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A B S T R A C T 
In contemporary digital environments, exponential cyber threat growth has made cryptographic key 

generation a critical security challenge. Traditional Pseudo-Random Number Generators (PRNGs) and 

existing chaos-based methods often exhibit insufficient entropy, limited randomness quality, and 

inadequate resistance to statistical attacks. Current implementations frequently produce suboptimal 

entropy values and fail to meet modern cryptographic security standards and rigorous randomness testing 

protocols. This paper aims to design and implement an advanced cryptographic key generation system 

that combines Deep Q-Networks (DQN) algorithms with multiple chaotic maps to produce 

cryptographically secure stream key bits with high randomness and strong resistance to cryptanalytic 

attacks. The proposed DRLKG-Chaotic (Deep Reinforcement Learning Key Generation with Chaotic 

maps) system implements six distinct experimental scenarios utilizing five chaotic maps: Tent, Ikeda, 

Chua's, Rössler, and Double Pendulum. The first five scenarios individually integrate each chaotic map 

with a DQN algorithm, whereas the sixth scenario implements a novel fusion approach that incorporates 

all five maps simultaneously. Each scenario generates key streams of three different lengths (128-bit, 

192-bit, and 256-bit) to accommodate varying security requirements.  A comprehensive evaluation using 

the National Institute of Standards and Technology (NIST) statistical test suite, brute-force attack 

resistance analysis, Auto Correlation (AC), Cross Correlation (CC), and Discrete Fourier Transform 

(DFT) analysis demonstrates the significant improvements over standard chaotic implementations. The 

results indicate that the DQN scenarios achieve entropy values ranging from 0.9097--0.9999, whereas 

the standard chaotic maps achieve values ranging from only 0.3627--0.5463. All NIST test P values 

consistently exceed 0.90 across all the parameters, indicating superior randomness characteristics. In 

addition, reliable results are obtained when various types of attacks, such as brute-force attacks, 

side-channel attacks, and timing attacks, are applied.

 
1. INTRODUCTION 

Digitalization and interconnected systems have reshaped information security, increasing the need for cryptographic 

solutions capable of safeguarding sensitive data against increasingly sophisticated cyber threats [1], [2]. Modern 

cryptographic systems rely heavily on the quality and unpredictability of cryptographic keys, which serve as the foundation 

for ensuring data confidentiality, integrity, and authentication across diverse computational environments [3], [4]. Pseudo-

Random Number Generators  (PRNGs) constitute the cornerstone of contemporary cryptographic implementations, 

providing the essential randomness required for key generation, initialization vectors, nonce, and other security-critical 

parameters [5], [6]. However, traditional PRNGs often present fundamental limitations in terms of entropy quality, period 

length, and resistance to statistical analysis, rendering them potentially vulnerable to advanced cryptanalytic attacks [7], [8], 

[9]. Symmetric (secret-key) and asymmetric (public-key) encryption are two classes that classify cryptography algorithms 

[10]. Chaotic systems offer cryptographic potential because of their sensitivity to initial conditions, aperiodicity, and 

deterministic chaos—properties we exploit to enhance key generation. These mathematical constructs exhibit complex 

nonlinear dynamics that can generate sequences with high entropy and statistical properties suitable for cryptographic 

purposes [11], [12]. Recent cryptographic research has extensively explored the application of various chaotic maps, 

including the Tent map, Ikeda map, Chua's circuit, Rössler Attractor, and Double Pendulum double pendulum systems, for 

generating cryptographically secure sequences [13], [14]. However, traditional implementations of chaotic-based PRNGs 

often suffer from limited parameter optimization, finite precision effects, and inadequate adaptation to varying security 

requirements [15], [16].  The integration of artificial intelligence, particularly Deep Reinforcement Learning deep 

reinforcement learning (DRL), into cryptographic system design represents a paradigm shift in security engineering [17], 
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[18]. Deep Q-Networks (DQN networks (DQNs), as a prominent DRL algorithms, can optimize complex parameter spaces 

through iterative learning processes, potentially enhancing the quality and security properties of cryptographic sequences 

[19], [20]. This paper is structured as follows: Section 2 clarifies the contributions and novelty of this paper. Section 3 

reviews the relevant literature with chaotic maps. Section 4 introduces the chaotic maps utilized in this paper. Section 5 

illustrates the details of Deep Q-Networks (DQN deep Q-networks (DQNs). Section 6 describes the evaluation methodology 

and metrics. Section 7 presents the proposed key generation system. Section 8 analyses the experimental results and 

performance. Finally, Section 9 and section 10 present the conclusions and future work of this paper. 

2. CONTRIBUTIONS 

This paper is novel in that it proposes new methods for cryptography key generation, and its contributions span enhancing 

the security, efficiency, robustness, and applicability of cryptographic systems.  The major contributions of this paper are as 

follows: 

 

- Generation of high-entropy and unpredictable keys makes cryptosystems resistant to several types of cryptanalytic 

attacks, such as brute force, side-channel attack, and timing attack. 

- Satisfying the statistical randomness of generated keys with all proposed scenarios. 

- Satisfying the integration between five types of chaotic maps (Tent, Ikeda, Chua's, Rössler, and Double Pendulum) 

with AI-driven key generators by using the reinforcement learning algorithm (DQN) to generate adaptive and evolving 

keys. 

3. RELATED WORK 

The use of chaotic maps in cryptography has significantly increased, and it is extremely sensitive to initial conditions and 

complex behaviour.  The mathematical literature offers an extensive collection of chaotic dynamical systems suitable for 

high-entropy stochastic sequence generation applications. This section reviews several studies that explore chaos for key 

generation. 

In [21], researchers presented a review of chaotic map applications in PRNG and encryption, emphasizing post-COVID-19 

cybersecurity requirements. This research covered multiple chaotic maps (Ikeda, Henon, Tinkerbell, and quantum chaotic 

maps) and noted correlations as low as 0.00006 (Ikeda), a maximum entropy of 7.999995 bits/byte (quantum maps), and the 

use of Zaslavsky maps for minimal execution time (0.23 s). With a data rate of 15.367 Mbit/second using hyper chaotic 

setups, they provided guidelines for optimizing different chaotic map implementations according to performance and security 

needs. 

In [22], a hybrid encryption/decryption approach for images was proposed, in which a 3D hyper chaotic map and a 2D 

mersister map were merged with a Convolutional Neural Network convolutional neural network (CNN) to increase the 

decryption accuracy. The technique was evaluated using entropy, correlation, histogram analyses, noise resistance, the 

number of pixel change rate (NPCR) and Unified Aver-age Change Intensity (UACI). Outcomes the unified average change 

intensity (UACI). The outcomes included high entropy (~7.598), low correlation between encrypted and original images, 

and robust noise resistance, with strong NPCR and UACI results. The method successfully balanced security (low MSE 

(Mean Square Error mean square error), high SSIM (Structural Similarity Index Measure structural similarity index 

measure)) and practicality for secure image transmission. 

In [23], several recent PRNG advances were examined, including a 2D Hénon-Sine hyper chaotic hyper chaotic map with 

microcontroller implementation, fuzzy triangular numbers in a modified logistic map, and combined quantum random walks 

with chaotic map outputs. A different strategy introduced fractal structures into the tent map, increasing randomness via 

intrinsic mathematical complexity and demonstrating superior performance in surrogate testing over MATLAB’s default 

random generator and traditional chaotic map-based PRNGs. 

In [24], Oliveira explored shrimp-shaped structures in the Ikeda map’s parameter space. By employing high-resolution 

parameter scans and Lyapunov exponent calculations, detailed period-doubling bifurcations were uncovered, including a 

Feigen Baum constant δ ≈ 4.669248396257327. A major methodological contribution was using dual dissipation parameters 

(uₓ, uᵧ) to capture how real and imaginary parts drive transitions between regular and chaotic regimes. This approach provides 

new insights for optical cavity dynamics and hints at applications in chaos-based encryption, clarifying how stable regions 

and bifurcation sequences form at high precision. 

In [25], Zhao et al. proposed a PRNG based on the integration of chaotic maps and quantum random walks to enhance 

randomness and distribution uniformity. They constructed a surjective mapping satisfying Li-Yorke chaos conditions and 

developed a perturbation algorithm using a two-dimensional hyper chaotic system to disturb parameters and inputs, 
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effectively expanding the key space. The algorithm combines chaotic system outputs with sequences generated from random 

quantum walks on ring graphs, achieving a uniform distribution.  The performance evaluation revealed exceptional results: 

approximate entropy values reaching 7.9999 (near the ideal 8 bits), autocorrelation coefficients within (-0.05, 0.05), a 

substantial key space of approximately 2^208, and a generation speed of 4,347 keys per second. 

In [26], Subathra et al. proposed a 5D hyper chaotic map + U‑Net. An U‑Net segments significant regions of a medical 

image; the statistical information guides the generation of chaotic sequences from a five‑dimensional hyper chaotic system.  

Zig‑zag scrambling and dynamic DNA operations were used for diffusion. The scheme achieved a Shannon 

entropy ≈ 7.9971, NPCR of 99.61%, UACI ≈ 33.49%, and a key. 

In [27], Devi et al. proposed a 2D modified Tinkerbell–Henon map. A novel two‑dimensional chaotic map combining 

Tinkerbell and Henon maps produces pseudo‑random keys. The authors used the map within a shuffling–diffusion 

encryption algorithm and showed Shannon entropy (≈7.99), correlation coefficients near zero, NPCR ≈ 99. 6%, UACI ≈ 33. 

4% and an enormous key space (~10^270). 

In. [28], Premakumari et al. proposed a reinforcement Q‑learning‑based adaptive encryption framework for wireless sensor 

networks (WSNs). A deep‑learning anomaly detector classifies network conditions into low, moderate or high threat levels; 

RL agents choose encryption levels accordingly. Dynamic Q‑learning is used for low‑threat conditions to optimize energy 

efficiency, whereas double Q‑learning improves security in high‑threat scenarios. The experiment of this work gives an 

entropy value of 0.85. Table 1 presents a concise description of the related work. 

TABLE I. SHORT DESCRIPTION OF RELATED WORK 

Approach Year Entropy Adaptability Resource Usage Practical Deployment Main Limitation 

Multiple Chaos [21] 2022 0.875 Static Low Easy Fixed parameter optimization 

Quantum-Chaotic [25] 2023 0.799 Dynamic Very High Difficult Multisystem integration complexity 

CNN Hyperchaotic [22] 2024 0.948 Limited Very High Moderate CNN computational overhead 

Fractal-Tent [23] 2024 0.701 Limited Moderate Moderate Limited to single map enhancement 

Ikeda Analysis [24] 2024 0.612 Limited Low Easy Parameter space exploration only 

5D hyperchaotic map + 

U‑Net, A U‑Net [26] 
2025 ≈ 7.9971 Dynamic Very High Difficult computational overhead 

Modified Tinkerbell–

Henon map [27] 
2025 ≈7.99 Static Dynamic Difficult Multisystem integration complexity 

reinforcement 

Q‑learning‑based 

adaptive encryption [28] 

2025 0.85 Dynamic Very High Difficult 
Fixed parameter optimization, 

Parameter space exploration only 

4.  CHAOTIC MAP 

As a specialized mathematical field, chaos theory has attracted significant research interest because it exhibits seemingly 

disordered and random behaviour while maintaining extreme sensitivity to starting conditions [5], [29]. A variety of chaotic 

maps are available for PRNG; this section focuses on five maps (Tent, Ikeda, Chua's, Rössler and Double Pendulum) for the 

proposed system in this paper as follows: 

3.1 Tent Map 

The Tent map represents a one-dimensional chaotic function demonstrating unpredictable behaviour that finds extensive 

application in both dynamical systems analysis and cryptographic implementations [30]. The Tent map, a simple structure, 

is useful for cryptographic applications to generate a PRNG but has a limited key parameter space [20], [31]. The Tent-Map 

tent map serves as a fundamental example of a chaotic system characterized by its one-dimensional, noninvertible, piecewise 

linear discrete properties [32]. Its practical applications extend to pseudorandom number generation, data encryption 

mechanisms, and robust protocols for secure communications.  The state is initialized as a one-element array with a random 

value between -1 and 1, and the Tent map function updates this scalar state at each step [30]. 

3.2 Ikeda Map 

Is a two-dimensional chaotic map, the model of this map is known for its fractal structure and sensitivity to initial conditions. 

The Ikeda map is defined using via two variables, 𝑢𝑛 and𝑡𝑛, which represent the real and imaginary parts of a complex 

dynamical system. The evolution of the system depends on the interaction between these two variables.  During initialization 

of the Ikeda map, the state is a two-element array with random values between -1 and 1 [24]. 
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3.3 Chua's Circuit Map 

Is a three-dimensional map requiring three variables x, y, and z to describe its state fully; these variables represent voltages 

and currents in the circuit components. The system's system evolution depends on the interactions among these three 

variables [33], [34]. Chua's circuit is one of the simplest electronic circuits capable of generating chaotic signals; it exhibits 

a variety of chaotic attractors depending on the parameters [35], [36]. The Initialization of Initialize Chua’s state by using a 

three-element array with random values between -1 and 1 [35]. 

3.4 Rössler Attractor Map 

 As a three-dimensional map, three variables, x, y, and z, are used to describe its state; these variables represent abstract 

quantities in a mathematical model of a chemical reaction. The system's dynamics emerge from the interactions among these 

variables [37], [38]. The Rössler system is known for its chaotic attractor, which, like the Lorenz attractor, has a fractal 

structure and serves as a simplified model for studying chaos in continuous-time systems. The state is a three-element array 

with random values between -1 and 1. The Roessler Attractor function updates the state vector [x, y, z] at each time step via 

numerical integration [37]. 

3.5 Double Pendulum theory 

The double pendulum is a classic example of a simple physical system exhibiting chaotic dynamics, and slight differences 

in initial conditions can lead to vastly different trajectories [39]. The double pendulum consists of two pendulums attached 

end to end, and the exact equations are complex and involve trigonometric functions and parameters such as masses and 

lengths [40]. The full description of the double pendulum state is based on four variables: 𝜃1, 𝜔1, 𝜃2, and 𝜔2 [41], [42]. For 

more illustration of the above chaotic maps, see Table 2 [21], [42], [43]. 

TABLE II. DETAILS OF TENT , IKEDA, CHUA'S CHUA, RÖSSLER AND  DOUBLE PENDULUM MAPS 

Tent Map 

State Size 1 

Equation 
𝑥𝑛+1 = {

𝜇𝑥𝑛     if 𝑥𝑛 < 0.5

𝜇(1 − 𝑥𝑛)     if 𝑥𝑛 ≥ 0.5
 

Description 𝑥𝑛: Current state,  𝜇  Control parameter (usually μ ∈ [0,2]) 

Ikeda Map 

State Size 2 

Equation 

{
 

 
𝑥𝑛+1 = 1 + 𝑢(𝑥𝑛 cos(𝑡𝑛) − 𝑦𝑛 sin(𝑡𝑛))

𝑦𝑛+1 = 𝑢(𝑥𝑛 sin(𝑡𝑛) + 𝑦𝑛 cos(𝑡𝑛))  

𝑡𝑛 = 𝑎 −
𝑏

1 + 𝑥𝑛
2 + 𝑦𝑛

2

 

Description 𝑢: State variables,  a, b : Map parameters. 

Chua's Circuit 

State Size 3 

Equation 

{

𝑥̇ = 𝛼(𝑦 − 𝑥 − 𝑓(𝑥)),
𝑦̇ = 𝑥 − 𝑦 + 𝑧,
𝑧̇ = −𝛽𝑦

 

𝑓(𝑥) = 𝑚1𝑥 +
1

2
(𝑚0 −𝑚1)(|𝑥 + 1| − |𝑥 − 1|) 

Description x, y, z: State variables, α, β, m0, m1 :Circuit parameters 

𝑓(𝑥): Nonlinear function of x. 

Rössler Attractor 

State Size 3 

Equation 

{

𝑥̇ = −𝑦 − 𝑧,
𝑦̇ = 𝑥 + 𝑎𝑦
𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐).
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Description 𝑥, 𝑦, 𝑧 are the state variables. 

𝑥̀, 𝑦̀, 𝑧̀ denote time derivatives 
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
. 

Double Pendulum 

State Size 4 

Equation 

{
 
 

 
 
𝑑2𝜃1
𝑑𝑡2

=
−𝑔(2𝑚1 +𝑚2)sin 𝜃1 −𝑚2𝑔sin (𝜃1 − 2𝜃2) − 2sin (𝜃1 − 𝜃2)𝑚2[𝜃̇2

2𝑙2 + 𝜃̇1
2𝑙1cos (𝜃1 − 𝜃2)]

𝑙1(2𝑚1 +𝑚2 −𝑚2cos (2𝜃1 − 2𝜃2))
,

𝑑2𝜃2
𝑑𝑡2

=
2sin (𝜃1 − 𝜃2)[𝜃̇1

2𝑙1(𝑚1 +𝑚2) + 𝑔(𝑚1 +𝑚2)cos 𝜃1 + 𝜃̇2
2𝑙2𝑚2cos (𝜃1 − 𝜃2)]

𝑙2(2𝑚1 +𝑚2 −𝑚2cos (2𝜃1 − 2𝜃2))

 

Description Pendulums Angles:𝜃1, 𝜃2 

𝜔1 :  Angular velocity of the first pendulum. 

𝜔2   : Angular velocity of the second pendulum. 

𝑚1,𝑚2 : Masses of the first and second pendulums 

𝐿1, 𝐿2 : Lengths of the first and second pendulums 

𝑔 : Acceleration due to gravity 

 

5.  DEEP Q-NETWORKS (DQN) METHOD 

DQN represents a significant advancement in which deep neural networks are successfully applied to approximate value 

functions in Deep Reinforcement Learning deep reinforcement learning (DRL), enabling agents to learn policies directly 

from raw sensory input, such as pixels in images [44]. Reinforcement Learning (RL) is a learning paradigm in which an 

agent interacts with an environment to achieve a goal. The agent learns by receiving rewards or penalties on the basis of its 

actions, aiming to maximize cumulative rewards over time [45]. In the DQN, an agent represents the learner or decision 

maker, whereas the environment implements the external system with which the agent interacts. DQN state (s) is a 

representation of the current situation of the agent, and action (a) represents the set of all possible moves the agent can take. 

Finally, the reward (r) of the DQN implements feedback from the environment because of the agent's action [45]. Q-

Learning is a model-free RL algorithm that seeks to learn the value of taking a particular action in each state, quantified by 

the Q-value. DQN addresses the limitations of traditional Q-Learning by utilizing using deep neural networks as function 

approximations to estimate the Q-function [45]. The most important keys of the DQN included include the following points 

[46]: 

1. Function approximation with deep neural networks: Convolutional Neural Networks neural networks (CNNs) are 

employed to process high-dimensional input like inputs such as images. 

2. Experience replay: This method stores experiences in a replay memory and samples mini batches minibatches to 

break correlations between sequential data. 

3.  Fixed-target networks use a separate target network to stabilize training by keeping the target Q values constant for a 

fixed number of iterations. Table 3 illustrates the definitions of the DQN parameters [47]. 

TABLE III. DQN  HYPERPARAMETER DEFINITIONS 

 DQN parameter Definition 

1  
learning rate Step size for optimizer updates 

2  
buffer size Size of the replay buffer 

3  learning starts Time steps before learning starts 

4  
batch size Batch size for training updates 

5  gamma Discount factor for future rewards 

6  
exploration fraction Fraction of training time for exploration schedule 

7  Exploration final episode Final value of random action probability 

8  TAU Soft update coefficient for target network 

9  Target update interval Update frequency for target network 
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10  
Train Frequency Network update frequency (steps) 

11  Gradient steps Gradient steps per optimization step 

12  Policy Net Architecture Neural network architecture 

The DQN agent consists of the following layers [48], [49]: 

1. Input Layer 

The purpose of the input layer is to receive the state representation from the environment. Typically, the number of input 

layers is one.  In addition, the number of neurons in the input layer equals the size of the observation space of the environment; 

for example, if the state is represented by a vector of size N, the input layer has N neurons. 

2. Hidden Layers 

The purpose of the hidden layers is to process the input data to extract meaningful features that help the agent estimate the 

Q-values for each action.  The number of hidden layers is typically two to three. The number of neurons in each layer can 

vary, often ranging from 64--512. The ReLU (Rectified Linear Unit rectified linear unit (ReLU) activation function is 

commonly used after each hidden layer to introduce non-linearity nonlinearity. 

3. Output Layer 

The purpose of the output layer is to produce the Q values for each possible action in the action space. One output layer with 

a number of neurons equals the size of the action space. Linear activation (no activation function) is used because the Q 

values can take any real value. 

 

6. EVALUATION METRICS 
 Several tests are used to evaluate the robustness and randomness of the generated stream key bits; this section presents the 

metrics used in this paper. 

6.1. NIST tests 

The National Institute of Standards and Technology (NIST) statistical test battery has established itself as the premier 

evaluation framework for cryptographic randomness verification. Its methodical assessment approach encompasses 

multiple dimensions of stochastic behaviour, facilitating thorough quantification of unpredictability characteristics. The 

framework's widespread adoption in security engineering stems from its adaptable architecture and exhaustive analytical 

capabilities, positioning it as the authoritative benchmark for cryptographic sequence evaluation in research and industrial 

applications [50]. 

6.2. Brute-Force Attack Force Attack 

A brute-force attack involves exhaustively trying all possible keys, so a cryptosystem’s security hinges on an astronomically 

large and complex key space. Chaotic map-based key generators naturally offer extremely large key spaces (often >2128 

possibilities) that render brute-force attacks infeasible [51]. Moreover, chaotic keys exhibit high key sensitivity, meaning 

that even a minute change in the initial chaotic parameters produces a completely different key sequence. This 

unpredictability prevents attackers from reducing the search space by guessing partial patterns. Recent studies have shown 

that chaos-driven neural key generators achieve vast key spaces and successfully resist exhaustive (brute-force) key searches 

[52]. 

6.3.Side-Channel Channel Attacks 

A side-channel attack is an exploit that targets the physical implementation of a cryptosystem rather than its mathematical 

design by observing unintended leakages such as power and electromagnetic emissions to infer secret information [53]. This 

definition emphasizes that even mathematically secure algorithms can be compromised if their hardware behaviour reveals 

correlated data about the secret key [54]. Side-channel attack introduces a difference: it does not directly measure a key's 

entropy; instead, it assesses the security of the physical implementation of the system that uses the key, encryption, and 

execution [55] , [56]. 

6.4.Timing Attack 

In cryptography, a timing attack is a side-channel attack in which the attacker attempts to compromise a cryptosystem by 

analysing the time taken to execute cryptographic algorithms [57]. It’s focus on exploit It focuses on exploiting runtime 

variations of cryptographic algorithms to reveal sensitive information [58], [59]. 
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6.5.Auto Correlation (AC) 

Autocorrelation measures how well a sequence correlates with a shifted version of itself, and in cryptographic keys, a low 

autocorrelation (near zero for any nonzero shift) is desired. If a chaotic key sequence has significant autocorrelation at some 

lag, it would indicate repeating patterns or predictability as a vulnerability for attackers [60]. 

6.6.Cross Correlation (CC) 

Cross-correlation evaluates the similarity between two different sequences. In the context of key generation, low cross-

correlation between keys (or key streams) is crucial for key distinctiveness; each key should be unique and not inferable 

from another [61]. 

6.7.Discrete Fourier Transform (DFT) 

Applying a discrete Fourier transform to key sequences allows analysis in the frequency domain, which helps detect any 

periodic or spectral patterns that could weaken security. A perfectly random or chaotic key sequence should exhibit a flat 

frequency spectrum (no dominant frequency components) [50]. In the context of chaotic map keys, passing this DFT test 

indicates that the sequence has no discernible periodicity [51]. 

7. PROPOSED SYSTEM (DRLKG-CHAOTIC) 

Recent cryptographic research has emphasized chaos-based sequence generation algorithms for security applications. 

Despite this trend, various existing implementations yield output sequences with insufficient entropy and predictability 

characteristics to meet modern cryptographic security thresholds. DRL offers promising avenues for enhancing key 

generation processes through improving the adaptive response of security mechanisms. DRL agents can iteratively learn and 

identify optimal strategies for parameter selection in various cryptographic operations. This section describes the proposed 

system for generating stream key bits with high randomness by using five types of chaotic maps (Tent, Ikeda, Chua's, Rössler 

and Double Pendulum) and the DRL algorithm DQN with different scenarios. The proposed system  is called DRLKG-

Chaotic, which is the shortest for Deep Reinforcement Learning Key Generation with Chaotic maps deep reinforcement 

learning key generation with chaotic maps, as shown in Figure 1. 

 

Fig. 1. Scenarios of the proposed system (DRLKG-Chaotic) 

The methodology for implementing the proposed DRLKG-Chaotic  system uses five chaotic maps (Tent, Ikeda, Chua's, 

Rössler and Double Pendulum). This proposed system is represented by six scenarios.  In the first five scenarios, each of the 

five chaotic maps is used with the DQN agent separately. Finally, the remaining scenario is implemented by f using the DQN 
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with five maps at the same time. The last scenario is used to increase the complexity of the generated stream key bits.  Each 

of the proposed scenarios generates several strong randomness stream key bits with three different lengths (128, 192, and 

256 bits). This proposed system  ensures that the output is a stream of independent and random sequences; furthermore, to 

increase the complexity of the generated sequences, the fusion of five maps with the DQN is used. It is crucial to select 

parameters that promote near-optimal randomness; therefore, the following subsections illustrate the parameters used with 

each scenario. 

7.1  Scenario-1: Tent Map-DQN 

For this implementation, the algorithm processes an input value denoted as x within the range [0,1] and produces a 

transformed output by applying the parameter μ as a scaling factor to the minimum value between x and its complement (1-

x). The control parameter μ operates within the bounds of [1.0, 2.0]. In our implementation, we initialize μ with values 

randomly drawn from a uniform distribution ranging from 1.0--1.9999 during the training phase. Additionally, a one-

dimensional Tent- tent map is implemented with a DQN agent to generate keys from various strong stream bits with three 

different lengths (128, 192, and 256 bits) [32]. 

7.2  Scenario-2: Ikeda Map-DQN 

In this scenario, the Ikeda map with the DQN agent is used to generate several strong stream key bits with three different 

lengths (128, 192, and 256 bits). At the initialization of the Ikeda map, the state is a two-element array with random values 

between -1 and 1. The Ikeda map is implemented with the parameters illustrated in Table 4. 

TABLE IV.  IKEDA MAP-DQN PARAMETERS 

Parameter Value 

a 0.4 

b 6 

0 ≤ 𝑢 ≲ 1 

7.3 Scenario-3: Chua’s Circuit -DQN 

This scenario uses Chua’s map with the DQN agent to produce a number of strong randomness stream key bits with three 

different lengths (128, 192, and 256 bits). Initialize Chua’s state as a three-element array with random values between -1 

and 1. Chua's circuit function updates the state vector [x, y, z] at each time step via numerical integration. The values of 

Chua’s parameters used in this scenario are listed in Table 5. 

TABLE V. CHUA’S CIRCUIT -DQN PARAMETERS 

Parameter Value 

Alpha 15.6 

beta 28 

m0 -1.143 

m1 -0.714 

7.4  Scenario-4: Rössler Attractor-DQN 

This scenario is the fourth scenario proposed in the DRLKG-Chaotic system for random stream key bit generation by using 

a Rössler Attractor with a DQN agent. The state is a three-element array with random values between -1 and 1. The Roessler 

Attractor function updates the state vector [x, y, z] at each time step using via numerical integration. The values of the 

Roessler Attractor parameters in this scenario illustrated in Table 6. 

TABLE VI. RÖSSLER ATTRACTOR-DQN PARAMETERS 

Parameter Value 

a 0.2 

b 0.2 

c 5.7 
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7.5  Scenario-5 Double Pendulum - DQN 

In this scenario, a new efficient type of chaotic map is used with a DQN agent to generate various robust stream key bits. 

The state is a four-element array with random values between -1 and 1, and the double pendulum function updates the state 

vector at each time step using via numerical integration. The parameters parameter values are set as illustrated in Table 7. 

TABLE VII. DOUBLE PENDULUM PENDULUM - DQN 

Parameter Value 

theta1 Random state 

theta2 Random state 

omega1 Random state 

omega2 Random state 

m1 1.0 

m2 1.0 

L1 1.0 

L2 1.0 

g 9.81 

Algorithm 1 represents the proposed algorithm for all the scenarios from 6.1--6.5. 

Algorithm-1: Proposed DQN With Single Chaotic Maps Algorithm 

Input: 

 Key Length (KL): Number of key bits to generate (128, 192, 256). 

 Chaotic Map Select (CMS): Choose specific type (Tent, Ikeda, Chua’s, Rössler Attractor, double 

Pendulum). 

 Parameters controlling each chaotic map (e.g., coefficients for Rössler Attractor, Chua’s Circuit, etc.). 

 Hyper parameters for DQN agent according to table 2. 

Output: Generated Stream Key bits (GSK). 

Step 1: Environment Initialization 

1.1 Initialize chaotic states S ∈ 𝑅𝑛, where 𝑛 represent the dimension for specific chaotic map as follows: 

 Tent →𝑛 = 1 

 Ikeda →𝑛 = 2 

 Chua/Rössler →𝑛 = 3 

 Double pendulum →𝑛 = 4 

1.2 Create an environment with a dimensional state vector 𝑆 ∈ 𝑅𝑛, then initialize this state with a random 

seed from a TRNG. 

Step 2: Chaotic maps implementation 

2.1 Apply the CMS with default parameter. 

2.2 Update parameter based on the scalar action and clips. 

Step 3: Training model 

3.1 Instantiate DQN agent with policy of MLP, then call the CMS from step 2. 
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3.2 Apply an early-stopping function for periodically evaluate the current agent’s performance by running 

an episode. 

3.3 Accumulate the bit(s) generated in the key buffer. 

3.4 Maintain the reward using NIST test. 

Step 4: Obtain and store the GSK with high NIST test from taring agent. 

Step 5: End 

7.6 Scenario-6 DQN - 5-Maps Fusion 

In this scenario, the randomness and complexity of the generated stream key bits for three different lengths (128, 192, and 

256 bits) are increased via the fusion of the DQN with five maps. The training operation of the DQN method is implemented 

by updating to maximize the expected return via policy gradients, and then the loss function includes terms for the advantage 

and, optionally, entropy regularization. The update to minimize the mean squared error between the predicted value and the 

actual return and the loss function is typically value loss, which is the squared difference between the estimated value and 

the target value. 

Figure 2 illustrates the DQN architecture, the. The input layer consists of multiple input nodes representing the state features.  

In addition, two fully connected hidden layers with ReLU activation functions between layers and each node connects 

connect to every node in the next layer. The output layer layer’s Q value outputs for each action. The DQN algorithm 

represents a foundational approach in DR-L, enabling agents to learn value-based policies directly from high-dimensional 

inputs. By integrating deep neural networks with Q-Learning, techniques such as experience replay and fixed target networks 

can be introduced. 

 

 
Fig. 2. DQN Architecture 

This scenario implements a novel fusion approach that simultaneously incorporates all five chaotic maps (Tent, Ikeda, 

Chua's, Rössler, and Double Pendulum) through a spatial segmentation strategy. Unlike traditional mixing approaches, this 
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method maintains separate state vectors for each chaotic map, which evolve independently and in parallel throughout the 

key generation process. The fusion mechanism divides the cryptographic key into four distinct segments, with each segment 

influenced by a different chaotic system through probabilistic bit-flipping operations. Specifically, the chaotic values from 

each system are normalized to [0, 1] and used as flip probabilities for their respective key segments, where different regions 

of the key exhibit different dynamical behaviors. This approach preserves the unique characteristics of each chaotic map 

while introducing complex interdependencies through the DQN agent's learned actions that introduce enhanced 

cryptographic security through the synergistic combination of multiple sources of unpredictability. The continuous  

 coevolution of all five systems throughout the generation process creates a rich, multidimensional chaotic landscape   in  

which the reinforcement learning agent must navigate to optimize key quality. For more illustrations, see Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. DQN Agent Learning Optimal Bit-Flipping Actions 

 

Additionally, the DQN parameters used for all the DRLKG-Chaotic system scenarios are listed in Table 8. 

TABLE VIII. DQN HYPERPARAMETER VALUES 

Hyper parameter Values 

1 learning rate 0.0001 

2 buffer size 500000 

3 learning starts 5000 

4 batch size 128 

5 gamma 0.99 

6 exploration fraction 0.5 

7 Exploration final episode 0.01 

8 TAU 0.001 

9 Target update interval 2000 

10 Train Frequency 4 

11 Gradient steps 1 

12 Policy Net Architecture [512,512] 

 

The combination of the DQN and chaotic map systems underlies the procedure’s capacity to generate pseudorandom keys 

that pass stringent statistical tests, thus demonstrating an interesting approach to cryptographic key generation or randomness 

extraction. Algorithm two represents the proposed algorithm for scenario 6.6. 
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8. RESULTS DISCUSSION 

This section provides a thorough examination of the experimental results obtained through various evaluation methods used 

to assess the statistical performance of the DRLKG-Chaotic framework. The proposed system was evaluated via three 

distinct experimental implementations, which are detailed below: 

8.1 Experiment-1 

In this experiment, five standard maps are implemented separately (Tent, Ikeda, Chua's, Rössler and Double Pendulum) to 

generate the stream key bits with three different lengths (128, 192, and 256 bits), and the results of NIST tests of this 

experiment indicate that the produced stream key bits are generated with low levels of randomness and strength, as illustrated 

in Table 9. 

TABLE IX. NIST P VALUES FOR STANDARD CHAOTIC MAPS: EXPERIMENT-1 

Chaotic 
Key 

Length 
Entropy Runs 

cumulative 

sums Forward 

cumulative 

sums Reverse 

Block 

Frequency 

Longest 

Run 
Monobit 

Key 

Strength 

Tent 

128 0.3752 0.1647103 0.3696 0.2658 0.5697 0.5390 0.2159 0.3571 

192 0.3627 0.04259904 0.9685 0.9898 0.9114 0.5351 0.7728 0.6546 

256 0.3762 0.1262 0.2672 0.1215 0.5984 0.7957 0.1336 0.3455 

Ikeda 
128 0.4480 0.4776 0.5490 0.5492 0.5654 0.4776 0.5026 0.5333 

192 0.4850 0.4944 0.5500 0.5293 0.5393 0.4509 0.5116 0.5057 

Algorithm-2: Proposed DQN Fusion Algorithm 

Input: 

 Key Length (KL): Number of key bits generated (128, 192,256). 

 Parameters controlling each chaotic maps (e.g., coefficients for Rössler Attractor, Chua’s Circuit, etc.). 

 Hyper parameters for DQN agent according to table 2. 

Output: Generated Stream Key bits (GSK). 

Step 1: Environment Initialization 

1.1 Initialize chaotic states S ∈ 𝑅𝑛, where 𝑛 represent the total dimensions for chaotic maps as follows: 

 Tent →𝑛 = 1 

 Ikeda →𝑛 = 2 

 Chua/Rössler →𝑛 = 3 

 Double pendulum →𝑛 = 4 

1.2 Seed generation using True Random Number Generation (TRNG). 

1.3 Create an environment with a 13-dimensional state vector𝑆 ∈ 𝑅13, then initialize this state by generated values 

from step 2.1. 

Step 2: Chaotic maps implementation 

2.1 Apply Tent map, used the output of the Tent map as an external feeding for other chaotic maps (Ikeda, Chua’s, 

Rössler and Double Pendulum). 

2.2 Apply the remaining chaotic map in sequence to the corresponding portion of the state vector𝑆. 

 Ikeda map. 

 Chua map. 

 Rössler map. 

 Double pendulum map. 
Step 3: Training model 

3.1 Instantiate a DQN agent with policy of MLP, then call the chaotic maps from step 2. 

3.2 Apply Early Stopping function for periodically evaluate the current agent’s performance by running an 

episode. 

3.3 Accumulate the bit(s) generated in the key buffer. 

3.4 Maintain the reward using NIST test. 
Step 4: Obtain and store the GSK with high NIST test from training agent. 

Step 5: End 
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256 0.4570 0.4299 0.5195 0.5258 0.5913 0.4935 0.4967 0.5284 

Chua’s 

Circuit 

128 0.4869 0.5354 0.4691 0.4562 0.4839 0.5057 0.4408 0.5028 

192 0.5323 0.5481 0.5606 0.5526 0.5074 0.4631 0.5449 0.5100 

256 0.4766 0.4687 0.5152 0.5153 0.4789 0.4980 0.4886 0.4825 

Rössler 

Attractor 

128 0.5076 0.4958 0.5768 0.5762 0.5038 0.4758 0.5735 0.5020 

192 0.5463 0.5384 0.5664 0.5672 0.5607 0.5610 0.5499 0.5547 

256 0.5144 0.5168 0.5195 0.5549 0.5063 0.4511 0.4978 0.5090 

Double 

Pendulum 

128 0.5216 0.4990 0.5454 0.5200 0.4494 0.5657 0.5263 0.4816 

192 0.4607 0.4691 0.4488 0.4960 0.4820 0.4877 0.4556 0.5013 

256 0.5168 0.4871 0.5057 0.4958 0.5274 0.4880 0.4797 0.5163 

 

These results demonstrate that the entropy values for standard chaotic maps are relatively low, such that the Tent map is 

0.3752≤H≤0.3762, the Ikeda map is 0.4480≤H≤0.4870, Chua's the Chua Circuit is 0.4766≤H≤0.4869,, the Rössler Attractor 

is 0.5144≤H≤0.5076 , and the Double Pendulum is 0.5168≤H≤0.5216. As illustrated in this table, the highest entropy value 

is 0.5463 with the Rössler Attractor, by attractor. In the same way of analysis, all the results obtained from the   remaining 

NIST tests   in this table are not optimal, suggesting insufficient randomness for modern cryptographic applications. This 

indicates that traditional implementations of these chaotic systems exhibit suboptimal randomness characteristics when 

evaluated against contemporary NIST statistical benchmarks. 

8.2 Experiment-2 

The second experiment involves applying the first five scenarios of the proposed DRLKG-Chaotic method by using five 

types of chaotic maps with a DQN agent for stream key bit generation. 

8.3 Experiment-3 

This experiment represents scenario-6 of the proposed DRLKG-Chaotic, where DQN fusion is used for all five chaotic maps. 

The results of NIST tests for the generated stream key bits of the last two experiments are illustrated in Table 10. 

TABLE X. NIST P VALUES FOR THE DQN  CASES (SCENARIO-1 TO SCENARIO-6)-EXPERIMENT-2 

Case 

No. 

Key 

Length 
Entropy Runs 

cumulative 

sums 

Forward 

cumulative 

sums 

Reverse 

Block 

Frequency 

Longest 

Run 
Monobit 

Key 

Strength 

1  

128 0.9735 1.0 0.9842 0.9842 0.9964 0.9088 1.0 0.9781 

192 0.9553 1.0 0.8202 0.8202 0.9988 0.8568 1.0 0.9216 

256 0.9970 0.9013 0.9742 0.9459 0.9700 0.8102 0.9005 0.9284 

2  

128 0.9928 1.0 0.9842 0.9842 0.7834 0.9934 1.0 0.9626 

192 0.9338 1.0 0.9316 0.9316 0.8832 0.9404 1.0 0.9458 

256 0.9097 0.9005 0.9742 0.9742 0.9700 0.9934 1.0 0.9603 

3  

128 0.9999 1.0 0.9493 0.9493 0.8335 0.9934 1.0 0.9608 

192 0.9553 1.0 0.8808 0.8808 0.8165 0.9145 1.0 0.9211 

256 0.9928 0.9005 0.9908 0.9908 0.9057 0.8843 1.0 0.9521 

4  

128 0.9735 1.0 0.9842 0.9842 0.9769 0.8355 1.0 0.9649 

192 0.9876 1.0 0.8808 0.8808 0.9643 0.9404 1.0 0.9506 

256 0.9943 0.9992 0.8580 0.9459 0.8705 0.8769 0.9005 0.9208 

5  

128 0.9735 1.0 0.9842 0.9842 0.9769 0.9404 1.0 0.9799 

192 0.9999 1.0 0.9686 0.9686 0.8514 0.9404 1.0 0.9613 

256 0.9981 0.9005 0.9998 0.9998 0.9834 0.7890 1.0 0.9530 

6  

128 0.9928 1.0 0.9493 0.9493 0.8795 0.6305 1.0 0.9145 

192 0.9338 1.0 0.9686 0.9686 0.9879 0.8894 1.0 0.9640 

256 0.9097 0.9005 0.9459 0.9459 0.9643 0.9693 1.0 0.9479 

 

This table indicates an elevated level of robustness and randomness for the generated key stream bits. In addition, the DQN 

implementation has made significant improvements in randomness metrics, with P values consistently above 0.90 across all 

test parameters. Notable improvements in the entropy values, which range from 0.90940 to --0.99999, indicate that enhanced 
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randomness is suitable for contemporary cryptographic applications. The cumulative sums (both forward and reverse) show 

remarkable improvement, with values consistently above 0.90, demonstrating better statistical properties for cryptographic 

implementations. The DQN fusion case, which represents an ensemble approach, maintains high P values across all the 

parameters (averaging above 0.96), suggesting that robust randomness characteristics are suitable for modern security 

requirements. For more illustration about the results in Tables 9--10, as shown in Figure 4, the increase in the strength and 

randomness of the generated stream key bits of the proposed DRLKG-Chaotic system compared with those of standard maps 

is clear. 

 

(a) 

(b) 
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Fig. 4. NIST tests ((a) Entropy, (b) Run tests, (c) Key  strength. 

The key strength calculation is derived from the mean of the seven NIST statistical tests: entropy, run tests, cumulative 

forward, cumulative reverse, key frequency, longest run, and mono bit. This average enables comprehensive evaluation of 

the key across all tests; this approach is more dependable than individual tests are. Extended sequence generation enhances 

cryptographic strength by both minimizing vulnerability to statistical analysis and exponentially expanding the 

computational complexity required for adversarial search operations. Therefore, in this paper, three different lengths of 

generated stream key bits (128, 192, and 256 bits) are used. Table 11 lists the brute-force attack details for different lengths 

of generated stream key bits. 

TABLE XI. BRUTE-FORCE ATTACK ATTEMPTS/SECOND WITH THE AVERAGE ESTIMATED TIME FOR CRACKING STREAM KEY BITS FOR (128, 192, 

AND 256 BITS) FOR SCENARIO-6 

Key Length/bits Key no. Attempts/second Estimated Cracking Time/years 

128 
1 17,508.56 3.08e+26 

2 17,631.79 3.06e+26 

192 
1 11,896.00 8.36e+45 

2 11,909.45 8.35e+45 

256 
1 8,991.56 2.04e+65 

2 9,003.12 2.04e+65 

Figure 5 illustrates the power analysis simulation of the DQN fusion algorithm operating with three different key lengths 

(128, 192, and 256). For more illustration, the plot of the 256-bit key depicts the simulated power consumption over five 

hundred operations. The parenthetical notation “based on masked data” is employed to denote that the measurement is 

derived from the randomized internal state rather than the final output. Highly erratic fluctuations between approximately 

135 mW and 220 mW were exhibited by the trace, with no discernible repeating patterns, spikes, or predictable behaviour, 

resulting in a noise-like appearance. This profile is consistent with the intended outcome for side-channel resistant designs, 

as masking countermeasures designed to render power consumption uncorrelated with secret data. The noise-like 

characteristic of the trace is indicative of an environment in which exploitable patterns for key recovery or internal state 

(c) 
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inference cannot be extracted. Consequently, the effectiveness of the masking scheme within the DQN fusion algorithm 

for scenario-6 is substantiated, and robust protection against power analysis attacks is thereby provided. 
 

 

 

Fig. 5. side-channel resistant with two different key  lengths of scenario-6 
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Figure 6 presents the power analysis summary chart, through which the resistance of the DQN_fusion algorithm to 

power-based side-channel attacks is assessed. The chart condenses intricate correlation data from prior traces into a single 

vulnerability score. This score  ranges from 0.0 (indicating the absence of correlation and thus ideal security) to 1.0 

(indicating perfect correlation and complete insecurity)—was and was determined to be 0.088. The low magnitude of this 

value, highlighted by a green bar, signifies successful  fulfilment of the defined security threshold.  This result implies that 

the simulated analysis revealed virtually no meaningful correlation between power consumption and algorithmic outputs, 

thereby confirming the efficacy of the masking countermeasure. These findings provide compelling evidence of the DQN 

fusion algorithm’s robustness against simulated power analysis attacks. The inability to infer secret keys or internal  states 

from observed power traces reinforces the effectiveness of the employed countermeasures and underscores the algorithm’s 

suitability for deployment in environments requiring strong side-channel resistance. 

 

 

Fig. 6. side-channel vulnerability score with three different key  lengths of scenario-6 

Figure 7 presents the outcome of a timing attack executed on a system. For illustration, the plot of the 256-bit key indicates 

strong resistance to this method of analysis. In a timing attack, the duration of each cryptographic operation is recorded; if 

the time required differs systematically when a guessed key bit is correct versus incorrect, an attacker can iteratively recover 

the entire key. In the displayed plot, the horizontal axis denotes individual bit positions (1–256), whereas the vertical axis 

represents the operation execution time. Red markers correspond to measurements collected when the guessed bit value 

matches the true key bit, and light-blue markers correspond to measurements collected when the guess is incorrect. 

Effective timing attacks produce two distinct clusters of points, yet the red and light-blue markers in Figure 4 are 

extensively interleaved and distributed across the same temporal range. This intermingling, resembling random noise, 

indicates that no reliable timing differential exists. These findings confirm that execution time does not leak significant 

information regarding secret key bits, thereby demonstrating that the tested algorithm effectively mitigates timing-based 

side-channel vulnerability. 

To prove the high level of randomness, robustness, and complexity of the generated stream key bits, several addition tests 

are applied to the selected stream key bits to shorten the results of scenario-6. Table 12 illustrates the autocorrelation of the 

stream key bits generated from scenario -6. The autocorrelation analysis of keys generated through the fusion 

implementation demonstrates exceptional statistical properties crucial for cryptographic applications. Across all key 

lengths (128, 192, and 256 bits), the average autocorrelation values remain remarkably close to zero, ranging from -
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0.008526 to -0.003259, indicating minimal temporal dependencies between bits. The balanced  distributions of the 

maximum (0.180124--0.375000) and minimum (-0.268293--0.181287) autocorrelation values around zero further confirm 

the absence of systematic patterns. Most significantly, the percentage of significant autocorrelations remains exceptionally 

low at 0--2%, implying that 98--100% of lag correlations fall within the expected range for truly random sequences. This 

near-ideal autocorrelation behavior validates the effectiveness of the spatial segmentation approach, where the 

simultaneous influence of five distinct chaotic systems successfully eliminates exploitable temporal patterns. The 

consistency of these results across different key lengths demonstrates that the fusion method scales effectively while 

maintaining cryptographic quality. 

 

 

Fig. 7. Timing attack for three different key lengths of scenario-6 
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TABLE XII.  AUTOCORRELATION OF STREAM KEY BITS IN SCENARIO-6 

Key 

Length/bits 
Key no. 

Average 

Autocorrection 

Maximum 

Autocorrection 

Minimum 

Autocorrection 

Significant 

Autocorrections% 

128 bits 
1 -0.003259 0.375000 -0.261538 2% 

2 -0.007065 0.250000 -0.268293 0% 

192 bits 
1 -0.008526 0.185185 -0.197802 0% 

2 -0.006370 0.207207 -0.200000 0% 

256 bits 
1 -0.005748 0.295597 -0.184358 1% 

2 -0.006021 0.180124 -0.181287 0% 

For more illustration, Figure 8 shows the autocorrelation such that the third column represents the autocorrelation between 

two selected stream key bits for each scenario with three different key lengths (128, 192, and 256). 

Autocorrelation of Key-1 Autocorrelation of Key-2 

128-bit 

  
Autocorrelation between Key-1 and Key-2 

 

 

192-bit 

Autocorrelation of Key-1 Autocorrelation of Key-2 
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Autocorrelation between Key-1 and Key-2 

 
256-bit 

Autocorrelation of Key-1 Autocorrelation of Key-2 

  
 

 

 

Autocorrelation between Key-1 and Key-2 

 

Fig. 8.  Autocorrelation between two Keys with three different Lengths  in scenario-6 

Another indication of the strength of the generated stream key bits of the proposed DRLKG-Chaotic is the use of cross-

correlation. From the results of Table 13, there is no robust evidence of correlation for the generated keys. 
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TABLE XIII. CROSS-CORRELATIONS FOR ALL DRLKG-CHAOTIC SCENARIOS 

-

scenario 
No. 

Length of keys 

128-bit 192-bit 256-bit 

1. -0.062500 0.000000 -0.054689 

2. 0.093750 0.000000 -0.101566 

3. -0.031250 0.020833 -0.031250 

4. 0.000000 0.104167 -0.007813 

5. 0.000000 0.000000 -0.085940 

6. -0.093750 0.104167 -0.007813 

Figure 9 shows that the diagonal elements (diagonal entries) (key1 vs. key1 and key2 vs. key2) are 1.0, indicating perfect 

correlation. This is expected because a variable is always perfectly correlated with itself. The off-diagonal elements (off-

diagonal entries) (key1 vs. key2 and key2 vs. key1) have varying values across different bit lengths, indicating different 

correlation strengths. This map uses a color gradient where red represents a positive correlation, blue represents a negative 

correlation, and lighter shades represent weaker correlations. The diagonal is deep red (indicating 1.0), whereas the off-

diagonal elements vary. In scenario (a), the off-diagonal elements have a value of -0.094, indicating a slight negative 

correlation. In scenario (b), they have a value of 0.1, indicating a weak positive correlation. In scenario (c), they have a value 

of -0.0078, indicating an almost negligible negative correlation. When Lag = 0, this indicates that the correlation analysis 

does not involve time shifting; it is a straightforward measure of simultaneous correlation between the variables. The 

decreasing absolute correlation values as the bit length increases (from |0.094| in 128 bits to |0.0078| in 256 bits) suggest that 

key1 and key2 become increasingly independent as the bit length increases in the DQN algorithm implementation. This 

finding demonstrates that higher bit lengths may provide better statistical independence properties, which is advantageous 

for security and randomness in the chaotic map behaviour with the DQN algorithm. 

(a) 

 

(b) 

 

(c) 

Fig. 9. Cross-correlation matrix of two Keys with three different lengths of scenario-6: (a) 128 bits, (b) 192 bits, (c) 256 bits 

Table 14 shows the P value of the DFT of the generated stream key bits of the proposed DRLKG-Chaotic. 

TABLE XIV. P VALUE FOR THE DISCRETE FOURIER TRANSFORM TEST (DFT) FOR SCENARIO-6 

Key Length/bits Key no. P value Threshold (T) 

128 bits 
1 0.301898 19.5820 

2 0.108294 19.5820 

192 bits 
1 0.399269 23.9829 

2 0.707932 23.9829 

256 bits 
1 0.871131 27.6931 

2 0.570188 27.6931 
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Figure 10 represents a DFT, which analyses the frequency components of stream key bits. This chart evaluates the frequency-

domain characteristics of a stream key bit. The x-axis represents the frequency components, and the y-axis represents the 

magnitude of the Fourier coefficients for each frequency. The blue line shows the magnitude of the DFT for each frequency 

component. These represent how much each frequency contributes to the overall signal, whereas the horizontal red dashed 

line indicates a threshold level, labelled "Threshold T." used as a benchmark for evaluating significant frequency 

components. The randomness of the data represented in this figure was assessed by analysing the distribution of frequencies 

and their magnitudes via DFT. Cryptographic randomness testing, such as DFT, is used to detect periodic structures. 

DFT of Key1 DFT of Key2 

128-bit 

  
192-bit 

  
256-bit 

 
 

Fig. 10. Discrete Fourier transform (DFT) of two keys with three different lengths in scenario-6 

Table 15 shows the comparison between the obtained entropy values of the proposed models and the results of related 

works. From this table, it is clear that the entropy values resulting from the proposed models of this paper are superior to 

the values of the results obtained from the previous work. 
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TABLE XV. COMPARISON BETWEEN THE PROPOSED SYSTEM AND PREVIOUS METHODS 

Models of the Proposed System 

(DRLKG-Chaotic) 

 

Related 

Work 
Entropy 

Chaotic 
Key 

Length 
Entropy 

[21] 0.875 

[25] 0.799 

[22] 0.948 

[23] 0.701 

Tent 

128 0.3752 [24] 0.612 

192 0.3627 
[26] ≈ 7.9971 

[27] ≈7.99 256 0.3762 

Ikeda 

128 0.4480 

192 0.4850 

[28] 0.85-1.2 

256 0.4570 

Chua’s 

Circuit 

128 0.4869 

192 0.5323 

256 0.4766 

   

Rössler 

Attractor 

128 0.5076 

192 0.5463 

256 0.5144 

Double 

Pendulum 

128 0.5216 

192 0.4607 

256 0.5168 

  

9. CONCLUSIONS 
This paper introduces six scenarios designed to increase the robustness of key stream bits against potential attacks. The 

proposed DRLKG-Chaotic system incorporates six distinct scenarios utilizing five chaotic maps (Tent, Ikeda, Chua's, 

Rössler, and Double Pendulum) integrated with the DQN algorithm. DRLKG generates stream key bits of varying lengths 

(128, 192, and 256 bits), all of which undergo rigorous validation through multiple randomness assessment methodologies. 

Bit streams that successfully meet all seven statistical criteria demonstrate viable cryptographic properties and statistically 

classified security. These results confirm the resilience and strength of the key sequences generated across all the 

experimental scenarios within our DRLKG-Chaotic framework. The successful NIST test results provide evidence of the 

unpredictability of the generated key stream bits. Analysis of the data presented in the referenced tables and figures—

encompassing NIST tests, brute-force attack resistance, autocorrelation (AC), cross-correlation (CC), and discrete Fourier 

transform (DFT) evaluations—demonstrates significant cryptographic strength improvements through the integration of 

DRL with the five chaotic map types. These proposed scenarios offer substantial enhancements over standard chaotic 

systems. The results indicate that the six proposed scenarios provide superior performance for high-security applications, 

representing significant advancements over standard mapping techniques. In addition, the generated stream key bits from 

the proposed scenarios are resistant to brute-force attacks, side-channel attacks, and timing attacks. The proposed DQN-

fusion generator is practical for IoT nodes and other low-resource devices because all training is carried out off-device. 

The endpoint stores only a small DRL agent and runs lightweight, imposing minimal CPU, RAM, and energy overheads. 

Consequently, even microcontrollers without floating-point units can deliver the cryptographic strength demonstrated. 

 

10. FUTURE WORK 

While the DRLKG-Chaotic framework demonstrates strong security when five chaotic maps (Tent, Ikeda, Chua's, Rössler, 

Double Pendulum) are integrated with the DQN for 128/192/256-bit keys, these extensions warrant investigation: 

1. Larger Key Sizes: Exploring key (512 bits, 1024 bits, and more) implementations could counter emerging quantum 

computing threats and serve other encryption algorithms. 

2. Enhanced Chaotic Models: Exploring the integration of DRL with hyper chaotic systems to amplify randomness 

(Hybrid DRL Approaches). 

3. DRL Algorithm Alternatives: Use other types of chaotic maps and DRL algorithms, such as A3C, TRPO, and 

PPO, and experiment with the fusion between these several types of chaotic maps and ultra-complex DRL. 

 



 

 

950 Mahdi et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 927–952 

 

Conflicts of interest  

The authors declare that they have no conflicts of interest.  

  

Funding  

There was no funding for this research study.  

Acknowledgement  

None  

 

References 

 

[1]M. S. Rathore et al., “A novel trust-based security and privacy model for Internet of Vehicles using encryption and 

steganography,” Computers and Electrical Engineering, vol. 102, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108205. 
[2]A. A. Salih, Z. A. Abdulrazaq, and H. G. Ayoub, “Design and Enhancing Security Performance of Image Cryptography 

System Based on Fixed Point Chaotic Maps Stream Ciphers in FPGA,” Baghdad Science Journal, vol. 21, no. 5 SI, pp. 

1754–1764, 2024, doi: 10.21123/bsj.2024.10521. 

[3]R. Naik and U. Singh, “Secured 6-Digit OTP Generation using B-Exponential Chaotic Map,” 2021. [Online]. Available: 

www.ijacsa.thesai.org 

[4]R. B. Prajapati and S. D. Panchal, “Enhanced Approach To Generate One Time Password (OTP) Using Quantum True 

Random Number Generator (QTRNG),” International Journal of Computing and Digital Systems, vol. 15, no. 1, pp. 279–

292, 2024, doi: 10.12785/ijcds/150122. 

[5]U. Zia, M. McCartney, B. Scotney, J. Martinez, and A. Sajjad, “A novel pseudo-random number generator for IoT based 

on a coupled map lattice system using the generalised symmetric map,” SN Appl Sci, vol. 4, no. 2, Feb. 2022, doi: 

10.1007/s42452-021-04919-4. 

[6]L. Baldanzi et al., “Cryptographically secure pseudo-random number generator IP-core based on SHA2 algorithm,” 

Sensors (Switzerland), vol. 20, no. 7, Apr. 2020, doi: 10.3390/s20071869. 

[7]M. Farajallah, M. Abutaha, M. Abu Joodeh, O. Salhab, and N. Jweihan, “PSEUDO RANDOM NUMBER 

GENERATOR BASED ON LOOK-UP TABLE AND CHAOTIC MAPS,” J Theor Appl Inf Technol, vol. 31, p. 20, 2020, 

[Online]. Available: www.jatit.org 

[8]M. D. Al-Hassani, “A Novel Technique for Secure Data Cryptosystem Based on Chaotic Key Image Generation,” 

Baghdad Science Journal, vol. 19, no. 4, pp. 905–913, 2022, doi: 10.21123/bsj.2022.19.4.0905. 

[9]S. A. S. Hussien, B. N. Al Din Abed, and K. A. Ibrahim, “Encrypting Text Messages via Iris Recognition and Gaze 

Tracking Technology,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 1, pp. 90–103, Jan. 2025, doi: 

10.58496/MJCS/2025/007. 

[10]M. M. Hoobi, “Multilevel Cryptography Model using RC5, Twofish, and Modified Serpent Algorithms,” Iraqi Journal 

of Science, vol. 65, no. 6, pp. 3434–3450, 2024, doi: 10.24996/ijs.2024.65.6.37. 

[11]N. H. M. Ali, M. M. Hoobi, and D. F. Saffo, “Development of Robust and Efficient Symmetric Random Keys Model 

based on the Latin Square Matrix,” Mesopotamian Journal of CyberSecurity, vol. 4, no. 3, pp. 203–215, 2024, doi: 

10.58496/MJCS/2024/023. 

[12]I. A. Abdulmunem and M. M. Hoobi, “Enhanced DES Algorithm Using Efficient Classical Algorithm,” Iraqi Journal 

of Science, vol. 65, no. 12, pp. 7251–7275, 2024, doi: 10.24996/ijs.2024.65.12.37. 

[13]N. E. El-Meligy, T. O. Diab, A. S. Mohra, A. Y. Hassan, and W. I. El-Sobky, “A Novel Dynamic Mathematical Model 

Applied in Hash Function Based on DNA Algorithm and Chaotic Maps,” Mathematics, vol. 10, no. 8, Apr. 2022, doi: 

10.3390/math10081333. 

[14]A. Zellagui, N. Hadj-Said, and A. Ali-Pacha, “A new hash function inspired by sponge construction using chaotic 

maps,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 26, no. 2, pp. 529–559, 2023, doi: 

10.1080/09720529.2021.1961900. 

[15]A. T. Maolood, E. K. Gbashi, and E. S. Mahmood, “Novel lightweight video encryption method based on ChaCha20 

stream cipher and hybrid chaotic map,” International Journal of Electrical and Computer Engineering, vol. 12, no. 5, pp. 

4988–5000, Oct. 2022, doi: 10.11591/ijece.v12i5.pp4988-5000. 

[16]M. Alawida, J. Sen Teh, A. Mehmood, A. Shoufan, and W. H. Alshoura, “A chaos-based block cipher based on an 

enhanced logistic map and simultaneous confusion-diffusion operations,” Journal of King Saud University - Computer and 

Information Sciences, vol. 34, no. 10, pp. 8136–8151, 2022, doi: 10.1016/j.jksuci.2022.07.025. 

[17]J. Liu, Y. Wang, Q. Han, and J. Gao, “A Sensitive Image Encryption Algorithm Based on a Higher-Dimensional 

Chaotic Map and Steganography,” International Journal of Bifurcation and Chaos, vol. 32, no. 01, p. 2250004, 2022, doi: 

10.1142/S0218127422500043. 



 

 

951 Mahdi et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 927–952 

 

[18]M. Bhandari, S. Panday, C. P. Bhatta, and S. P. Panday, “Image Steganography Approach Based Ant Colony 

Optimization with Triangular Chaotic Map,” in Proceedings of 2nd International Conference on Innovative Practices in 

Technology and Management, ICIPTM 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 429–434. 

doi: 10.1109/ICIPTM54933.2022.9753917. 

[19]K. Wang, T. Gao, D. You, X. Wu, and H. Kan, “A secure dual-color image watermarking scheme based 2D DWT, 

SVD and Chaotic map,” Multimed Tools Appl, vol. 81, no. 5, pp. 6159–6190, 2022, doi: 10.1007/s11042-021-11725-y. 

[20]M. Irfan and M. A. Khan, “Cryptographically Secure Pseudo-Random Number Generation (CS-PRNG) Design using 

Robust Chaotic Tent Map (RCTM),” Aug. 2024, [Online]. Available: http://arxiv.org/abs/2408.05580 

[21]R. B. Naik and U. Singh, “A Review on Applications of Chaotic Maps in Pseudo-Random Number Generators and 

Encryption,” Annals of Data Science, vol. 11, no. 1, pp. 25–50, 2022, doi: 10.1007/s40745-021-00364-7. 

[22]B. V Nair, V. V S, S. S. Muni, and A. Durdu, “Deep Learning and Chaos: A combined Approach To Image Encryption 

and Decryption,” Jun. 2024, [Online]. Available: http://arxiv.org/abs/2406.16792 

[23]E. Kopets, V. Rybin, O. Vasilchenko, D. Butusov, P. Fedoseev, and A. Karimov, “Fractal Tent Map with Application 

to Surrogate Testing,” Fractal and Fractional, vol. 8, no. 6, Jun. 2024, doi: 10.3390/fractalfract8060344. 

[24]D. F. M. Oliveira, “Mapping Chaos: Bifurcation Patterns and Shrimp Structures in the Ikeda Map,” Aug. 2024, 

[Online]. Available: http://arxiv.org/abs/2408.11254 

[25]W. Zhao, Z. Chang, C. Ma, and Z. Shen, “A Pseudorandom Number Generator Based on the Chaotic Map and Quantum 

Random Walks,” Entropy, vol. 25, no. 1, Jan. 2023, doi: 10.3390/e25010166. 

[26]S. Subathra and V. Thanikaiselvan, “Enhanced security for medical images using a new 5D hyper chaotic map and 

deep learning based segmentation,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-04906-4. 

[27]C. S. Devi and R. Amirtharajan, “A novel 2D MTMHM based key generation for enhanced security in medical image 

communication,” Sci Rep, vol. 15, no. 1, Dec. 2025, doi: 10.1038/s41598-025-10485-1. 

[28]S. B. N. Premakumari, G. Sundaram, M. Rivera, P. Wheeler, and R. E. P. Guzmán, “Reinforcement Q-Learning-Based 

Adaptive Encryption Model for Cyberthreat Mitigation in Wireless Sensor Networks,” Sensors, vol. 25, no. 7, Apr. 2025, 

doi: 10.3390/s25072056. 

[29]J. Ding, K. Chen, Y. Wang, N. Zhao, W. Zhang, and N. Yu, “Discop: Provably Secure Steganography in Practice 

Based on ‘Distribution Copies,’” 2023, doi: 10.1109/SP46215.2023.00155. 

[30]A. Daoui, M. Yamni, S. A. Chelloug, M. A. Wani, and A. A. A. El-Latif, “Efficient Image Encryption Scheme Using 

Novel 1D Multiparametric Dynamical Tent Map and Parallel Computing,” Mathematics, vol. 11, no. 7, Apr. 2023, doi: 

10.3390/math11071589. 

[31]N. F. Hassan, A. Al-Adhami, and M. S. Mahdi, “Digital Speech Files Encryption based on Hénon and Gingerbread 

Chaotic Maps,” Baghdad Journal of Science, vol. 63, no. 2, pp. 830–842, 2022, doi: 10.24996/ijs.2022.63.2.36. 

[32]A. Al-Daraiseh, Y. Sanjalawe, S. Al-E’mari, S. Fraihat, M. Bany Taha, and M. Al-Muhammed, “Cryptographic Grade 

Chaotic Random Number Generator Based on Tent-Map,” Journal of Sensor and Actuator Networks, vol. 12, no. 5, Oct. 

2023, doi: 10.3390/jsan12050073. 

[33]N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, and L. Chua, “Hidden attractors in Chua 

circuit: mathematical theory meets physical experiments,” Nonlinear Dyn, vol. 111, no. 6, pp. 5859–5887, Mar. 2023, doi: 

10.1007/s11071-022-08078-y. 

[34]R. Rocha and R. O. Medrano-T, “Chua Circuit based on the Exponential Characteristics of Semiconductor Devices,” 

Dec. 2021, doi: 10.1016/j.chaos.2021.111761. 

[35]B. Arpacı, E. Kurt, and K. Çelik, “A new algorithm for the colored image encryption via the modified Chua’s circuit,” 

Engineering Science and Technology, an International Journal, vol. 23, no. 3, pp. 595–604, Jun. 2020, doi: 

10.1016/j.jestch.2019.09.001. 

[36]Z. Galias, “Continuation-based method to find periodic windows in bifurcation diagrams with applications to the 

Chua’s circuit with a cubic nonlinearity,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 9, 

pp. 3784–3793, Sep. 2021, doi: 10.1109/TCSI.2021.3089420. 

[37]B. Emin and Z. Musayev, “Chaos-based Image Encryption in Embedded Systems using Lorenz-Rossler System,” 

Chaos Theory and Applications, vol. 5, no. 3, pp. 153–159, 2023, doi: 10.51537/chaos.1246581. 

[38]B. Kharabian and H. Mirinejad, “Synchronization of Rossler chaotic systems via hybrid adaptive backstepping/sliding 

mode control,” Results in Control and Optimization, vol. 4, no. May, p. 100020, 2021, doi: 10.1016/j.rico.2021.100020. 

[39]J. P. Parker, D. Goluskin, and G. M. Vasil, “A study of the double pendulum using polynomial optimization,” Jun. 

2021, doi: 10.1063/5.0061316. 

[40]S. Cabrera, E. D. Leonel, and A. C. Marti, “Regular and chaotic phase space fraction in the double pendulum,” Dec. 

2023, [Online]. Available: http://arxiv.org/abs/2312.13436 

[41]S. R. de Oliveira, “Deterministic chaos: A pedagogical review of the double pendulum case,” Revista Brasileira de 

Ensino de Fisica, vol. 46, 2024, doi: 10.1590/1806-9126-RBEF-2024-0060. 



 

 

952 Mahdi et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 927–952 

 

[42]J. J. López and V. J. García-Garrido, “Chaos and Regularity in the Double Pendulum with Lagrangian Descriptors,” 

Mar. 2024, [Online]. Available: http://arxiv.org/abs/2403.07000 

[43]R. S. Abdulaali and R. K. Jamal, “A Comprehensive Study and Analysis of the Chaotic Chua Circuit,” Iraqi Journal 

of Science, vol. 63, no. 2, pp. 556–570, 2022, doi: 10.24996/ijs.2022.63.2.13. 

[44]N. Sanghi, “Deep Q-Learning,” in Deep Reinforcement Learning with Python: With PyTorch, TensorFlow and OpenAI 

Gym, Berkeley, CA: Apress, 2021, pp. 155–206. doi: 10.1007/978-1-4842-6809-4_6. 

[45]L. Graesser and W. Loon Keng, “Foundations of Deep Reinforcement Learning _ Theory and Practice in Python,” 

Nov. 2021. 

[46]A. Plaat, Deep Reinforcement Learning. Springer Nature, 2022. doi: 10.1007/978-981-19-0638-1. 

[47]N. Ketkar and J. Moolayil, Deep Learning with Python. 2021. doi: 10.1007/978-1-4842-5364-9. 

[48]T. Xu, Y. Liu, Z. Ma, Y. Huang, and P. Liu, “A DQN-Based Multi-Objective Participant Selection for Efficient 

Federated Learning,” Future Internet, vol. 15, no. 6, Jun. 2023, doi: 10.3390/fi15060209. 

[49]F. Li, J. Yang, K. Y. Lam, B. Shen, and G. Wei, “Dynamic spectrum access for Internet-of-Things with joint GNN and 

DQN,” Ad Hoc Networks, vol. 163, Oct. 2024, doi: 10.1016/j.adhoc.2024.103596. 

[50]L. E. Bassham et al., “A statistical test suite for random and pseudorandom number generators for cryptographic 

applications,” Gaithersburg, MD, 2022. doi: 10.6028/NIST.SP.800-22r1a. 

[51]Y. Zhang, L. Zhang, Z. Zhong, L. Yu, M. Shan, and Y. Zhao, “Hyperchaotic image encryption using phase-truncated 

fractional Fourier transform and DNA-level operation,” Opt Lasers Eng, vol. 143, p. 106626, 2021, doi: 

https://doi.org/10.1016/j.optlaseng.2021.106626. 

[52]Y. A. Liu et al., “A dynamic AES cryptosystem based on memristive neural network,” Sci Rep, vol. 12, no. 1, Dec. 

2022, doi: 10.1038/s41598-022-13286-y. 

[53]E. Barker, “Recommendation for key management:,” Gaithersburg, MD, May 2020. doi: 10.6028/NIST.SP.800-

57pt1r5. 

[54]Entropy Method for Assessing the Strength of Encryption Algorithms. IEEE, 2024. 

[55]I. Buhan, L. Batina, Y. Yarom, and P. Schaumont, “SoK: Design Tools for Side-Channel-Aware Implementations,” 

Jun. 2021, [Online]. Available: http://arxiv.org/abs/2104.08593 

[56]X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A Survey of Microarchitectural Side-channel Vulnerabilities, Attacks and 

Defenses in Cryptography,” Mar. 2021, [Online]. Available: http://arxiv.org/abs/2103.14244 

[57]D. Ojha and S. Dwarkadas, “Timing Cache Accesses to Eliminate Side Channels in Shared Software,” Dec. 2021, doi: 

10.1109/ISCA52012.2021.00037. 

[58]F. Mahmud, S. Kim, H. S. Chawla, C.-C. Tsai, E. J. Kim, and A. Muzahid, “Attack of the Knights: A Non Uniform 

Cache Side-Channel Attack,” May 2023, doi: 10.1145/3627106.3627199. 

[59]R. L. Schröder, S. Gast, and Q. Guo, Divide and Surrender: Exploiting Variable Division Instruction Timing in HQC 

Key Recovery Attacks. [Online]. Available: https://www.usenix.org/conference/usenixsecurity24/presentation/schr 

[60]A. Tsuneda, “Auto-Correlation Functions of Chaotic Binary Sequences Obtained by Alternating Two Binary 

Functions,” Dynamics, vol. 4, no. 2, pp. 272–286, Jun. 2024, doi: 10.3390/dynamics4020016. 

[61]F. Ye, S. Zhang, P. Wang, and C.-Y. Chan, “A Survey of Deep Reinforcement Learning Algorithms for Motion 

Planning and Control of Autonomous Vehicles,” May 2021, [Online]. Available: http://arxiv.org/abs/2105.14218 

  

 

 


