Deep learning models yield impressive results when applied throughout various applications. White-box attack approaches: 

FFGSM and PGDL₂ represent substantial threats to model systems. Two white-box attack strategies known as FFGSM and 

PGDL₂ have gained popularity because they threaten model security [20]. The FFGSM improves upon the fast gradient sign 

method through a single-step algorithm that maximizes loss functions via gradient-based adjustments [21]. The algorithm 

first calculates loss gradient values regarding input parameters and then executes one movement along the resulting gradient 

direction, which maximizes this loss function. The high efficiency of the FFGSM raises concerns about its use in practical 

real-time systems that have limited computational capacity [22]. PGDL₂ utilizes successive small perturbation steps that 

adhere to L2-norm constraints for its implementation. Studies have demonstrated that PGDL₂ operates as an effective first-

order attack that bypasses numerous defense mechanisms [23]. The iterative gradient-based strategy in PGDL₂ produces 

more significant adversarial examples than single-step approaches do because it performs gradient-based movements while 

projecting input vectors along L2-norm constraint spheres [24]. The core distinction among these methodologies lies in their 

computational performance and their ability to perform attacks. The FFGSM attains high speeds through one-step attacks 

yet comes with lower power than PGDL₂, which demands more computer resources. 

 

Furthermore, attention mechanisms have been implemented in convolutional neural networks (CNNs) so that they can 
improve performance by adapting weights between channel and spatial features to concentrate on relevant clinical zones [25, 
26]. The channel attention modules optimize feature‐map responses to focus on important imaging biomarkers—such as 
CA‑Net’s channel module, which increased segmentation precision during ISIC 2018—while spatial attention modules 
detect diagnostic areas on CT or MRI slices [26]. The sequential execution of attention strategies through hybrid attention 
modules (HAMs) delivers stable performance improvements in multiorgan analysis as well as skin lesion identification 
processes via reduced parameter resources [27, 28]. Current convolutional neural network frameworks could be enhanced 
by using lightweight attention mechanisms to both increase accuracy and achieve performance improvements. 

This study proposes a new framework that integrates fast‐focused gradient sign methods (FFGSMs) with projected gradient 
descent under an L₂ constraint (PGDL₂) in a transfer‐learning platform that includes hybrid channel–spatial attention. Two 
white-box adversarial attacks were applied to the lung cancer CT classification models to test their weakness levels and 
understand how attention mechanisms affect feature representation during attacks. Our contributions are threefold: (1) We 
quantify the impact of FFGSM and PGDL₂ attacks on diagnostic accuracy, revealing critical failure modes. This research 
measures the diagnostic reliability degradation caused by FFGSM and PGDL₂ assaults and investigates hybrid attention 
system impacts on resistance to manipulated signals. In this study, we closed the gap between adversarial testing of attention‐
augmented classifications by conducting laboratory experiments that yield practical recommendations for building stronger 
lung cancer diagnostic systems. 

 

2. RELATED WORK 

2.1. Deep Learning and Transfer Learning for Lung Cancer CT Classification 

Deep learning models, that is, convolutional neural networks (CNNs), have made breakthroughs in lung cancer classification 
via chest computed tomography (CT). Initial work used trained ImageNet networks such as ResNet-50 and VGG19 [29] to 
extract features followed by fine-tuning them to datasets of pulmonary nodules and achieved significant improvement over 
traditional machine learning methods. The following works introduced the concept of transfer learning in an effort to 
overcome the problem of labelled medical image availability, illustrating that, in addition to reducing training times, the use 
of pretrained weights significantly improves on small training sets [30, 31]. However, current studies continue to focus on 
the single-label context, even though reports based on multilabel CT are so prevalent in clinics. In addition, explainability 
tools are not used to a large extent, which creates interpretability drawbacks for diagnostic decision support [32]. By 
presenting a multilabel CT classification model, the proposed method eliminates such deficiencies by providing an embedded 
Grad-CAM++ visualization of the decision regions. 
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2.2. Attention Mechanisms in Medical Imaging 

Attention mechanisms have become fundamental in deep learning models, especially in medical imaging analyses. This 
instillation of channel and spatial attention modules in models, as in CBAM [33], allows the network to focus on clinically 
relevant areas and therefore contributes to finding any minor pathologies. Initial research focused on segmentation tasks only 
[34], but later research has shown that attention can be used in classification, where it has also been shown to perform 
significantly better and be more resistant to image noise [35]. Despite such successes, most of the current methods focus 
only on one network level and do not consider hierarchical interactions between features across the layers. In addition, few 
articles have discussed how attention modules are vulnerable to adversarial perturbations [36]. The current study combines 
the idea of multilevel attention and the application of Grad-CAM++ visualization, increasing both the classification accuracy 
and interpretability. 

 
2.3. Adversarial Attacks and Defences in the Medical Domain 

Through adversarial attacks, it is possible to expose dangerous vulnerabilities in deep learning-based diagnostic systems, as 
they can be distorted by tiny perturbations to elicit incorrect diagnoses [37, 38]. Szegedy et al. [39] first demonstrated that 
CNN misclassification is caused by small perturbations over its inputs, and Goodfellow et al. [40] later developed an efficient 
adversarial example generation procedure known as the fast gradient sign method (FGSM). Further developments in attack 
tactics—one-pixel attacks [41, 42] and propagation map analyses—have shown that perturbations are applied in receptive 
fields and not individual neurons. In some recent research carried out within the medical domain, it was confirmed that CT-
based classifiers are vulnerable to such attacks [43]. Although this has already been achieved significantly, the current body 
of knowledge has not been fully incorporated into attention-augmented, multilabel CT classifiers, which are subject to real-
world inference limitations. This gap is bridged by the current study, which assesses the strength of attention modules in the 
lightweight multioutput framework and explains how to establish an adequate defense against attacks that are specific to 
medical CT use. A potential vulnerability caused by adversarial radiation, which is beyond radiological imaging, extends to 
other safe critical life-saving biomedical applications, especially electroencephalography-based brain‒computer interfaces 
(BCIs). The work of Sayah Ben Aissa et al. [44] is similar to the current research, given that it examines the resilience of 
attention-based architectures to attacks by assessing the robustness of attention-based architectures to adversarial attacks in 
the field of motor imagery classification via EEG data. This proves that the interplay of the attention mechanisms and the 
security of the model represents an upstart area of concern. Related literature on the issue therefore supports the need to 
consider what such attention techniques imply in model security: as they find their way into deep learning systems to increase 
their performance, it becomes imperative to assess their implications for the security of these systems. This external 
environment supports the current analysis time and needs to focus on the particular application of the problem of lung cancer 
CT classification. 

3. DATASET 

In a three-month period during the autumn of 2019, the IQ-OTH/NCCD acquired chest CTs from 110 patients with lung 

cancer at various stages [45], reciprocating 1,190 axial slices. All the images were labelled by specialist oncologists and 

radiologists in the IQ-OTH/NCCD. Stratification was based on three diagnostic groups of cases. normal (n = 55), benign (n 

= 15) and malignant (n = 40). The present study used an available Kaggle dataset [46] to address the problem of imbalanced 

classes in lung cancer imaging and, consequently, the categories that are underrepresented. 

 

3.1 Dataset overview 

A comprehensive dataset consisting of 3,451 CT-scan images was collected and organized into 3 different classes: Benign, 

Malignant, and Normal. These images were first retrieved from a Google drive repository and later copied to Google Colab 

for processing. Table 1 shows an overview of the characteristics of the entire dataset. 

                                                                                       TABLE I. DATASET OVERVIEW 

Metric Value 

Total images loaded 3,451 

Number of classes 3 

Unique duplicate hashes found 157 

Duplicate images excluded 314 

Invalid images found 0 
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3.2 Data Integrity Assessment 

To guarantee dataset quality, we introduce two main integrity checks. First, the images were checked for corruption and size 

adequacy, with the images that were less than 10 × 10 pixels being flagged to eliminate them. No invalid images were 

detected in this process. Second, a custom hashing function with the help of the SHA technique was used to find specific 

duplicates within the dataset. This procedure revealed 157 unique duplicate hashes for 314 images, which were then removed 

from further processing. 

 

3.3 Class distribution 
The class distribution in the dataset was balanced, as each category represented roughly one third of the total dataset. Table 

2 presents the actual distributions for the three classes. 

 
TABLE II. OVERALL CLASS DISTRIBUTION 

Class Images Percentage 

Benign 1,074 31.12% 

Malignant 1,186 34.37% 

Normal 1,191 34.51% 

The class distribution balance was carefully preserved across all the splits, with variations limited to ±0.1%, as shown in 

Table 3. 

TABLE III. CLASS DISTRIBUTION PER SPLIT 

Split Benign (%) Malignant (%) Normal (%) 

Training 687 (31.11%) 759 (34.38%) 762 (34.51%) 

Validation 172 (31.16%) 190 (34.42%) 190 (34.42%) 

Test 215 (31.11%) 237 (34.30%) 239 (34.59%) 

3.4 Dataset partitioning 

The dataset was then split and stratified by class into a training set, a validation set, and a test set. We used an initial 80/20 

split to split the test set, and then we allocated 20% from that remainder for validation purposes. The number of images 

partitioned under this scheme was 2,208 training images, 552 validation images, and 691 test images, as shown in Table 4. 

TABLE IV. DATA SPLITS 

Split Images 

Training 2,208 

Validation 552 

Test 691 

 

3.5 Normalization Parameters 

To normalize the model training pixel values, we computed the normalization statistics of a random set of 1,000 training 

images. This method avoids possible data leakage from test or validation sets. Before computation, the intensity of all the 

pixels was rescaled to the [0, 1] range. The obtained channelwise statistics are shown in Table 5. 

TABLE V. NORMALIZATION STATISTICS 

Statistic Channel R Channel G Channel B 

Mean 0.4038 0.4038 0.4038 

Std 0.3004 0.3004 0.3004 
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3.6 Data Augmentation 

Using the Albumentations library, we applied an extensive data augmentation method to increase model generalizability. 

For the validation and test images, only resizing and normalization were applied to maintain the integrity of the evaluation 

process. For the training dataset, all the images were passed through the following sequence of transformations: 

1. Resizing to 299 × 299 pixels 

2. Random horizontal and vertical flips 

3. Random rotations 

4. Brightness and contrast adjustments 

5. Application of elastic, grid, or optical distortions 

6. Occasional Gaussian or median blurring 

7. Color adjustments (CLAHE or sharpening) 

8. Normalization via previously calculated statistics 

9. Conversion to tensors via ToTensorV2 

 

3.7 Implementation details 

To ensure experimental reproducibility, all the random operations, regardless of hash, sampling and augmentation, were 

initialized with a seed value of 42. Data loading was implemented with PyTorch’s dataloader, a batch size of 32,4 worker 

processes and pinned memory to speed up the data transfer to the GPU. The training data loader was set to be shuffled at the 

start of every epoch, but the validation and test loaders kept the data order in check. 

 

3.8 Dataset samples 
The dataset consists of various medical images that reflect the variety of radiological manifestations of lung cancer. Expert 

radiologists practice systemic sampling and provide detailed annotations to reflect the diagnostic variability measured in the 

course of routine clinical practice. In this section, we outline the structures of the given dataset by demonstrating its classwise 

distribution and examining critical image parameters. One cannot overstate the importance of a full examination of every 

sample to inform the following preprocessing steps and build strong classification models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 

Fig. 1. Sample of the dataset 
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4. METHODS 

4.1 Model Architecture 

The developed model of medical image classification combines a backbone feature extractor with a hybrid attention 

mechanism to improve feature representation. The architecture is modular so that the backbone choice and attention 

integration can vary. The main building blocks are as follows in the model, as illustrated in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Model architecture 

 

4.1.1 Backbone Feature Extractor 

The model works with a MobileNetV2 backbone. This backbone is initialized with pretrained weights (e.g., ImageNet) to 

use transfer learning. The feature extraction layers are modified to produce a fixed-dimensional feature representation. 

MobileNetV2 is commonly selected as the target model in adversarial‐attack research because of the lightweight and 

depthwise‐separable design of the network, which achieves the right trade‐off between computational efficiency and 

representational capacity; therefore, it is both a reasonable target for edge deployments and a demanding benchmark for 

vulnerability analysis. MobileNetV2 has also been shown to work well for fine‐tuning in medical imaging environments for 

applications such as pulmonary nodule detection and magnetic resonance imaging (MRI) classification, where high baseline 

accuracy at these tasks makes it possible for researchers to examine the impact of adversarial effects, as opposed to 

performance artifacts. 

4.1.2 Hybrid Attention Module 

A hybrid attention block is added to improve the feature maps. Both channel attention and spatial attention are used in this 

module to improve discriminative features. The attention mechanism is used after feature extraction but before the 

classification head, ensuring that the model will orient to the most important parts of the input image. The following figure 

illustrates the channel and spatial attention module. 
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Fig. 3. Hybrid attention module 

The diagram shows a modified two‑stage attention mechanism that aims to narrow the attention to channels and, finally, 

spatial locations. The channel attention module determines which of the feature channels carry the most information for the 

given input. It works by: 

 The module sums every channel twice over all spatial positions by taking the average and the maximum. 

 Both summaries go through the same small neural network (“shared MLP”) learning to accentuate or detract 

channels. 

 Both outputs are combined and squashed into values between zero and one, thus obtaining one attention weight per 

channel. 

 These channels re‑scale the feature map of the original image, amplifying rewarding channels and attenuating less 

important channels. 

Furthermore, the spatial attention module determines what locations of the feature map contain the most important 

information. It works by: 

 The refined feature map from the channel stage is collapsed along the channel dimension twice: once by computing 

average activation at each position and once by computing the maximum activation. 

 These two 2D activation maps are stacked and then fed into a lightweight convolutional layer that learns to produce 

a single 2D attention mask. 
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 After being subjected to a sigmoid, this spatial mask has values that range from zero to one per pixel and show the 

importance of each position. 

 The mask multiplies the feature map, which accentuates interest in critical spatial areas while muting background 

or noise. 

The attention mechanism adopted in this experiment is based on the convolutional block attention module (CBAM), but with 

slight alterations that improve performance and increase flexibility. In contrast to the original CBAM, which makes use of 

fully connected layers, as part of its MLP architecture, our implementation replaces them with a 1 × 1 convolutional stack. 

Compared with CBAM, which has a kernel of only 7 × 7, the current design can have a variable kernel size (named K × K) 

depending on the task. Table 6 describes the main differences between the proposed method and the common CBAM. 

 

TABLE VI. DIFFERENCES BETWEEN STANDARD CBAM AND PROPOSED VARIANT 

Component Standard CBAM Proposed Variant Justification 

Channel Attention 
MLP 

Fully Connected 
Layers 

Conv2D → ReLU → Conv2D (1×1 
convolutions) 

More lightweight and compatible with fully 
convolutional networks. 

Spatial Attention 

Kernel 

Fixed 7×7 

convolution 
Flexible K×K convolution Allows task-specific tuning of the receptive field. 

 

The key benefits of this hybrid module are as follows: First, it identifies which channels are most informative, and afterwards, 

it determines where to look within those channels. Second, there is a minimal increase in both the parameter count and 

computational complexity with each attention mechanism. Third, with adaptive feature reweighting, the network places more 

focus on important details, which increases the performance in downstream applications such as classification and detection. 

4.1.3 Classification Head 

The classification head is composed of a global average pooling (GAP) layer that reduces spatial dimensions to 1×1, a 

dropout layer (0.3 dropout rate) that mitigates overfitting on small medical datasets, and a fully connected layer of end 

predictions. 

4.2 Adversarial Attack Implementation 

We use a threat model in which the adversary knows all aspects of the classifier’s setup, parameters, architecture, and training 

and can therefore utilize gradient‑based perturbation techniques. Two attacks are carried out in our study by using the 

functions provided by the torchattack library. The assaults include the FFGSM, which extends the basic FGSM by using 

random initialization for each sample, and PGDL₂, an iterative strong variant of the PGD penalized with the L₂ norm. Both 

methods depend on ε (maximum perturbation), α (step size), and the number of iterations for PGDL₂. A white‑box adversary 

model is assumed to be able to: 

-  Measure gradients of the loss J (θ, x, y) with respect to the input x for an arbitrary x. 

- Use knowledge of both the model weights and its architecture to produce perturbations that lead to the greatest errors. 

- Carry out attacks within the training procedure during adversarial training. 

From a robustness point of view, this is the hardest possible situation in medical imaging because trivial modifications can 

still result in incorrect diagnoses. 

The current study analyses the resilience of the model against two different but widespread white-box adversary threats, 

which are characterized by discrepant optimization goals and a pixel-level approach. In particular, we test the FFGSM attack, 

which works in the L-infinity norm and adds uniformly scalable perturbations to all the pixels, and the progressive iterative 

PGDL₂ attack, which also works in the L 2 norm but restricts the perturbations to a total magnitude less than a user-specified 

amount, produces modifications that are predominantly localized and concentrated but typically imperceptible. This is not 

an attempt to obtain a quantitative view of which of the two attack algorithms is the most powerful but an assessment of 

comparative strength against each of the two offensive strategies by training individual models specifically against the two 

offensive strategies. 

4.2.1 Fast FGSM (FFGSM) 
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In FFGSM, the process includes a uniform random selection inside the ε‑ball before performing a gradient step, which 

improves upon the original FGSM. By randomly perturbing the input prior to the gradient step, this "free" randomization 

strategy stops models from overfitting to one particular type of perturbation and makes adversarial training more effective. 

𝛿(0) ∼ 𝒰(−𝜖, 𝜖),                                                                                                                                                                   

𝑥0
𝑎𝑑𝑣 = 𝑐𝑙𝑖𝑝(𝑥 + 𝛿(0),   [0,1]),                                                                                                                                       (1)

𝑥𝑎𝑑𝑣 = 𝑐𝑙𝑖𝑝 (𝑥0
𝑎𝑑𝑣 + 𝛼 𝑠𝑖𝑔𝑛 (∇𝑥𝐽(𝜃, 𝑥0

𝑎𝑑𝑣 , 𝑦)) ,  [𝑥 − 𝜖,  𝑥 + 𝜖])                                                                              

 

where ϵ bounds the Linf perturbation and α (here set equal to ϵ) is the step size. 

4.2.2 PGDL₂ attack 

PGDL₂ is the modification of the PGD that uses the L₂ norm, involving updates along the gradient and projection back onto 

a sphere of radius ϵ. Starting from either the clean input or a random point in the L₂ ball: 

𝑥0
𝑎𝑑𝑣 = {

𝑐𝑙𝑖𝑝(𝑥 + 𝛿(0), [0,1]), 𝛿(0) ∼ 𝜖 
𝑟

∥ 𝛿 ∥2

,  𝑟  ∼   𝒰(0,1)

𝑥 (no random start)

           

for 𝑡 = 0 … 𝑇 − 1:

𝑔𝑡 = ∇𝑥𝑡
𝑎𝑑𝑣𝐽(𝜃,  𝑥𝑡

𝑎𝑑𝑣 ,  𝑦), 𝑔̂𝑡 =
𝑔𝑡

∥ 𝑔𝑡 ∥2+ 𝜂
,                                                

𝑥′ = 𝑥𝑡
𝑎𝑑𝑣 + 𝛼 𝑔̂𝑡 ,                                                                                                 

𝛿 = 𝑥′ − 𝑥,  𝛿 ← 𝛿min (1,
𝜖

∥ 𝛿 ∥2

) ,                                                            

𝑥𝑡+1
𝑎𝑑𝑣 = 𝑐𝑙𝑖𝑝(𝑥 + 𝛿,  [0,1]).                                                                                     

                              (2) 

 

4.3 Training procedure 

The model is fully trained end‑to‑end under a white‑box threat model, making use of cross‑entropy loss together with an 

Adam optimizer and a StepLR scheduler, with the option of enabling adversarial training via the addition of FFGSM/PGDL₂ 

examples to each batch for protection. Each batch is augmented with FFGSM (ε = 0.0157, α = ε) or PGDL₂ (ε = 0.25, 

α = 1/255, 7 steps) examples produced via full gradient information whenever adversarial training is on, and the total loss 

consists of both clean and adversarial cross‑entropy. The hyperparameters of each adversarial training regimen (FFGSM and 

PGDL₂) were set independently to the point where a good compromise between clean accuracy and robustness to adversarial 

attacks was achieved by that specific process. The goal was not to make a normalized comparison between the individual 

attack algorithms but rather to analyse the performance of the resulting models. Table 4 lists the hyperparameters used in 

this situation. 

TABLE VII. THE USED HYPERPARAMETERS 

Hyperparameter Value 

Optimizer Adam (lr = 1e‑4, wd = 1e‑5) 

Scheduler StepLR (step_size = 7, γ = 0.1) 

Loss Function Cross‑Entropy 

Epochs 30 

Batch Size 16 

Image Size 299×299 

FFGSM Step Size (α) ε (4/255) 

PGDL₂ Step Size (α) 1/255 

PGDL₂ Iterations 7 

Adv Loss Weight (λ) 0.5 

White‑Box Assumption Full model & gradient access 
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Fig. 4. Training process diagram 

 

4.4 Evaluation Metrics 

Our performance assessment for white‑box adversaries involves measuring the model’s performance with overall accuracy; 

a detailed classification report containing precision, recall, and F1‑scores per class; a confusion matrix for label 

comparisons; the adversarial accuracy for perturbed inputs; and the amount of accuracy loss caused by adversarial 

perturbations. All the measurements are performed on both clean and adversarial examples to show the model's worst‑case 

performance. Table 5 shows the performance measurement details. 
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TABLE VIII. PERFORMANCE MEASURING DETAILS 

Metric Definition 

Overall Accuracy (𝑻𝑷 + 𝑻𝑵)/(𝑻𝑷 + 𝑻𝑵 + 𝑭𝑷 + 𝑭𝑵) 

Classification Report Precision, recall, F1‑score per class 

Confusion Matrix Matrix of true vs. predicted label counts 

Adversarial Accuracy Accuracy on adversarial perturbed inputs (FFGSM/PGDL₂) 

Drop in Accuracy (𝜟) Accclean − Accadv 

 

Performance was assessed on distinct clean test data. We calculated the cross-entropy loss as well as standard performance 

metrics. The metrics calculated were accuracy, weighted precision, recall, the F1 score, confusion matrices and 

comprehensive classification reports. We evaluated resilience by computing adversarial perturbations and measuring model 

behaviour on perturbed samples. Adversarial loss and our chosen metrics were recorded for each variably perturbed sample. 

We quantified robustness by calculating the difference between model accuracy on adversarial inputs and that on clean 

inputs. We conducted each experiment with at least three random seeds so that our results would be representative of the 

model’s ability. We present the results from the experiment with the training that yielded the highest average performance 

across repeat runs. 

5. RESULTS AND DISCUSSION 

The performance of the classification model is compared across clean and adversarial environments. The results of both 

methods produced excellent performance on clean inputs from normal high-resolution imagery. 

 

5.1 FFGSM Method 

With FFGSM training, the model achieved an overall accuracy of 86% on clean data. Both precision and recall achieved 

excellent results for malignant cases, with values of 1.0 and 0.91, respectively, and a corresponding F1 score of 0.95. The 

approaches achieved excellent performance in detecting benign cases, with a recall rate of 99%. For adversarial inputs, the 

results showed a slight decrease in accuracy to 78%. Nevertheless, the recognition of malignant cases continued to be 

reliable, with a balanced score of 0.93. 

TABLE IX. CLEAN TEST RESULTS (FFGSM) 

Class Precision Recall F1-Score Support 

Benign Cases 0.71 0.99 0.83 215 

Malignant Cases 1.00 0.91 0.95 237 

Normal Cases 0.95 0.70 0.81 239 

Accuracy   0.86 691 

Macro avg 0.89 0.87 0.86 691 

Weighted avg 0.89 0.86 0.86 691 
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TABLE 10. ADVERSARIAL TEST RESULTS (FFGSM) 

Class Precision Recall F1-Score Support 

Benign Cases 0.75 0.62 0.68 215 

Malignant Cases 0.93 0.93 0.93 237 

Normal Cases 0.66 0.76 0.70 239 

Accuracy   0.78 691 

Macro avg 0.78 0.77 0.77 691 

Weighted avg 0.78 0.78 0.77 691 

 
Figure 5 shows the accuracy and loss curves associated with training and validating the proposed MobileNet-V2–based 

classifier. During the first round of training, the model can quickly detect the most important data points, increasing 

accuracy and decreasing loss. As time progresses during training, the graphs plateau, and learning loss decreases more 

slowly, which means that the network improves its inner workings steadily, without major changes in performance. Finally, 

the learning curves mostly standstill, which indicates that the model is doing very well, with little indication of overfitting. 

Regularization works well throughout the model’s training, which can be seen in how closely the training and validation 

accuracies track one another. 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

Fig. 5. Training history (FFGSM) 
 

 

According to the clean confusion matrix, 70 instances of "normal cases" were falsely marked as "benign cases," and 15 

"malignant cases" were incorrectly classified as "benign cases." The adversarial confusion matrix highlights a significant 

increase in the number of "normal cases" falsely classified as "benign cases" (81 cases). 
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Fig. 6. Clean confusion matrix (FFGSM) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Adversarial confusion matrix (FFGSM) 
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Figure 8 shows the visualization that compares three panels: the original image and the FFGSM image are classified with 

identical labels but different levels of confidence. The figure shows that changes made to the object helped the system 

reach a more accurate diagnosis. This example shows how small alterations to images can tell the AI model that something 

is strange without being noticeable to doctors, which poses serious challenges to trusting diagnostic AI systems in real-

world medical applications. 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

Fig. 8. Adversarial example visualization (FFGSM (eps = 0.0157)) 
 

 

 

5.2 PGDL₂ Method 

 
PGDL₂ yielded better results on both types of test sets. Overall, the model achieved 95% accuracy and exhibited balanced 

F1 scores over 0.94 for each class on the clean data. When attacked under PGDL₂, the model was still able to predict 

correctly 86% of the time. It also had an F1 score of 0.96 for malignant cases and good accuracy in detecting other instances, 

with values of 0.82 for benign cases and 0.81 for normal cases. 
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TABLE XI. CLEAN TEST SET RESULTS (PGDL₂) 

Class Precision Recall F1-Score Support 

Benign Cases 0.90 0.98 0.94 215 

Malignant Cases 1.00 0.96 0.98 237 

Normal Cases 0.96 0.92 0.94 239 

Accuracy   0.95 691 

Macro avg 0.95 0.95 0.95 691 

Weighted avg 0.95 0.95 0.95 691 

 

 
 

 

TABLE XII. ADVERSARIAL TEST SET RESULTS (PGDL₂) 

 

Class Precision Recall F1-Score Support 

Benign Cases 0.70 1.00 0.82 215 

Malignant Cases 1.00 0.92 0.96 237 

Normal Cases 0.99 0.68 0.81 239 

Accuracy   0.86 691 

Macro avg 0.90 0.87 0.86 691 

Weighted avg 0.90 0.86 0.86 691 

 

 

Figure 9 shows the accuracy and loss curves associated with training and validating the proposed model. In the beginning, 

the model learns substantially, and its accuracy ranges from 0.55 to 0.90 in the first epochs, but then it levels out at usually 

between 0.92 and 0.95. Notably, the model’s accuracy on the validation data starts to surpass its accuracy on the training 

data around epoch 5, suggesting that regularization is effective and that the gap between the two metrics remains small 

throughout training, hinting at limited overfitting. Because there is very little difference between the metrics, the model 

can carry out its task well and is unlikely to fail in new situations. This means that training past epoch 10 does not result in 

large benefits, as the model has grabbed most of the knowledge it can within the limits of the available information and 

structure. 

 

 
 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

Fig. 9. Training history (PGDL₂) 
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The data in the clean confusion matrix revealed that the number of misclassifications was much lower in the proposed 

model than in the FFGSM. One and most of the incorrectly assigned cases were "normal cases" recognized as "benign 

cases" (20 instances). Even with strong attacks, the model managed to retain 86% accuracy. Importantly, "benign cases" 

had a perfect recall score (1.00) but had a decrease in precision from 0.90 to 0.70, so the F1 score was 0.82. Because of 

this, a high number of true normal cases (76) and a lower number of malignant cases (17) were not correctly identified, as 

seen in the adversarial confusion matrix. The fact that the training and validation curves closely match one another in Figure 

9 can be used to confirm that the regularization techniques adopted, which include intensive data augmentation and dropout, 

prevent the model from overfitting the training subset of data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Clean confusion matrix (PGDL₂) 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

 

Fig. 11. Adversarial confusion matrix (PGDL₂) 
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Figure 12 shows the difference in prediction made by a medical image classification system after being hit by a projected 

gradient descent (PGD-L2) attack. The three-panel display shows the following: First, the chest CT scan was correctly 

classified as 'benign cases' satisfactorily at 97.0% accuracy. Then, by using perturbation techniques such as PGD-L2 with 

parameters epsilon=0.2500 and 10 optimization steps, both "benign cases" were still correctly identified but with a 

confidence level of up to 99.7%. Despite increasing the epsilon value used in the attack and running it several times, the 

PGD-L2 attack does not manage to alter the decision or confidence of the model, which proves that this model is especially 

robust against this attack technique. As seen from the changes in the model’s parameters, the attacker focused on the part 

of the model connected to the lungs and surrounding parts, indicating that these regions were important for classification. 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Fig. 12. Adversarial example visualization (PGDL₂ (maximum perturbation budget (eps)) = 0.2500, steps = 10)) 

5.3 Ablation Study: Impact of Attention Mechanisms on Adversarial Robustness (FFGSM Case) 

To clearly understand the unique benefit of attention mechanisms to adversarial robustness, a controlled ablation procedure 

was conducted by comparing two models with the same architecture but different features: one has the proposed attention 

mechanism, and the other has not. We compared the same experimental conditions via two solutions that were created via 

MobileNetV2: (1) Model A, the original model focused on the baseline design in which no attention mechanism is provided, 

and (2) Model B, which included the proposed attention mechanism. The model adopted adversarial training via FFGSM 

(epsilon equals 4/255) over 30 epochs, whereas both networks shared hyperparameters. The test data were adversarially 

perturbed and cleaned, and an evaluation was conducted on both to measure the accuracy robustness trade-off. The 

empirical findings in this paper align with the whole set of findings and further confirm the importance of attention-guided 

feature-learning schemes as critical architecture-level solutions for engineering more reliable and robust deep neural 

networks. In Figure 13, a comparison of the performance of the baseline model (Model A) and the attention-enhanced 

model (Model B) under clean and adversarial evaluation conditions is given. The visualization also confirms the trade-off 

accuracy robustness, which is a characteristic of adversarial defense mechanisms. 
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Fig. 13. Impact of attention on accuracy and robustness 

Clean Performance Analysis: When samples composed entirely of clean examples were sent to either the attention-free 

baseline (Model A) or its attention-equipped variant (Model B), significant disparity was observed, as the clean-data 

accuracy of Model A was 90.0%, whereas that of Model B was 86.0%. The 4.0%-point gap between these two models 

shows that the attention mechanism gives rise to a built-in trade-off favouring stable feature selection over pattern 

completeness of the data at rest. 

Comparison of Adversarial Robustness: Relative perturbations of such models shifted considerably under adversarial 

conditions. Model B also showed great improvement in robustness, reaching 78.0% accuracy on adversarially perturbed 

inputs to the opponent Model A (69.0%). This 9.0%-point gain is a 13.0% relational increase based on adversarial 

robustness, which is an accurate realization of the implementation of attention-guided feature learning in a test. 

Trade-off Visualization: This trade-off is brought to the forefront by plotting clean accuracy, against adversarial 

robustness, in two dimensions. Because it is impossible to optimize both clean accuracy (x-axis) and adversarial robustness 

(y-axis) simultaneously, the extent to which adversarial robustness in one model can be degraded on the basis of clean 

accuracy varies. Even though Model A achieved a relatively small 4.0%-point improvement in clean accuracy, Model B 

achieved a much greater 9.0%-point improvement in adversarial robustness, which suggests a positive exchange ratio. 

Stability of Performance Determination: In addition to absolute accuracy, the number also reflects significant parameters 

of reliability. Model A showed sharp volatility, ranging from 90.0% accuracy to 69.0% adversarially labelled inputs, a 

decrease of 21.0%. In comparison, however, Model B was much more resistant to sliding and slid only 8.0% down, 

dropping to 78.0% accuracy under this adversarial perturbation, with an accuracy of 86.0% on clean examples. The 62% 

decrease in the volatility of the performance figures indicates that attention-based regularization not only results in 

increased adversarial adversity but also greater predictability in the presence of malevolent attackers. 

Conclusion: The geometric interpretation proves that the attention mechanism was indeed a robust regularizer since it 

compromised some minor benefits on the clean accuracy to gain enormous returns in the adversarial robustness and overall 

system robustness, which is quite sensible in terms of security-critical applications when robust performance under various 

possible attack settings is the top priority. 

 

5.4 Discussion 

 

5.4.1 Principal findings 
 

In this study, the effects of deep learning models that include adversarial training mechanisms on the classification of 

medical images were tested, and a significant increase in model robustness was observed. Specifically, the findings showed 

that the PGDL₂ framework yielded better robustness than FFGSM-based training in both the clean and adversarial regimes: 
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the model, obtained with the help of PGDL₂, maintained higher accuracy when attacked (0.86 vs. 0.78) and had better 

baseline accuracy on the clean data (0.95 vs. 0.86). These results indicate that further adversarial training methods can be 

used to increase the quality of the generalizability and robustness of medical imaging models. 

 

5.4.2 Interpretation of the Key Results 
 

The significant advantage of PGDL₂ over FFGSM on the clean input data implies essential differences in the way the 

corresponding training algorithms shape the feature space. These iterative optimums of PGDL₂ force the model to build 

more robust and movable models, contributing to the subjecting of the models to a series of robust heterogeneous 

adversarial perturbations. This progressive improvement seems to reduce the dependency on spurious correlations and 

noise-sensitive traits, which might be adequate for performing innocent classification but would be too weak to collapse in 

an adversarial scenario. The balance (F1-scores) of these classes Benign, Malignant, and Normal, which were found by the 

PGDL₂ model, further proves that through this training regime, categories are represented more equitably and thereby avoid 

being biased toward those categories with clear boundaries at the expense of less distinct categories. 

 

5.4.3 Vulnerability Patterns and Feature Dependencies 
 

Adversarial attacks reveal characteristic patterns of confusion, which can reveal dependency within the model. These two 

models fail to classify most of the “Normal” cases into the “Benign” category, meaning that trained feature representations 

are based on subtle textural characteristics, which are easily disrupted by perturbations. These results imply that the models 

call attention to low-level patterns of statistics rather than the higher-level details that radiologists use to make a diagnosis. 

The significant decrease in benign case recall in the FFGSM model reveals the fatal flaw in the feature hierarchy that the 

model employs. This trend implies that its decision boundaries between benign and normal cases are vaguely defined and 

overly sensitive to changes in inputs, which may be caused by the lack of diversity of training data or improper 

regularization. 

 

5.4.4 Implications of attention mechanism integration 
 

The empirical evidence also suggests that the resilience of the PGDL₂ structure may be largely explained by the fact that it 

employs attention mechanisms. By limiting the attention of the model to only clinically important areas, the network tends 

to concentrate on discrete and localized features as opposed to diffuse and uniform representations of the image. This type 

of strategy is likely to produce a more structured decision-making strategy that is inherently less exposed to adversarial 

disturbances. Since alterations made in non-attended areas have little effect on the overall classification accuracy, the model 

is comparatively less prone to noise introduced in the non-attended parts of the input. 

 

5.4.5 Clinical Implications, Model Trustworthiness and Patient Safety Considerations 
 

 The most concerning consequence of the PGDL₂ adversarial attack on the classification models of chest radiography is the 

misclassification of 17 malignant cases as benign. These misclassifications create a false-negative rate, which might be 

disastrous in practice: unnoticed cancer results in belated treatment and, therefore, possibly worse patient outcomes. The 

clinical cost of failing to detect a malignant case hence far exceeds the cost of false positives, which makes such a weakness 

especially problematic for autonomous diagnostic systems.  

The success of the attack also proves that even the most advanced adversarial training approaches may not provide full 

protection against powerful attacks. In this way, the given finding points to the principal difficulty of using machine 

learning systems in safety-critical medical systems, where adversarial inputs could arise owing to intentional attacks, 

equipment failures, or unanticipated imaging scenarios. 

 

 

5.4.6 Integration into the Clinical Workflow 
 

The current study shows that although adversarial training can make models more robust, it is not enough to learn 

autonomously diagnostic systems completely. The existing models are hence described as decision-help tools that increase 

the efficiency of radiologists but do not replace human knowledge. A hybrid structure combines the pattern recognition 

abilities of machine learning algorithms and the critical decision-making skills of clinicians, especially when the low-

confidence or unexpected attention patterns of the models are involved. An interface based on attention mechanisms acts 
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as a building block of explainable AI, allowing a clinician to know which regions of images affect model predictions. This 

kind of transparency is essential in the establishment of trust and successful integration of models in the right clinical 

context because radiologists are in a position to establish whether model focus aligns with easily noticed anatomical 

features. 

 

5.4.7 Toward Robust Clinical Deployment 
 

The development of clinically feasible AI systems requires stronger robustness that cannot be limited to adversarial training. 

With this aim, future research needs to focus on ensemble approaches by combining the outcomes of different training 

paradigms, together with systems that compute confidence estimates in real time and can raise alarms with potentially 

malicious input. Steady monitoring models that are able to identify distributional harm in clinical statistics are also 

necessary. The determination of these systems has hereby demanded comprehensive procedures that test model behaviour 

across a wide set of stress circumstances, in contrast to how they will be deployed, owing to these stress circumstances: 

adversarial robustness, competence under various imaging requests, various patient groups, and moisture of natural clinical 

apparatus fluctuation. 

 

 

5.5 Limitations and Future Directions 
 

This study is conducted by applying FFGSM and PGDL₂ attacks, along with a set of training schedules. The epsilon for 

FFGSM was set at 0.0157, whereas that for PGDL₂ was 0.2500; thus, it becomes difficult to compare how strong the attacks 

are, as they do not use the same scale. The results are taken from the median performance of three independent runs, making 

them somewhat reliable but not covering the whole range of possible outcomes. New research should look into more types 

of attacks and solutions designed to protect against them. Investigating a possible conflict between clean accuracy and how 

well a model resists adversarial attacks is still a main interest of researchers. The choice of each of the norms was made to 

maximize the stability of a particular model with its training process. The design does not allow any direct and standardized 

comparison of the performance impairment inflicted by each attack. In turn, the fact that the model trained with PGDL₂ 

had higher absolute accuracy on both clean and adversarial data justified its conclusion that this model is more robust than 

the other one but not the reduced relative decrease in performance under a unified threat model. It is therefore not unlikely 

that future work should attempt to re-examine these architectural contributions with a unified specification of the threat 

(e.g., both attacks use the L infinite norm with a specific value of epsilon) and thereby allow the comparison to be 

undertaken more directly. The main weakness of this research is that we relied on only one dataset. Although the IQ-

OTH/NCCD dataset was suitable for the controlled experimental design of the study, it has not been proven to have high 

external validity to other unseen datasets collected in different clinical settings. 

 

Experiments carried out in the future should focus on cross-dataset validation to assess the model in a domain that spans 

various patient groups and imaging modalities. In the context of the current research, we have only tested our robustness 

against white-box attacks, thus providing a basis on which to base our security level. However, a comprehensive evaluation 

must necessarily consider adversaries more likely to occur in practice, e.g., black-box attacks and a transferability study 

where the adversary is denied maximum—and possibly all—knowledge about the design structure of the model. The 

investigation of model resilience under such conditions is an obligatory line of additional investigation. Another weakness 

of this study is the lack of analysis by medical experts. Even though the quantitative results seem promising, a crucial next 

step will be a further reader study among radiologists to identify whether the feature attributions of the model match the 

human rationale behind diagnosis and to understand how applicable the tool will prove in a practical clinical environment. 

Finally, the considered study intentionally uses different training and testing threat models: An L- infinity norm (one for 

the FFGSM) and an L 2 norm (the other one used in PGDL₂). Such a methodological decision is bound to confuse any 

direct evaluation of the resulting models' performances. The advantage of the model trained with PGDL₂ may, however, 

be due to its more iterative training defense in addition to its superior geometric properties in relation to the geometry of 

the L2-norm-based attack on which it was trained. Although the results unambiguously demonstrate the effectiveness of 

each defense in its own threat model, future work must consequently examine the performance of each defense in such a 

unified threat model (e.g., by comparing FFGSM with PGDL₂ to provide a more straightforward, normalized comparison 

of adversarial training strategies). 

 

6. CONCLUSION 
This study used a hybrid of attention mechanisms and transfer learning combined with two adversarial training techniques, 

and the results showed improved effectiveness and robustness within the IQ-OTH/NCCD dataset compared with the 
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baseline model in recognizing lung cancer. The model was found to have 95 % accuracy when using clean test data and 

achieved F1‑scores above 0.94 for all classes. By sharpening the channels and focusing on key regions, the attention 

modules steered the network to identify aspects relevant to clinical care. The technique that equally weighs losses from 

both the training data and adversarial data, along with proper adjustments of hyperparameters, performs well in both 

avoiding overfitting and making the model safer to white‑box attacks. Because of this balance, the system can still yield 

reliable results even when exposed to tiny changes. The results of this study can assist in the design of medical tools that 

rely on AI so that they remain reliable in adversarial situations. This framework will be further developed to support 3D 

networks and examine various other attack scenarios to identify more possible security risks. Using uncertainty 

quantification when predicting with models and checking data from different hospitals will make the models more effective 

in clinical settings. Studying the connection between clean-data generalization and adversarial robustness in medical 

imaging AI is a key area for improving reliability. 
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