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A B S T R A C T 
Securing access to distributed database systems presents unique challenges because of their decentralized 
nature and exposure to multipoint threats. Traditional single-factor authentication mechanisms, such as 
passwords or PINs, are insufficient in such environments, prompting the need for more resilient solutions. 
This study proposes a biometric-based multifactor authentication (MFA) framework that combines 
fingerprint and facial modalities through a unified machine learning (ML) pipeline. ML plays a crucial 
role in enhancing classification performance by enabling the system to learn complex patterns across 
biometric inputs. The framework standardizes input preprocessing (by applying grayscale conversion, 
histogram equalization, and normalization) and employs the histogram of oriented gradients (HOG) 
technique for feature extraction. To improve classification performance and generalizability, three 
decision-level ensemble models are used: support vector machine (SVM) integrated with random forest 
(RF), stochastic gradient descent (SGD), and eXtreme gradient boosting (XGBoost). These hybrid 
combinations exploit the complementary strengths of different classifiers, such as margin optimization, 
ensemble learning, and fast convergence, resulting in superior accuracy compared with standalone 
models. All the models were trained and evaluated via a 10-fold cross-validation scheme on the family 
fingerprint dataset and face recognition dataset under consistent conditions. The experimental results 
indicate that the SVM with the RF model achieves the highest accuracy, with scores of 0.92 for 
fingerprint recognition and 0.97 for facial recognition. These outcomes underscore the framework’s 
suitability for high-security applications, particularly in distributed database environments where reliable 
and adaptive authentication is essential. 

 

1. INTRODUCTION 

The need for strong authentication systems has been exacerbated by the increasing use of digital applications for services 
that are identity sensitive [1], [2]. Conventional single-factor methods, especially those based on passwords or PINs, have 
long been viewed as inadequate in the context of growing threats to cybersecurity. Therefore, multifactor authentication 
(MFA) has been adopted as a standard defense mechanism worldwide [3] . Users are required to prove their identity through 
at least two independent credentials. Among several other features, fingerprints and facial characteristics are known for their 
uniqueness and immutability [4]. To leverage these biometric traits effectively, machine learning (ML) has emerged as a 
transformative approach in classification and identification tasks. Unlike traditional rule-based systems, ML models can 
automatically learn patterns from data, adapt to variability in biometric inputs, and generalize across diverse conditions. 
These capabilities are especially valuable in fingerprint and facial recognition, where input quality may be affected by 
lighting, pose, or partial features. ML techniques also outperform conventional algorithms in handling high-dimensional 
data, enabling more accurate and reliable authentication in real-world environments. However, the performance of a 
biometric-based MFA system largely relies on the accuracy, liveness, and resilience of computational representations [5]. In 
addition to improving authentication accuracy, the implementation of MFA systems in a distributed database environment 
would yield explicit security and operational benefits [6], [7]. These distributed systems manage sensitive data pertaining to 
multiple interconnected nodes or servers; hence, they exhibit good proclivity toward the attraction of the data breach, as well 
as insider threats [8], [9] . The integration of biometric-based MFA in such environments enhances access control at the node 
level and ensures that only authenticated users and those with valid biometric credentials can access or modify specific data 
segments to specific segments of the data [10], [11]. Furthermore, the distributed architecture of such databases makes the 
single points of failure even riskier; MFA mitigates these risks by requiring multiple independent credentials of the likelihood 
of successful intrusion when one authentication layer is compromised [12] ,[13] . 

While earlier multimodal authentication systems made progress in integrating fingerprint and facial traits, many relied on 
single biometric modalities or implemented basic fusion strategies such as simple feature concatenation or score-level 
combination, which limited both accuracy and generalizability [14]. For example, Singh and Om (2019) reported gains via 
unimodal and basic fusion approaches but did not address heterogeneity across biometric datasets, whereas Al-Dulaimi et 
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al. (2020) focused on unimodal designs without standardizing preprocessing [15]–[17]. In contrast, the present work 
introduces a concrete methodological advance: decision-level hybridization of a support vector machine (SVM) with random 
forest (RF), stochastic gradient descent (SGD), and eXtreme gradient boosting (XGBoost) under a unified preprocessing 
chain (grayscale conversion, histogram equalization, normalization, and histogram-of-oriented gradient feature extraction). 
This design ensures reproducibility, enhances cross-dataset generalization, and addresses inconsistencies in prior MFA 
research, establishing a more reliable basis for secure biometric authentication in distributed database environments. 

The goal of this study is to propose a dual-modality multi-ML-based MFA framework that integrates fingerprint and facial 
biometrics via a coherent multi-ML pipeline. This study aims to identify the most reliable and accurate model configuration 
for secure biometric authentication, which can be conducted properly in a distributed database environment. 

 

2. LITERATURE REVIEW 

Recent advancements in biometric-based MFA have shown promising results, particularly with the integration of ML 
techniques. Researchers are actively exploring how these technologies can make authentication systems more secure and 
accurate [10], [18]. 

Several studies have explored unimodal and multimodal approaches. The study introduced a powerful hybrid model that 
blends the SVM and RF algorithms [19]. Their framework supports multiple biometric inputs, such as fingerprints, facial 
images, and iris scans, and uses optimization algorithms to sharpen feature selection and classification, achieving good 
accuracy rates. Another study [20] examined an MFA system for mobile devices via a convolutional neural network (CNNs) 
that combines multiple biometric and graphical elements, i.e., images of faces and visual cues selected by users. This 
demonstrated how in-memory deep learning can be applied to real-time mobile environments to enhance user authentication. 

Hybrid frameworks that combine deep learning with traditional ML have also been explored. For example, one study [21] 
presented a CNN–ML hybrid model where Monte Carlo dropout is used for increasing generalizability when the environment 
is uncertain. This finding shows that blending deep and classical models can improve system reliability. Similarly, another 
work [22] developed a multimodal system that is based on multiple ML models and adaptive particle swarm optimization 
(APSO)-integrated face, fingerprint, and finger vein data. The results of feature extraction via histogram of oriented gradients 
(HOG) are above 94% accuracy. 

The fusion of modalities at different levels has also been investigated. A previous study [23] designed a hybrid system that 
integrates facial recognition via a CNN and fingerprint authentication. Their fusion of modalities at the score level yielded a 
system accuracy of 96.54%, underscoring the value of combining multiple biometric traits. 

While the reviewed studies demonstrate strong performance when various combinations of ML techniques are used for 
biometric MFA, several gaps remain. Most notably, the majority of the systems focus on either individual or simple fusion 
of biometric modalities without exploring the impact of ensemble hybridization of classifiers at the decision level. 
Additionally, the preprocessing pipelines in prior works often lack unified optimization for multiple data types, and few 
studies explicitly evaluate the generalization performance across diverse user populations. Moreover, despite their high 
accuracy, many models remain untested under constrained or noisy real-world conditions. This study addresses these gaps 
by introducing a dual-modality system that combines fingerprint and facial data, applying a consistent image preprocessing 
pipeline, extracting features, and experimenting with ensemble-based hybrid ML models. This structured approach provides 
a fresh contribution by demonstrating the comparative strengths of decision-level ensembles for secure biometric MFA in 
distributed environments. 

 

3. METHODOLOGY 

This section outlines the methodological framework employed to design and implement a multi-ML-based MFA system 
utilizing biometric data. The primary objective of this methodology is to develop an efficient and secure authentication 
process by integrating fingerprint and facial recognition with robust ML techniques. The methodology is organized into a 
sequence of four interdependent phases, as illustrated in Fig. 1. Each phase contributes to the overall performance and 
reliability of the MFA system. These phases include dataset description and preprocessing, feature extraction, model 
development, and performance evaluation. Each is described in detail in the following subsections, with emphasis on the 
techniques and algorithms employed to ensure the best accuracy, scalability, and generalizability of the authentication 
framework. 
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Fig. 1. The proposed methodology phases 

3.1 Phase 1: Dataset Description and Preprocessing 

The design of the proposed MFA system begins with the identification and preprocessing of the biometric data, which act as 
the backbone throughout the pipeline. This is the most important stage because the quality and consistency of input images 
directly impinge on the later functioning stages of feature extraction and classification. In this study, two biometric 
modalities, fingerprints and facial images, taken from open-source datasets, which are familiar to the research community, 
were considered. These were chosen not only for their wide acceptance in modern security systems but also because they 
provide independent and diverse factors that, when combined, improve the level of authentication. Many preprocessing steps 
are applied to make the data ready for ML models. The pictures are changed to grayscale, histogram equalization is used to 
improve the contrast, and normalization is used to make the contrast even. Together, these steps help reduce complexity and 
obtain data that are ready for good feature extraction. 

3.1.1 Biometric dataset description 

To develop and evaluate the proposed MFA system, two publicly available biometric datasets were utilized, one for 
fingerprint recognition and the other for facial recognition. These datasets provide a diverse collection of biometric samples 
necessary for training and testing the multi-ML models. 

1) Dataset 1: Fingerprint Dataset 
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The Mendeley data were the source of the fingerprint dataset used in this study, titled the “Family Fingerprint Dataset” [24]. 

It consists of 2,000 grayscale images of fingerprints belonging to five main classes of typical fingerprint patterns: arch, left 

loop, right loop, tented arch, and whorl. There were 400 images per class to maintain a balanced representation for all the 

categories. These images were in JPEG format with uniform resolution and quality; thus, they are apt for image-based 

biometric analysis. The accompanying CSV file has metadata and ground truth class labels for each fingerprint image, aiding 

supervised ML applications. The dataset comprises fingerprints of numerous individuals taken under different conditions, 

which results in intraclass variation while maintaining interclass separability. This is a very clearly marked dataset with 

images and is highly applicable to the fingerprint classification task in the real world. Its standardized format and balanced 

class distribution provide a sound basis for feature extraction, model training, and performance evaluation within the 

proposed MFA framework. 

2) Dataset 2: Face Recognition Dataset 

The facial recognition dataset used in this study is taken from Kaggle and is titled the “Face Recognition Dataset” by Vasuki 

Patel [25]. It comprises facial pictures divided into 31 different classes; each most likely represents an individual class. The 

dataset serves the purpose of facial recognition and multiclass classification, portraying a lucid structure apt for multi-ML 

models. There are several high-resolution pictures for each person in each class; the images were taken in different lighting, 

expressions, and angles. All the pictures are RGB and have the same appearance quality, which makes it possible to work 

well in terms of extracting facial features and classifying them. The dataset has a folder structure with the names of individual 

identities. This helps with easy preprocessing and labelling during model training. This dataset was chosen because of its 

format, high interclass difference, and intraclass variability, all of which are very important for testing the reliability and 

generalizability of a facial recognition model. It is intended for real-world facial verification scenarios, thus making it a good 

supplement to the fingerprint dataset in this multimodal biometric authentication study. 

Together, these two datasets enable the construction of a dual-modality authentication system, allowing the evaluation of 
multi-ML models across both fingerprint and facial biometric features. 

3.1.2 Preprocessing 

Preprocessing has been very important in preparing biometric data for feature extraction and multi-ML model classification. 

Since raw images of fingerprints or facial structures may have noise and lighting inconsistencies and redundant information, 

the multi-ML algorithms for MFA systems may not perform well [26]–[29]. To standardize both biometric modalities and 

address these challenges, a standardized preprocessing pipeline was applied to all the images, consisting of three main stages: 

conversion to grayscale, histogram equalization, and normalization. The same preprocessing pipeline, grayscale conversion, 

histogram equalization, and normalization, was uniformly applied to both the fingerprint and facial datasets. Although facial 

images were originally RGB, grayscale conversion was applied to reduce computational complexity and standardize feature 

extraction across both modalities. Prior research suggests that structural features such as contours, textures, and edge 

gradients are sufficient for facial recognition when robust descriptors such as HOG are used. Since HOG primarily captures 

gradient information rather than color distribution, converting to grayscale does not significantly degrade recognition 

performance and instead enhances consistency across biometric modalities. 

1) Stage 1: Greyscale Conversion 

The first step changes all the images from RGB to grayscale. This conversion reduces the data dimensions by deleting color 

channels, which usually does not matter for biometric pattern recognition [27],[30]. This is not only the case for grayscale 

conversion, since it also enables the models to concentrate on structural and textural information such as ridges in fingerprints 

or facial contour lines, which are more critical for authentication [31]. 

2) Stage 2: Histogram Equalization 

After the images are converted to grayscale, histogram equalization is applied to enhance the visual quality and contrast of 

each image. The technique redistributes the values of pixel intensity across the available space, highlighting minute variations 

in texture that may not be well perceived in low-contrast areas [32], [33]. Fingerprint images assist in identifying ridges and 

valley patterns; facial images include features such as the outline of the face, shadows, and expressions, leading to better 

recognition [34], [35]. 

3) Stage 3: Normalization 

This process scales all pixel intensities to a consistent range, usually 0--1 [36]. Normalization makes the input data 

statistically uniform, which in turn stabilizes the training process for the multi-ML models of the MFA system [37], [38]. If 

not normalized, the pixel values may have large disparities, which in turn may either bias the learning process or cause 
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convergence issues in optimization. By setting the dynamic range of the biometric images, normalization improves the 

quality and speed of the feature extraction and classification phases. 

Together, these preprocessing techniques contribute to a cleaner, more informative representation of the biometric data. They 

form a crucial foundation for extracting robust features and achieving high classification performance, particularly when 

dealing with two different data modalities in a unified authentication system. 

 

3.2 Phase 2: Feature Extraction via the HOG technique 

Once the biometric images have been preprocessed and standardized, the next critical process in the development of an MFA 

system is feature extraction. This process converts image data into a structured dataset describing the most relevant patterns 

and textures needed for classification while ignoring redundant or noninformative content [39]. The HOG method was used 

for this study because it is an efficient method for preserving edge and gradient information in visual data, which is 

exceptionally valuable in biometrics [40]. HOG first calculates the image gradient orientations within very small spatial 

regions known as cells [41], [42]. The local histograms are then computed over the larger blocks for variations in illumination 

and contrast to normalize these gradient orientation distributions [43]. The resulting feature vector encodes the shape, 

structure, and directional intensity changes in an image, which are mostly characteristic and discriminative over various 

samples of the same individual. The extraction of an HOG feature vector of an image is performed according to the following 

steps [43]–[46]: 

Step 1: Use a gradient filter [1; 0; 1] to compute the horizontal Ii(i, j) and vertical Ij(i, j) gradients of an image. 

Step 2: Compute the magnitude I(i; j), as in (1), and angle θ(i; j), as in (2), of the gradient. 

|𝐼(𝑖, 𝑗)| = √𝐼𝑖(𝑖, 𝑗)2 + 𝐼𝑗(𝑖, 𝑗)2             

𝜃(𝑖, 𝑗) = arctan (
𝐼𝑙(𝑖,𝑗)

𝐼𝑖(𝑖,𝑗)
) 

Step 3: Divide an image into cells of (8 × 8) pixels. Then, a histogram with nine orientation bins at (0° − 180°) is computed. 

The magnitude |I(i, j)| whose angle θ(i, j) belongs to the same bin is added up as the value of this bin. 

Step 4: Four connected cells are combined into a block, and histograms of the cells can be normalized in the block via the 

low-style clipped L2 norm normalization method. The combination of all the histograms constitutes the HOG feature vector 

of the image. 

By applying the HOG algorithm uniformly to both the fingerprint and facial datasets, the system ensures consistency in 

feature representation across modalities. The extracted features serve as the input to the multi-ML models described in the 

next phase, enabling robust classification on the basis of the geometric and structural characteristics of the biometric inputs. 

 

3.3 Phase 3: Development of Hybrid Multi-ML Models 

After feature extraction via HOG has been described, classification models are designed and trained to accurately 

differentiate individual biometric identities. In this study, we take an approach that combines several different ML algorithms 

to form multimodel MFA system frameworks. The reason for such an approach is that different classifiers’ strengths are 

complementary; for example, one excels in margin optimization, whereas the other has better generalizability or 

computational efficiency [47]. By using these combinations, the system will attempt to attain superior classification 

performance with more robustness in the face of variability in biometric data [48]. Three hybrid model configurations were 

proposed and evaluated. The first model integrates an SVM with an RF. One is a powerful margin-based classifier, which 

excels at handling high-dimensional data and finding optimal hyperplanes for separation; the other is ensemble learning 

based on decision trees, which offers high accuracy and robustness to overfitting as well as the ability to handle nonlinear 

relationships [49], [50]. This model combines the best of both worlds for the MFA system framework: the clear boundary-

drawing capability of one component and the ensemble strength of the other for managing noisy or diverse biometric features 

[51], [52]. The second setting integrates SVM with SGD, motivated by the need for scalability and fast convergence in large-

scale datasets. While SVM provides structured and stable classification, the stochastic gradient method provides dynamic, 

iterative learning that can fairly easily manage the implementation of models on the basis of new batches of data [53]. This 

approach would be particularly useful for model-based adaptive and computationally efficient MFA systems. The third 

approach unites SVM with XGBoost, a method known for its speed and quality in tasks with structured data. A sequence of 

weak learners is used to reduce classification errors in a very adaptive process [54]. Integrating XGBoost with SVM results 



 

 

904 
Abbood et al, Mesopotamian Journal of Cybersecurity Vol.5, No.2, 899–912 

 

in system learning on two layers: SVM works on maximizing the margin, whereas XGBoost improves the predictions 

through boosting and thereby makes the final classification more confident and more accurate. 

In this study, hybridization is performed at the decision level. After feature extraction via HOG, the feature vectors are 

classified via a baseline SVM. The decision scores generated by the SVM are then combined with those of a secondary 

classifier to form an ensemble. A weighted voting mechanism is adopted, where the SVM score carries the primary weight 

owing to its robustness in high-dimensional spaces, while the secondary classifier refines cases near decision boundaries. 

This design ensures that the strengths of both models are leveraged: the SVM contributes margin-based separation, whereas 

the secondary classifier enhances generalization. Compared with single-model baselines, this fusion reduces 

misclassification in ambiguous samples and improves system stability across different biometric modalities. 

Every such hybrid configuration was trained on the identical extracted feature set from images of both fingerprints and 

faces so that a fair comparison can be ensured. Their performance is assessed in the next phase, wherein validation metrics 

are used to discern the fittest model for biometric MFA that is secure and dependable. 

 

3.4 Phase 4: Model Validation and Evaluation 

The final phase of the proposed methodology focuses on validating the performance of the developed hybrid multi-ML 

models. Model validation is a critical step to ensure that the system not only performs well on training data but also 

generalizes effectively to unseen biometric samples [55], [56]. To achieve a comprehensive evaluation, the models were 

tested using both fingerprint and facial data under consistent conditions, with performance assessed through four standard 

evaluation metrics: accuracy, precision, recall, and F1 score. Table 1 provides detailed formulations for these metrics: 

TABLE I.  THE EMPLOYED PERFORMANCE METRICS 

Evaluation metrics Mathematical Equation Explanation 

Accuracy 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚

=
𝑻𝑷 + 𝑻𝑵

𝑻𝑷+ 𝑭𝑷+ 𝑭𝑵+ 𝑻𝑵
 

Accuracy measures the ratio of correctly classified biometric authentication 

instances (both fingerprint and face) to the total number of instances in the 
dataset. It offers an overall assessment of the model’s ability to correctly 

recognize or reject user identities. 

Precision Precision =
𝑻𝑷

𝑻𝑷+ 𝑭𝑷
 

Precision quantifies the proportion of biometric inputs that were correctly 

identified as genuine users (true positives) among all those predicted to be 

genuine. In MFA systems, this metric helps evaluate the system’s ability to 

avoid false acceptances, which is critical for security. 

Recall (Sensitivity) Recall =
𝑻𝑷

𝑻𝑷+ 𝑭𝑵
 

Recall reflects the model’s ability to correctly identify all actual genuine 
user inputs in the dataset. High recall is essential in authentication scenarios 

to ensure that valid users are not wrongly denied access. 

F1-score 
𝑭𝟏˗score

=
𝟐 ∗ 𝑻𝑷

𝟐 ∗ 𝑻𝑷 + 𝑭𝑷+ 𝑭𝑵
 

The F1-score provides a balanced evaluation of both precision and recall, 
capturing the model's effectiveness in minimizing both false acceptances 

and false rejections. This makes it particularly useful in applications like 

biometric MFA, where both types of errors are significant. 

TP: True Positive, TN: True Negative, FP: False Positive, TN: True Negative, FN: False Negative 

 

To ensure consistency in evaluation, each hybrid model (SVM with RF, SVM with SGD, and SVM with XGBoost) was 

trained and tested via the same training-validation split across identical datasets. This setup enables direct performance 

comparison and highlights the strengths and weaknesses of each approach under the same feature representation derived 

from HOG. Through this metric validation strategy, the most suitable hybrid model can be selected on the basis of not only 

overall accuracy but also reliability, robustness, and practical utility in real-world authentication environments. The 

evaluation results serve as the foundation for further analysis and interpretation in the next section of the study. 

 

4. RESULTS AND DISCUSSION 

The results of the developed framework are presented in the following sections. Each subsection summarizes the 

performance of the proposed multi-ML models for the MFA system across different biometric modalities via standard 

evaluation metrics. The outcomes are interpreted in light of their relevance to secure and reliable MFA systems. 
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4.1 Framework Results for the Fingerprint Dataset 

To evaluate the effectiveness of the proposed fingerprint-based biometric authentication framework, three hybrid ML 

models were implemented and tested via preprocessed features extracted via the HOG technique. The models include the 

SVM combined with the RF, SGD, and XGBoost classifiers. 

The first combination (SVM with RF) model yielded the best performance across all the evaluation metrics, with an accuracy 

of 0.92, precision of 0.95, recall of 0.95, and F1 score of 0.95, as presented in Fig. 2. These values indicate that the model 

was highly effective at distinguishing between genuine users and imposters with minimal misclassifications. The 

classification report confirmed consistent results across most fingerprint classes, with only minor decreases in recall observed 

in classes with limited samples. The combination of SVM margin-based learning with the ensemble power of the RF enables 

the model to generalize well, even under varying biometric input conditions. 

The second combination (SVM with SGD) model also demonstrated promising results, with an accuracy of 0.82, precision 

of 0.90, recall of 0.91, and F1 score of 0.86, as shown in Fig. 3. While slightly lower than the SVM with the RF configuration, 

this model showed strong sensitivity and precision, indicating a good balance between correct positive identifications and 

the minimization of false acceptances. However, it exhibited more performance variation across classes, particularly where 

sample sizes were limited. Nonetheless, owing to its lightweight computational footprint, this model remains suitable for 

real-time or resource-constrained environments. 

In contrast, the third combination (SVM with XGBoost) model produced significantly weaker performance, with an accuracy 

of 0.65, precision of 0.59, recall of 0.56, and F1 score of 0.55, as illustrated in Fig. 4. Several fingerprint classes were either 

poorly classified or entirely missed, as reflected by the undefined precision and F1-score warnings in the classification report. 

This performance drop suggests that the XGBoost component may not have been compatible with the data structure or 

feature representation, leading to instability and poor generalizability. 
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Fig. 2. Performance Metrics of SVM with the RF Model on the Fingerprint Dataset. 

 
Fig. 3. Performance Metrics of SVM with the SGD Model on the Fingerprint Dataset 

 
Fig. 4. Performance Metrics of SVM with XGBoost Model on Fingerprint Dataset 
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Table 2 summarizes the evaluation metrics for three hybrid ML models applied to the fingerprint dataset. Overall, the results 

confirm that the integration of SVM with RF is the most reliable configuration for fingerprint-based biometric verification 

within the proposed framework. The consistent scores across multiple evaluation metrics highlight its potential for use in 

high-stakes, real-world MFA applications. 

TABLE II.  PERFORMANCE COMPARISON OF HYBRID MULTI-ML MODELS ON THE FINGERPRINT DATASET 

Model Accuracy Precision Recall F1-score 

SVM with RF 0.92 0.95 0.95 0.95 

SVM with SGD 0.82 0.90 0.91 0.86 

SVM with XGBoost 0.65 0.59 0.56 0.55 

 

While prior studies have reported fingerprint recognition accuracies ranging from 94% to 96%, it is important to consider 

differences in experimental settings, feature extraction methods, and datasets. Many of those studies employed deep learning 

models such as CNN which benefit from large-scale training data and higher computational complexity. In contrast, this 

approach focuses on hybrid classical ML models (SVMs with RFs) combined with handcrafted HOG features, which are 

significantly more lightweight and interpretable. Despite this, our framework achieved a competitive accuracy of 92% on a 

diverse fingerprint dataset. This demonstrates the viability of our model for secure and resource-constrained biometric 

authentication systems, especially in distributed database environments where real-time response and interpretability are 

critical. 

4.2 Framework Results for the Face Recognition Dataset 

Three hybrid ML models (SVM with RF, SVM with SGD, and SVM with XGBoost) were used for the evaluation of the 

facial recognition dataset. This confirms the robustness of the proposed MFA framework among biometric modalities. All 

the models were trained on HOG-extracted features, and their performances were assessed on the basis of accuracy, 

precision, recall, and F1 score. In the evaluation, the best performing model was found to be the SVM, with the RF having 

all the metrics 0.97, as shown in Fig. 5. The classification report showed excellent per-class stability with little cross-

validation, indicating good generalization performance over a broad range of identities. The results further indicate that there 

is strong synergy between the discriminative ability of the SVM and the robustness of the RF when faced with complex 

facial features. 

Fig. 6 shows that the SVM with the SGD model closely followed, yielding an accuracy of 0.93, precision of 0.94, recall of 

0.92, and F1 score of 0.92. While its performance was slightly lower than that of the RF, it still exhibited high consistency 

across classes. Its stochastic optimization mechanism makes it well suited for scalable applications where computational 

efficiency is prioritized. 

In contrast, the SVM with XGBoost model results presented in Fig. 7 recorded lower scores across all the metrics, with an 

accuracy of 0.87 and an F1 score of 0.86. While still acceptable, the model displayed greater class-level variation and 

sensitivity to sample imbalance. Nevertheless, its overall performance surpassed its counterpart on the fingerprint dataset, 

indicating better adaptation to the facial recognition task. 
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Fig. 5. Performance metrics of the SVM with the RF model on the facial recognition dataset. 

 

Fig. 6. Performance metrics of the SVM with the SGD model on the facial recognition dataset. 
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Fig. 7. Performance metrics of the SVM with the XGBoost model on the facial recognition dataset. 

Furthermore, Table 3 summarizes the evaluation results for three multi-ML models applied to the facial recognition dataset. 

While all three hybrid models performed reasonably well, the SVM with the RF clearly stands out as the most effective 

configuration for facial biometric recognition within the proposed MFA framework. The other models, especially SVM with 

SGD, may offer valuable trade-offs in scenarios requiring faster computation or lower resource consumption. 

TABLE III.  PERFORMANCE COMPARISON OF HYBRID MULTI-ML MODELS ON THE FACIAL RECOGNITION DATASET 

Model Accuracy Precision Recall F1-score 

SVM with RF 0.97 0.97 0.97 0.97 

SVM with SGD 0.93 0.94 0.92 0.92 

SVM with XGBoost 0.87 0.89 0.87 0.86 

 

5. CONCLUSION 

This study proposed a robust MFA framework that leverages biometric modalities, specifically fingerprints and facial 

images, combined with multi-ML models to address the growing need for secure identity verification in distributed digital 

environments. Motivated by the limitations of traditional single-factor systems and the fragmented methodologies of prior 

biometric studies, this research aimed to unify the authentication pipeline through consistent preprocessing, reliable feature 

extraction, and comparative evaluation of multiple classifier configurations. A structured four-phase methodology was 

implemented: biometric datasets were acquired and preprocessed via grayscale conversion, histogram equalization, and 

normalization; discriminative features were extracted via the HOG; and multi-ML model combinations (SVM with RF, 

SVM with SGD, and SVM with XGBoost) were developed and evaluated via the same fingerprint and face datasets to 

ensure consistency and fairness in the comparative analysis. The experimental results demonstrated that the SVM with the 

RF model outperformed the other configurations across both modalities. It achieved an accuracy of 0.92 on the fingerprint 

dataset and 0.97 on the facial recognition dataset, with corresponding high precision, recall, and F1-scores. The findings 

validate the effectiveness of using a unified, multi-ML-based pipeline for biometric MFA systems. The dual-modality 

approach has potential for enhancing system robustness and accuracy, and it conceptually aligns with the demands of 

distributed database environments, where layered security and consistent user verification are critical. Future research will 

extend this work by integrating deep learning architectures, testing real-time authentication in distributed settings, and 

systematically evaluating resilience under adversarial or noisy conditions. 
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