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A B S T R A C T 

Recommender systems (RSs) have become critical elements in modern instances of information and 
decision-support systems, resulting in a transformation of user experiences through highly personalized 
suggestions for an undeniably vast range of items. Although RSs have become commonplace, they 
continue to evolve, and their challenges, including sparsity, cold-start, scalability, and vulnerability to 
adversarial challenges remain. The use of clustering methods has proven highly effective in resolving 
these issues through the discovery and exploitation of latent user behaviour patterns, segmenting user 
groups that contribute more towards personalized and adaptable RSs. Additionally, adversarial learning 
has become a growing focus of study as a proposed solution for shielding and defending RSs, processes, 
and data from manipulation and attacks, resulting in greater resistance and trustworthiness. This study 
presents a systematic literature review (SLR) that explores the intersection of RSs, clustering methods, 
and adversarial learning. This paper synthesizes a critique of the latest hybrid recommendations, detailing 
motivations, challenges, directions for future study, and practical recommendations drawn from the 
examined studies. An SLR search of four academic databases, ScienceDirect (SD), IEEE Xplore (IEEE), 
Scopus, and Web of Science (WoS), delivered an initial yield of 843 studies; after filtration, 51 studies 
remained. All the retained articles were examined and characterized in terms of dataset details, 
techniques, frameworks, and performance. A significant gap in research has emerged regarding the 
overreliance on datasets from commercial and entertainment domains, with a notable scarcity of studies 
addressing critical domains such as healthcare, finance, and other critical fields where diverse data 
sources should invoke robust, secure, and trustworthy RSs recommendations. Future research is needed 
to develop adversarially robust RSs for high-stakes applications requiring stringent accuracy and safety 
standards. This review provides a rich critical examination of the literature to embolden the ideas and 
theories associated with clustering methods and adversarial learning working together within RSs. It 
offers concrete opportunities and directions for carrying out future work in developing next-generation 
secure, adaptive recommendation frameworks. These findings corroborate a change in perspective on 
designing systems that seek to develop an RSs that can withstand adversarial threats and promote the 
development of safer, fairer, and more reliable decision-support systems in a variety of domains.

 
1. INTRODUCTION 

Recommender systems (RSs) have become a vital part of modern digital ecosystems and have influenced the way in which 

users engage with content by providing targeted suggestions based on user preferences and behavioural patterns [1]. RSs 

on machine learning and data-driven approaches to analyse user interaction, purchase history, previous browsing behavior, 

and demographic features so that the platform can make relevant recommendations [2]. Companies and organizations 

across industries use RSs, including e-commerce, where they recommend products based on preferences (such as Amazon, 

and eBay); streaming services offer movie, music, or video content (such as Netflix, Spotify, and YouTube); healthcare, 

which provides medical treatment or medications based on patients' history; the education field, where services provide 

adaptive learning through recommending courses and other study materials (such as Coursera, and Udemy); and social 

networks, which find new friends and posts or professional connections (such as Facebook, and LinkedIn) [3]. RSs are 

divided into several approaches that primarily utilize collaborative filtering (CF) and content-based filtering (CBF), which 

are the two main strategies [4]. CF is based on the premise that users who have similar preferences will probably share 

similar interest’s preferences and lists items that users recommend, whereas item-based CF recommends items. CBF also
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uses a hypothesis of user preferences, but instead analyses item features and user preferences, recommending items that are 
similar to items the user has liked in the past. Both CF and CBF are functional methods for making recommendations but 
have serious drawbacks with respect to scalability and accuracy. Data sparsity is one of the obstacles to developing an 
effective RSs. The sparsity of data occurs when there are insufficient user-item interactions in the dataset, leaving too few 
for providing meaningful recommendations [5].  

This issue of data sparsity is most prominent in large-scale systems, where most items have very few interactions, so the 
measurement of similarity may be flagged as unreliable. Closely related to data sparsity, the cold start problem occurs when 
a yet to be introduced user or item has no historical data. In this case, the RSs is unable to apply any recommendation 
methodology until sufficient user-item interactions are captured. Scalability issues also arise after RSs processes handle 
larger datasets; either the process cannot measure within the required time or the algorithms take too long to compute. In 
light of these challenges that have been mentioned. Here, an important question should be raised: To what extent can the 

integration of clustering-based unsupervised learning techniques with supervised learning approaches for addressing 
address the limitations of traditional RSs, specifically while enhancing accuracy, personalization, and overall system 
robustness? 

A key component of these systems is machine learning, an impressive collection of models and algorithms that enables 
computers to learn patterns in the data and make intelligent decisions. Supervised learning is an important technique for 
predicting a user's preferred options and provides personalized recommendations [6], [7], [8].  

Supervised learning employs labelled data (which is an input feature and an output label that is associated with the result), 
where an example is a user's explicit recommendation for a movie or their decision to purchase an item [9], [10], [11]. There 
are many supervised algorithms that have been successfully applied in user behaviour modelling: decision tree (DT), random 
forest (RF), support vector machine (SVM), and k-nearest neighbors (KNN) [12], [13].  

DT use a strategy by partitioning the feature space into subregions where each subregion is defined by a feature's value [14]. 
DT are tree-shaped structures that are easily interpretable and allow complex non-linear relationships to be captured. This 
property of interpretability gives the system designer insights related to providing recommendations on which user- or item-
based attributes are most influential in constructing recommendations. RF builds on the idea behind a DT by building an 
ensemble of multiple trees trained on a bootstrap sample of the data while choosing a random subset of features for each 
tree [15].  

RF method offer advantages against variance and improves generalization. SVM find a hyperplane that maximizes the 
separation between different classes in a multidimensional feature space and are very effective if the task is a binary or 
multiclass classification task (e.g., predicting if a user will like or dislike an item). KNN operates on the basis of similarity, 
such that KNN classifications occur based on the majority label of the k closest neighbors in the feature space [16], [17].  

KNN algorithms are easy to understand and very suitable for CF recommendations because an explicit user rating of a similar 
user or characteristics of a similar item is usually available. Supervised learning is advantageous for precision in repeated 
predictions with feedback of a known value, but supervised learning methods work equally well in RSs and learning by 
discovering hidden structures and hidden patterns from data that are not apparent [18].To identify these hidden structures 
from data, clustering approaches such as K-means, DBSCAN (density-based spatial clustering of applications with noise), 
deep embedded clustering (DEC) and variational deep embedding (VaDE) are helpful for this purpose [19].  

K-means is one of the more straightforward machine learning algorithms, and is the most recognized and commonly used 
clustering form, k-means clustering divides users or items into k clusters while trying to minimize the variance within the 
clusters, in essence, grouping users with similar preferences or items with similar features for a recommendation system 
where a group-based identified user recommendation may provide more relevance to the user in a focused manner to 
personalize the recommendation system to that group [20].  

DBSCAN, in contrast, defines a cluster as a collection of dense regions of data space separated by lower-density regions. 
DBSCAN is capable of identifying clusters of arbitrary shapes, as well as outliers; therefore, it is useful for segmenting users 
with niche or unusual behaviours that may not be detected via a standard clustering approach. DEC combines clustering and 
deep learning and learns feature representations important for the task of clustering and the cluster assignments in an 
autoencoder [21].  

The DEC method can learn a compact and informative embedding of user/item data, as well as develop equivalent, although 
complex, relationships that might not be available from traditional clustering methods. This is significant in recommendation 
type environments where user behaviour could be based on an amalgamation of factors and interactions suggesting how 
DEC can learn a multidimensional representation of user/item data. VaDE extends this concept by adding a vibrational 
autoencoder to the clustering learning framework while also relying on a Gaussian mixture model. In this way, the system 
can reflect the complex but overlapping interests that a user may have. An additional benefit of a hybrid of supervised and 
unsupervised learning provides an additional method for developing an application recommendation, where it relies not only 
on accurate predictions, but also on uncovering hidden patterns in user use. While supervised models depend on historical 
feedback, they face the difficulties of new users and sparse data. Unsupervised clustering helps segment users based on 
implicit behaviours, providing a structural foundation that enhances supervised predictions even with limited data. This 
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combined strategy allows systems to adapt dynamically as user preferences evolve, leading to more accurate, personalized, 
and diverse recommendations.  

Ultimately, this synergy enables the RSs to better understand and predict user preferences, supporting robust and user-
cantered methods. The combination of traditional and deep clustering methods will also help reduce the cold start problem, 
improve computational efficiency, reduce computational load, and improve personalization, leading to improved accuracy 
and increased user experience. In addition to the previous consideration of how to utilize RSs, one other area that has 
considerable potential to move the recommender system field forward is adversarial learning. This is especially the case for 
flexibility and robustness, which most recommendation systems suffer from. In that supposition comes the following 
consideration: What is the role of adversarial learning? 

Adversarial learning has emerged as a powerful and comprehensive framework in artificial intelligence (AI), serving as a 
"big umbrella" under which key concepts such as adversarial attacks and adversarial training are integrated to strengthen 
system security and robustness. In the context of an RSs, which plays a critical role in guiding user choices across e-
commerce, media, and social platforms, adversarial learning provides essential mechanisms to address vulnerabilities and 
enhance reliability [22]. 

 Adversarial inputs are examples where the input feature representation may be different, intentionally modified, or altered, 
which includes some characteristics that mislead the models’ true prediction or ultimate learning [23]. These features are 
typically modified in subtle ways that humans cannot detect but can have large implications for model performance [24].  

Adversarial attacks involve deliberately crafted perturbations designed to deceive recommender models, causing them to 
generate irrelevant or misleading suggestions, and thus serve as a diagnostic tool to uncover hidden weaknesses in user‒item 
interaction patterns [25], [26].  

Common techniques are used to generate these perturbations and include fast gradient sign method (FGSM) attacks, 
projected gradient descent (PGD), and Carlini & Wagner (C&W) attacks, which each slightly alter the input signals but still 
induce model failures [27]. 

 As an example of how to defend against attacks, adversarial training incorporates adversarial examples into model training, 
allowing the recommender system to learn robust representations of the input data and build resistance against manipulations. 
In this context, models can employ PGD-based adversarial training and TRadeoff-inspired Adversarial DEfense via 
Surrogate-loss minimization (TRADES), which uses an appropriate mix between natural accuracy and robustness, enabling 
models to maintain performance under adversarial conditions and to adapt simultaneously to changing user behaviors [22], 
[28]. 

 Aside from the attack and defense dichotomy, adversarial learning can extend further into other wider spheres, such as 
generative adversarial networks (GANs), which can be used to generate synthetic user behavior data to improve 
recommendation diversity and mitigate data sparsity issues [29].  

Similarly, adversarial domain adaptation techniques are able to help recommendation models generalize across different 
user groups or markets by jointly learning invariant representations of features. By integrating these adversarial learning 
techniques, the RSs not only becomes more secure and robust but also achieves higher generalizability, fairness, and 
adaptability. This holistic approach encourages researchers to explore its transformative impact on creating more 
trustworthy, user-centered, and resilient recommendation solutions that can withstand real-world adversarial scenarios [30]. 
The application of adversarial learning increases models' resistance and robustness to those manipulations, which can 
improve their ability to deal with noisy, sparse, and manipulated data. Now, a critical move in research is to ask: How can 

adversarial learning be leveraged to enhance the robustness of clustering-based RSs against adversarial attacks, 
ensuring both accuracy and security in personalized recommendations? 

By using adversarial learning techniques, models can therefore train more effectively to identify and reduce adversarial 
mechanism threats and adapt to them, with better robustness and generalized performance capabilities [31]. 

 In practice, adversarial training integrates these crafted adversarial examples in the learning process of a model, optimizing 
the model with a min–max objective to minimize the prediction error of the model while using the worst-case perturbations. 
This would better promote more stable cluster structures and is less likely to lead to data poisoning attacks, in which 
malicious data points are included to intentionally bias the recommended output of the recommendation system. 
Furthermore, the incorporation of broader adversarial learning strategies, such as GANs, can provide synthetic adversarial 
user behavior data that simulate diverse, realistic, and unexpected interactions.  

This augmentation improves both the representativeness of training data and the system's ability to generalize to new user 
behaviors or attack strategies. Combined with the characteristics of RSs and clustering algorithms, this technique has the 
potential to solve vulnerabilities and improve systemic resilience to manipulative attacks and data inconsistencies [32].  

In addition, adversarial domain adaptation methods can help clustering-based recommenders maintain consistent 
performance across different user groups or markets by learning domain-invariant features, thereby reducing sensitivity to 
adversarial shifts in user data distributions. While these approaches improve safety and robustness, they also introduce 
challenges such as higher computational costs and tuning of perturbation strengths. Nonetheless, integrating adversarial 
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learning into clustering-based RSs represents a promising direction for building a valuable avenue to explore, especially in 
scenarios requiring secure operation during an adversarial shift that can be described as being extremely dynamic. 

2. METHODOLOGY 

In this study, a systematic literature review (SLR), which is one of the most recognized and systematic approaches to 

synthesizing prior literature in a specific research area, was conducted [33], [34], [35], [36] The SLR approach was selected 

because it provides comprehensive and objective checks of relevant literature when identifying, selecting, and analysing 

studies based on predetermined criteria. SLR is different from traditional literature reviews since they are conducted in a 

manner that minimizes bias and increases the reproducibility of study findings when reputable databases are used. An SLR 

provides a framework for organizing research, as opposed to unorganized research, so that it provides a comprehensive 

examination of a specific research area. 

To ensure broad and reliable coverage of literature, multiple databases were selected, as relying on a single database may 

introduce selection bias or omit critical studies. On the basis of their relevance and credibility in the domain of modern 

research, four major academic databases were chosen: 

1. Web of Science (WoS): a world leader in research databases and includes many of the highest impact publications across 

all fields. WoS is essential for reliable and solid study evidence, as it includes only peer-reviewed journals. 

2. ScienceDirect (SD) includes a large and varied scientific journal database covering disciplines, including but not limited 

to, inclusive but not limited to, medicine, science, and technology, to include and support interdisciplinary research and 

contribute information to these domains. 

3. IEEE Xplore (IEEE): As the name implies, IEEE is primarily oriented toward engineering and technology-related 

research, and along these lines, IEEE is well known for its extensive collection of high-quality publications, particularly in 

the areas of computer science, AI, and machine learning. 

4. Scopus: As one of the largest abstract and citation databases, Scopus has impressive coverage of scientific literature and 

quite an extensive amount of nonscientific and scientific literature, allowing for a broad analysis of applicable studies. 

2.1 Search Strategy 

For this investigation, four databases were thoroughly searched for English-language scholarly literature. The search ranged 

from January 2019 to January 2025. A keyword-based query was formulated to systematically retrieve relevant studies, as 

demonstrated in Figure 1. This structured search strategy ensures the inclusion of relevant literature while filtering out 

studies that do not align with the research focus. The "OR" operator was used to connect "clustering deep", "clustering", 

"adversarial attack", "adversarial learning", "recommender system", "recommendation system", "machine learning", "deep 

learning," and the "AND" operator linked these phrases together, as shown at the top of Figure 1. This search approach 

was used to find relevant scholarly literature. 

2.2 Inclusion and Exclusion Criteria 
To maintain the quality and relevance of the reviewed literature, predefined inclusion and exclusion criteria were applied 

during the selection process. 

 Inclusion Criteria 
The selected studies had to meet the following conditions: 

1. Published in peer-reviewed English-language journals or conference proceedings. 

2. This is directly related to more than one of the following research areas: RSs, clustering approaches, adversarial learning, 

and AI-driven methodologies for enhancing algorithmic performance. 

3. Focus on integrating or advancing the above concepts through novel techniques, frameworks, or applications. 

 Exclusion Criteria 

Studies were excluded if they met any of the following conditions: 

1. Did not explicitly address the intersection of RSs, clustering, and adversarial learning. 

2. The concepts were used only as secondary considerations rather than as core research themes. 

3. Were purely medical studies. 

4. Studies that use only a traditional recommender system. 

5. Studies that use clustering or adversarial learning only. 

By implementing these rigorous selection criteria, the study ensures the inclusion of only the most relevant and high-quality 

research, thereby strengthening the validity of the findings and contributing to a well-founded analysis of the field. 
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Fig. 1 An outline of the approach used to identify, select, and include relevant 
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2.3 Study Selection Process 

The study selection process followed a systematic and rigorous methodology, as outlined in Figure 1. The initial step 

involved the removal of duplicate studies via the Mendeley reference management application to ensure a refined dataset. 

The titles and abstracts of the retrieved studies were subsequently screened to exclude irrelevant works that did not align 

with the research objectives. The full-text data were then reviewed in accordance with established inclusion criteria to 

decide whether they were appropriate. 

A total of 843 research articles from the four pooled databases. After 34 duplicates were removed, 809 papers remained 

eligible. The titles and abstracts of the 809 articles were then screened, and 476 were removed because they were clearly 

not relevant to this study. A full-text examination of the 333 papers remaining led to the removal of 282 studies, leaving 

51 studies for comprehensive evaluation and in-depth analysis. 

2.3 Data Extraction and Classification 
Through a systematic review process, relevant information was carefully extracted from the qualitative analysis of the 
included papers, with a structured subgroup review enabling the analysis, which focused on important variables, including 
the type of AI technology, algorithm types, performance metrics used to assess AI model performance, datasets available, 
and main contributions. A comprehensive full-text review was performed, and each selected article was selected according 
to the aims of the research. The classification of the studies reviewed was also accomplished iteratively, forming the basis 
of the taxonomy defined in this study. This study also synthesized a range of literature related to research on RSs, clustering 
and adversarial learning while providing dimensions related to aims, motivations and challenges associated with 
researchers working in this domain. The review also summarized any limitations from previous research, and this study 
provided recommendations for future research, which are described in later sections. This systematic approach synthesized 
the literature and identified gaps and opportunities for future work in this area. 

3. COMPREHENSIVE SCIENCE MAPPING ANALYSIS 

In this section, as presented four in-depth analysis procedures that we developed from studies taken from four databases. 

The study represents a detailed analysis of the objectivity of the research papers by considering various factors 

encompassing the research methodologies, quality and extent of the studies, impacts (and citation counts) of these articles 

and linking the articles and results to a wider research base in various disciplines. Through an analysis that considers these 

factors, we analysed the studies, the patterns and trends in study designs, and emerging topics within a research topic area, 

as well as the methodological rigor implied by the study articles, which contributed to knowledge in their respective areas 

of research. In the following subsections, we discuss in detail the analysis of these studies and the benefits they offer on 

the basis of the most relevant source, Word Cloud Analysis, Countries Scientific Production and Collaboration Map, and 

Co-occurrence Network. 

3.1 Most relevant sources 

The provided data illustrated in Figure 2 show a range of academic journals and conferences in different proportions during 

the publishing process. The IEEE Transactions on Knowledge and Data Engineering produced four articles that are at the 

top of the list, followed by journals such as IEEE Access, Information Fusion, and Knowledge-Based Systems, each of 

which had three articles included in the data extraction. This indicates their academic rigor in publishing three articles on 

the basis of the value of a criterion for a significant emphasis in fields related to AI and data engineering. Expert systems 

with applications, neural computing, and applications, while contributing two publications each, are likely to have a strong 

but niche reputation with lower publication rates. Conferences such as AAAI 2020 offer prestigious platforms for 

researchers, despite featuring only one article in the dataset. This underscores the importance of conference papers in top-

tier research. Journals with a single publication, such as Computers and Security and Pattern Recognition, also maintain 

relevance in their specialized fields. However, overall, the data show that the publication volume of articles does reflect 

active research, and journals and conferences valued in publications (for example, IEEE and Elsevier) have significant 

value in well-published, distributed, and impactful research, especially in terms of AI, security, and data analytics. 
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Fig. 2 Most relevant sources 

3.2 Word Cloud Analysis 

Figure 3 illustrates a visual representation of the key themes and data used in the studies analysed. It is a good format for 

summarizing and highlighting the main topics associated with a certain research area. By using word clouds to visually 

represent the most common terminology through font size and central positioning, specialists can clearly understand and 

easily identify important concepts. In this study, the word cloud was generated on the most frequently appearing keywords 

across the reviewed literature, offering insights into the primary research focus areas. The prominence of a keyword within 

the word cloud is directly proportional to its frequency in the dataset, with more frequently occurring terms appearing 

larger and more centrally positioned. This visualization aids in identifying dominant trends, recurring themes, and critical 

areas of interest in the selected research corpus. Figure 3 shows a word cloud constructed from the 143 most commonly 

used keywords in the analysed studies, providing a comprehensive overview of the primary subjects addressed in the 

literature. 
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Fig. 3 Word Cloud Analysis 

33.   Countries Scientific Production and Collaboration Map 

Figure 4 shows that scientific research plays a crucial role in advancing knowledge and driving technological innovations 

in this study's collection, with China leading global scientific production, followed by the USA and India in that direction. 

A dark blue color represents a high level of research output, whereas light and very light blue colors indicate lower levels 

of scientific productivity. China plays a dominant role in advancing RSs, adversarial learning, and clustering, producing a 

significantly greater volume of research than other nations do. Both the USA and India have also made significant 

contributions to this area and continue to be influential players in AI-led analytics. However, other countries, such as Italy, 

Germany, and Morocco did not produce much in this work, indicating a lower research presence. Even though Germany 

and Italy possess a well-established technological infrastructure, their scores on AI-based research were low, indicating 

little research activity. The pace of change in countries like China and the USA has made it exceedingly challenging for 

countries like Germany and Italy to keep their research base up to speed. Clearly, a lack of research contributions in 

countries such as Germany and Italy indicates that AI-led innovation and analytics is not a research priority or investment 

area, which could risk their competitive advantage in future global technology. Moreover, collaboration in scientific 

research on an international scale is critical for enhancing research and innovation globally. The value of collaboration and 

knowledge transfer is used to assess the quality of scientific knowledge and research projects. Therefore, it is not surprising 

to see the rankings of China and the USA as collaborative countries to one another, where the strength of their collaborative 

support is represented as the gray line connecting the two great research networks and flagship contributors to the global 

research output. The thick gray line indicates an increase in research collaboration. The thicker the line is, the greater the 

intensity of research collaboration between the countries, and vice versa. China has the highest value of international 

collaboration by a fair amount, with noteworthy participants from Australia (4), Hong Kong (4), the USA (5), and the UK 

(2). This indicates the potential growth of China's influence on global research trends in areas such as AI and data analytics. 

The USA has also worked with Hong Kong (2), where notable partnerships exist with India (1), Pakistan (1), and Poland 

(1), showing that the USA is still a significant factor in the exchange of knowledge worldwide. Other European countries, 

such as Austria, Ireland, and Poland, are actively involved in the limbs of large-scale international investigations but show 

less international collaboration. 
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Fig. 4 Provincial Production and Collaboration Map of Countries 

3.4 Co-occurrence Network 

The co-occurrence network captured in Figure 5 illustrates RSs as an essential area of research, connected to key methods 

such as collaborative filtering, clustering methods, and knowledge or semantic graphs as techniques for producing 

personalized experiences that rely on behavioral analyses (i.e., user profiles, clustering) and contextual semantic reasoning 

(e.g., graph-based embeddings). These systems rely on machine learning methods, including deep learning and graph neural 

networks, to refine recommendation processes. However, they also encounter challenges such as adversarial risks, 

including poisoning attacks aimed at corrupting training data, as well as ethical concerns, such as the potential for bias 

amplification. Interdisciplinary connections are evident in the use of knowledge graphs, which improve recommendation 

accuracy by organizing relational data, and in the application of human-centered technologies, such as e-learning, where 

insights from behavioral research guide the development of adaptive and personalized algorithms. 

 

 
Fig. 5 Co-occurrence Network 
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4. TAXONOMY RESULTS 

This taxonomy is structured around four principal sections, each comprising subsections that delineate the 

subclassifications derived from an extensive analysis of studies collected from academic databases. The objective is to 

distil the fundamental and influential elements that shape the foundation of this research, uncovering key insights and 

conceptual frameworks that define this evolving field. The total number of extracted studies amounts to 51, forming the 

empirical basis of this classification. As illustrated in Figure 6, this structured methodology ensures a systematic and 

evidence-driven analysis, grounded in objective scholarly inquiry. At its core, this taxonomy is built upon the intersection 

of clustering, recommendation systems, and adversarial learning, reflecting the intricate interdependencies that characterize 

these domains. 

 
 

Fig. 6. Taxonomy of the use of the intersection among clustering, recommendation systems, and adversarial learning 

4.1 Based on RSs and Clustering 

This section presents twelve research papers (12 in total) that explore the intersection of RSs and clustering techniques. 

This intersection plays a pivotal role in improving the accuracy, scalability, and personalization of recommendations in 

various domains. Clustering techniques help organize users or items based on similarities in their properties into groups 

with different characteristics or behaviors. Together, these studies cover the effectiveness of combining clustering with 

recommendation models in improving system performance and recommendation quality. 

4.1.1 Clustering-Based Approaches for Enhancing the Recommendation Efficiency 

The studies included in this subsection consist of five research papers (N=5) that specifically focus on the intersection of 

clustering techniques and RSs, which have made significant improvements in the same areas of personalization, efficiency, 

and scalability in a plethora of applications. The intersection of clustering techniques and recommendation systems has 

resulted in transformational improvements in personalization, efficiency, and scalability in various applications. By 

leveraging clustering techniques, modern RSs can improve the organization of user‒item interactions, ultimately improve 

computational complexity, and address certain inherent challenges, such as cold-start challenges, data sparsity, and long-

tail distributions. The field of news recommendation can serve as an example of this, where a newly published 

recommendation model integrates graph neural networks with bat optimization algorithms to improve news articles' 

clustering abilities by acquiring semantic information; in turn, this approach addresses the issue of variety in the popularity 

of news articles in a news recommender system [37]. Furthermore, the use of attention mechanisms generalizes and 
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streamlines the process of optimizing the content of interest, vectorizing users' news preferences, and providing better 

resolution recommendations. In types of applications beyond content-specific purposes, clustering techniques/frameworks 

based on network embeddings (e.g., N2VSCDNNR) create side information in terms of item categories to mitigate the 

potential problem of sparsity [38]. As automatic cluster number determination is a method based on a normal distribution, 

relying on normal distribution and confidence intervals, it enables a dynamic clustering strategy, reducing the time 

complexity of real-time recommendations while improving accuracy. In another direction of the Internet of Things (IoT), 

clustering-based recommendation systems harness techniques such as k-means, fuzzy c-means, single-linkage, and self-

organizing maps to address the challenges of scalability, sparsity, and diversity [39]. These approaches significantly 

outperform traditional CF models in IoT-driven environments, enhancing the adaptability of recommendation frameworks. 

On the other hand, when addressing user cold-start problems, particularly in online movie networks, another clustering-

based methodology integrates content-based filtering, collaborative filtering, and data mining techniques [40]. By 

embedding a clustering mechanism based on similarity, this approach provides more relevant movie recommendations to 

new users while improving the quality of their first recommendations. Finally, the use of clustering-driven deep learning 

in online learning platforms denotes the effective use of clustering techniques to assist in processing large amounts of 

varied educational data and building accurate recommendations [41]. These models offer more personalized, scalable, and 

adaptive course recommendations by dynamically clustering or segmenting learner profiles and course content. 

4.1.2 Advanced Recommendation Models and Deep Data Analysis 

As examined two research papers (N = 2) in the preparation of this subsection. RSs have become more prevalent, and 

recommender models have evolved to meaningfully extend their understanding from personalization and user experience. 

Not only does the Group influence mechanisms and cross domain recommender strategies provide flexibly structured 

framework in improvement to recommendation quality, it is aware of context. The group influence-aware autoencoder (GI-

AAE) model also offers a new improved means of creating top-N recommendations, where the latent feature representation 

is strengthened using group interactions [42]. Not only is information fusion becoming better and group-based decision-

making added, the model is now capable of producing situationally relevant recommendations. This model also takes 

quality to the next dimension extracting latent features is now clearer, and recommendations in sparse systems are now 

accurate [19]. When group-based modelling techniques and cross-domain context are combined, contextual factors produce 

a more personalized and user-centric recommendation experience. In this way, improved recommender models enhance 

system intelligence, scalability, and flexibility. 

4.1.3 Collaborative Recommendation and Hybrid Filtering Techniques 

This subsection uses data from five selected research papers (N =5). As recommendation systems have advanced, there has 

been a shift in the mixing of CF with hybrid techniques to increase the accuracy, scaling, and personalization of 

recommendations. This includes advancements in newer domains of probabilistic models, deep neural networks, and 

knowledge graph-based approaches that allow for a systematic refinement of interaction factors for users and items to 

enhance prediction performance. One example is a Collaborative Autoregressive Flows model that uses a Bayesian 

inference framework for probabilistic recommendations [5]. Autoregressive flows provide the flexibility to improve how 

posterior approximation is modelled for more accurate and interpretable recommendations; a similar refinement process is 

the hybrid collaborative recommendation via a dual autoencoder. It is similar to traditional CF but incorporates matrix 

factorization in its autoencoder training to improve the quality of representations in its hidden features [1]. This hybrid 

technique also makes CF less computationally expensive and stigmatizes the cold-start problem by adding user and item 

attributes. Further to hybrid techniques, a study incorporates content and CF in order to combine techniques [4]. This type 

of hybrid recommendation algorithm utilizes models focused on the exploitation of recommendations, ensuring the 

reduction of data sparsity and runtime concerns while increasing the number of effective recommendations. On a related 

subject, movie recommendation systems, which are subject to CF models, focus on evaluating the content in the CF models. 

Hence, the recommendations are more thoughtfully matched to user preferences, and effort is minimized in terms of content 

reduction [43]. In addition, the CSEKG knowledge graph-aware model implements a collaborative signal injection 

mechanism, which includes node importance estimation and item clustering based on CF [44]. This approach provides 

additional user‒item relations and enhances the quality of recommendations via the structured application of knowledge. 

By embedding probabilistic models, deep learning architectures, hybrid filtering methods, and knowledge graphs, these 

approaches support the next generation of RSs. The implementation of these approaches in combination results in each 

contributing to higher accuracy, scalability, and user experience, which are the requirements of recommender system 

development. As such, these approaches can be classified under RSs in machine learning. 

4.2 Based on Clustering and Adversarial Learning 

This SLR reviewed the area of clustering in conjunction with adversarial learning using eighteen articles (N=18). Clustering 

is an important unsupervised learning approach. Clustering is widely used in pattern recognition, anomaly detection, 

segmentation of data, and so on. Clustering even though an unsupervised learning approach is prone to adversarial attacks 

that impact the robustness and security of clustering. Adversarial learning is a technique that arises from the inconvenience 

of defining adversarial attacks to improve resilience to clustering and examine the flaws of clustering. This literature review 



 

 

988 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

categorized research into application-derived clusters such as network security, trust management, and so on. We explored 

both theoretical advances and application advances. The model is created as follows. In the subsequent subsections, we 

provide a detailed description of the potential taxonomy created from the studies analysed. 

4.2.1 Adversarial Learning Based on Robustness in Clustering 

The incorporation of adversarial learning into clustering models specifically emphasizes the robustness of clustering 

models against adversarial attacks. The research works included in this subsection consisted of seven research works (N=7). 

Clustering methods (e.g., K-means) are crucial to machine learning, since these methods entail grouping ‘n’ number of 

data points according to their similarities. However, these methods are susceptible to adversarial perturbations, which can 

have a crippling effect. Research that focuses on adversarial learning aims to address the susceptibility of clustering 

methods to adversarial attacks by providing information about the impact of adversarial learning on clustering and 

proposing solutions to improve the robustness of clustering algorithms. The first research work addresses black-box 

adversarial attacks on clustering algorithms, specifically on linearly separable clusters [45]. This work outlines a scenario 

in which perturbing a single sample close to a decision boundary could affect many close, unperturbed samples by changing 

their cluster assignment into the perturbed sample's cluster, i.e., spill-over adversarial samples. Research has shown that it 

is possible to attack clustering methods adversarially, and it does not require knowledge of the actual metric used to cluster 

the samples, revealing the hidden dangers of clustering methods. The second study investigated the robustness of clustering 

algorithms to adversarial noise. A black-box adversarial attack is proposed to solve this research problem as a constrained 

minimization program [46]. This approach evaluates the durability of clustering algorithms by creating adversarial samples 

tailored to what the attacker can do. The research also analyses how vulnerable different clustering algorithms are to 

adversarial samples as they have been created, benchmarks state-of-the-art approaches, and highlights the necessity of 

improved algorithms in these adversarial contexts. The third study focuses on adversarial attacks, specifically decision-

time and data poisoning attacks against clustering models. The research looks at clean-label poisoning attacks, performing 

data poisoning on our training data, where the training data originally came in a clean label part of the approach by adding 

small perturbations to every training data point to illustrate how adversarial attacks can reduce performance within 

clustering models [28]. The study attempts to emphasize how clustering approaches are susceptible to such adversarial 

attacks while also emphasizing the need to improve our clustering models in order to defend against this type of attack. To 

address these adversarial threats, another study proposed a robust clustering method using an attention mechanism and 

graph convolutional networks (GCNs). This facilitates a more effective blend of nodal features and topological structures 

to improve clustering performance. Additionally, we propose a graph purification method that has a defense mechanism 

against adversarial attacks on graph data, thereby strengthening the overall robust nature of clustering approaches [47]. 

However, some studies provide evidence of how GANs perform in clustering models, as they relate to identifying 

consistency in information, representing identification with high-dimensional data, and recognizing the appropriate number 

of clusters with deep learning clustering models. One of the main studies that provides a significant impact to the field of 

clustering via adversarial learning is alternating generative adversarial representation learning (AGARL), a new multiview 

clustering framework based on an alternating generative adversarial strategy [48]. The AGARL framework maintains and 

enhances the ability of clustering methods to achieve a high degree of clustering performance by identifying and 

synthesizing clusters across views while leveraging consistent information across multiple views. AGARL outperforms 

shallow and deep multiview clustering in empirical studies conducted on publicly available datasets, demonstrating the 

robustness of the framework in clustering heterogeneous representations of data into a single view to make sense of the 

data representations. The other research consists of the eClusterGAN model, which is intended to improve clustering with 

latent space to recognize more efficient methods to analyse datasets, similar to other processes in complex market 

economies [49]. The final study within this subsection addresses a fundamental issue in clustering automated cluster 

number determination within the context of spectral clustering. By integrating spectral clustering with GANs and low-rank 

models within a Bayesian framework, this research introduces an adversarial-learning-based deep clustering method. A 

key innovation in this approach is the incorporation of a hidden space structure preservation term, which enhances the 

generative process and ensures more precise and scalable spectral clustering outcomes [50]. 

4.2.2 Clustering in Network Security and Intrusion Detection 

This section contains three studies (N=3) that investigate clustering approaches for improving network security, namely, 

network intrusion detection systems (NIDSs) and phishing identification mechanisms. The studies in this section examine 

how clustering approaches can be used to further leverage the resilience and accuracy of network security mechanisms in 

adversarial situations. The first study highlights the class imbalance issues found in NIDS due to the inability to distinguish 

legitimate traffic, direct attacks or obfuscated intrusions and discusses a multiple-clustering-based under-sampling 

framework that improves classification accuracy based on selecting representative centroids from clusters [51]. In contrast 

to feature vectors, the machine learning model is not only accurate but also recognizes unseen malicious instances, thereby 

increasing the ability of the NIDS to adapt to recognize future unknown intrusion scenarios. The second study contributes 

to the literature on phishing detection mechanisms, demonstrating their robustness towards adversarial learning attacks. 

The study shows how adversarial attacks can be simulated in a practical manner, manipulating key features of individual 

sample dataset elements to generate adversarial samples [52]. Furthermore, the study suggests dataset refinement strategies 

and improved learning models to bolster phishing detection against adversarial threats, ensuring greater reliability in real-
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world cybersecurity applications. The third study proposes an ensemble clustering approach to increase the resilience of 

NIDS against adversarial attacks [53]. By focusing on nonpayload connections at the TCP stack level, this research 

develops clustering-based data transformation techniques that improve intrusion classification. Unlike conventional 

wrapper methods, which rely on class label knowledge, this study introduces new filter models that operate independently 

of labelled data, making them more effective in identifying both direct and obfuscated intrusions. Collectively, these studies 

emphasize the crucial role of clustering in fortifying network security mechanisms. 

4.2.3 Adversarial Learning with Clustering in Different Applications 

This subsection is composed of six studies (N=6) that analyse adversarial learning with clustering in different applications. 

As personal decision-making becomes increasingly digital, the representation of users and assessment of trust are critical. 

The first study presents an adversarial fusion framework designed to make greater use of multiview information for user 

representation learning in social networks [54]. Most approaches do not successfully exploit multiview data or disentangle 

factors that determine user intention. By using adversarial learning, the proposed framework guarantees that user 

representations are comprehensive and robust to misleading data, which improves user personalization, recommendation, 

and security in social network contexts. The second study shifts the focus to trust management in industrial wireless sensor 

networks (IWSNs) by introducing a GAN-based mechanism to detect malicious nodes and enhance security performance 

[29]. The proposed framework strengthens the resilience of trust mechanisms in dynamic and adversarial industrial 

environments, ensuring reliable and real-time communication in sensor-based networks. In other domains, advanced 

clustering techniques in the fields of person re-identification (re-ID) and fine-art classification have been developed. These 

fields are situated in different contexts. The third study described in this section demonstrates that adversarial learning-

based clustering methods can greatly enhance the discrimination of visual features in re-ID applications, and the fourth 

study focuses on the automatic labelling of fine arts paintings through clustering, thereby pushing the limits of machine 

pattern-directed recognition. The third study presents CANU, a conditional adversarial network to improve unsupervised 

person re-ID through clustering of visual features [55]. CANU offers the advantage of utilizing conditional camera 

adversarial training to improve the representation power of learned features during the clustering process. This shows that 

by improving identity consistency and removing artifacts from camera representations, the methodology greatly improves 

the accuracy of cross-camera person for re-ID applications, making it particularly useful for security and surveillance work. 

The fourth study focuses on fine art classification, proposing an adversarial clustering system (ACS) that enables the 

automatic labelling of paintings without human intervention [56]. Traditional fine-art classification relies heavily on 

manual annotation, which is often subjective and labor intensive. The proposed ACS model enhances unsupervised 

clustering quality by reducing the within-cluster sum of squares (WCSS) error and increasing classification accuracy in 

downstream supervised learning tasks. This innovation allows for the automated categorization of paintings based on 

machine-learned stylistic and compositional features. However, in other direction of application of industrial and fault 

diagnosis applications are needed. The fifth paper discusses the importance of adversarial learning for improved 

unsupervised clustering results. The authors introduced c-GCN-MAL, which is a clustering GCN with multiple adversarial 

learning for intelligent fault diagnosis in mechanical bearings [21]. In this context, traditional fault diagnosis systems 

struggle to process unlabelled data with considerable domain distance, which leads to a qualitative decrease in fault 

diagnosis power. The c-GCN-MAL combines adversarial learning to more precisely cluster data for improved fault 

detection model generalization ability and introduces a new loss function that aims to adapt the model to domain variations, 

in which the model can effectively transfer knowledge and improve a fault detection model with a previously unseen 

dataset. The last paper applies adversarial clustering to network representation learning by building the adversarial learning-

based residual variational graph normalized autoencoder (ARVGNA) [27]. This study demonstrates the effectiveness of 

ARVGNA in critical graph-based tasks such as link prediction, node clustering, and graph visualization, particularly in 

challenging environments with isolated nodes or weak data representations. By incorporating adversarial learning, the 

model achieves more structured and informative embeddings, improving interpretability and predictive accuracy in 

industrial network systems. 

4.2.4 Theoretical and Framework-Based Approaches 

This subsection presents two studies (N=2) that develop theoretical propositions and explore adversarial learning 

frameworks with respect to clustering and network embedding. These ideas build on our understanding of how clustering 

can be manipulated and how adversarial learning works, creating new theoretical and real-world possibilities that change 

the way clustering models function and adhere to certain properties. The first study provides a plausible notion of an ε-

semimetric where a mathematically objective way of assigning arbitrary distances between points in a dataset while 

minimizing violations of the triangle inequality [57]. This examination has important, useful conversations about ethics 

with respect to clustering algorithms in terms of how ε-semimetrics can be exploited to manipulate clustering, depending 

on subjective preferences. Certainly, ε-semimetrics can be used in a positive, nonadversarial way, for instance, increasing 

the usability or flexibility of clustering; however, they can also be imagined being manipulated in a fashion that distorts 

the data unethically, and conditional knowledge of distance-based clustering algorithms is reliable. The second study 

describes ArmGAN as confront adversarial learning framework for network embedding, with a perspective focused on 

how networks entail self-representation rather than later stages of drawing inferences based on embedding [58]. Unlike 

traditional GANs, which have been used for network representation learning, ArmGAN uses a three-player adversarial 
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system composed of an autoencoder with mutual information regularization, a negative sample generator, and a 

discriminator, improving network embeddings and leading to learning latent representations that are more stable and 

informative when performing complex analyses of networks. The study evaluated ArmGAN and compared it to several 

network analysis benchmarks, and the results revealed that ArmGAN outperformed the state-of-the-art approaches in node 

classification, link prediction, and community detection. Both the first study and the second study were influential in 

addressing the philosophy and the technical aspects around adversarial clustering and representations learning. Thus, both 

studies add to the theoretical development of machine learning applications in clustering-based applications that are more 

resilient, interpretable, and ethically speaking to their approaches. 

4.3 Based on RSs and Adversarial Learning 

This section explores the complex relationships between recommendation systems and adversarial learning, highlighting 

their intersection as a pivotal area of study. Through an examination of seventeen scientific studies (N=17), we analyse the 

impact of adversarial strategies on the stability and effectiveness of recommendation systems. The following subsections 

present a systematic classification of these studies, offering a structured understanding of the key approaches and 

advancements that arise from this intersection. 

4.3.1 Poisoning and Injection Attacks in RSs 

This subsection consists of seven studies (N=7) that refer to adversarial strategies where malicious entities manipulate 

input data to distort recommendations. These attacks can degrade system accuracy, promote deceptive content, or 

undermine user trust. Poisoning attacks corrupt training data, whereas injection attacks introduce fake profiles or 

interactions to bias outcomes. The first study examined the GraphRfi recommender system and suggested the GraphRfi 

can become vulnerable to node injection attacks, where malicious actors create fake profiles to manipulate the 

recommendation process [23]. The study utilized an advanced attack method called MetaC to reveal how to exploit the 

recommendation system; however, rather than normalizing being vulnerable to link injection attacks as an effect of 

openness, the study also suggested a dynamic-scale based adaptive fraudster detector that revisits the adjustments made to 

the newly added user, which led to the development of PDR: a protection framework for learning systems that combines 

anomaly detection with the learning framework, the learned framework should create a recommendation process that allows 

it to be completely robust to adversarial acts. The second study extends the arguments to conceptualize a comprehensive 

framework for detecting shilling attacks while also engaging the question of how fraudsters operate in recommendation 

systems [59]. By examining the evolution of user and item embeddings before and after attacks, the stealth and 

effectiveness of adversarial strategies can be investigated. This study provides critical insights into the perpetual arms race 

between recommender system security and adversarial ingenuity. In contrast, the third study presents the triple cooperative 

defense (TCD) approach to increase the robustness of a recommender system against poisoning attacks and presents 

poisoning methods through the introduction of co-training attack (CoAttack) and game-based co-training attack 

(GCoAttack) methods to maximize attack efficiency in a cooperative training setting [60]. The fourth study develops 

poison-tolerant collaborative filtering (PTCF), a method intended to allow a CF recommender system to continue to 

function despite poisoning attacks [61]. PTCF represents a departure from preparing for security events, allowing CF to 

occur on a poisoned dataset while being resilient to the impact of data poisoning on system availability and functionality. 

Additionally, the fifth study takes a dual approach by both investigating the vulnerabilities of the RSs and proposing 

countermeasures. It introduces InfMix, a poisoning attack strategy that employs an influence-based threat estimator and a 

user generator to construct malicious profiles, effectively testing the system’s susceptibility to manipulation [62]. In 

response, the study develops adversarial poisoning training (APT), a defense mechanism that proactively injects synthetic 

users designed to minimize empirical risk and reinforce system robustness. . Moreover, the sixth study reported here is 

DSSD-ImMPL, a new detection method that targets the identification of many attacks in recommendation system datasets 

[63]. There are particular interests in classical and mixed attacks that make them difficult for some detection frameworks 

to manage. The seventh study is the KC-GCN, which describes a two-stage semisupervised detection model developed to 

engage in group shilling attacks [64]. Group shilling attacks exploit large groups of users collectively manipulating the 

user profile and notably conflict with the detection frameworks because of the compositional complexity related to varying 

adversarial and mixed attack groups. The KC-GCN model addresses a significant gap in attack detection methodologies 

by focusing on this vulnerability, offering a more robust solution. 

4.3.2 Adversarial Learning for RSs Robustness 

This subsection discusses three research studies (N=3) that employ adversarial learning techniques to increase the 

robustness of RSs. These studies explore different recommendations for how to respond to adversarial threats, enabling 

more reliable and secure recommendations. The first study proposes stagewise hints training and randomized noise layers 

that together improve the resilience of recommendation models while maintaining predictive accuracy [65]. This technique 

provides an opportunity for learning that is robust and resilient to adversarial manipulations. The second study defines 

DAAN, a novel cross-domain recommendation framework that utilizes matrix factorization CF with deep adversarial 

domain adaptation [66]. DAAN uses an attention network to weigh strategies for effectively balancing domain-shared and 

domain-specific strategies and to address issues of data sparsity. The resulting recommendation model was proven to 

increase both the robustness and accuracy of the recommendations. These studies enter the literature to reinforce RSs from 
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adversarial threats. The third study explores various malicious user detection algorithms and introduces a novel framework 

designed to enhance detection performance [22]. By refining representation learning techniques, the proposed approach 

strengthens the accuracy and efficiency of detection systems, ensuring more reliable identification of deceptive behaviors. 

4.3.3 Adversarial Attacks on Graph-Based Recommendation 

This subsection examines five studies (N=5) related to adversarial attacks on graph-based recommendation systems. The 

first study presents (CopyAttack+), a reinforcement learning-based framework that uses combinations of cross-domain 

user profiles to mount black-box adversarial attacks. (CopyAttack+) establishes a local surrogate system and trains it to 

improve attack success and improve the adaptability of the attack to the weaknesses of the black-box recommender system 

[25]. The second study examines knowledge graph-based recommendation systems under poisoning attacks in which fake 

links are inserted to influence recommendations. The focus of an attack such as this is to increase the visibility of tagged 

products and influence recommendations without being easily detected [67]. The third study investigated adversarially 

learned injection attacks in graph-based recommendation systems [3]. Researchers have proposed a better detection method 

to thwart advanced adversarial attacks against recommendation systems that would otherwise evade traditional defenses. 

The attackers of these systems use knowledge graphs, and there are ways that can leverage knowledge graphs to fortify 

structures originally used for the detection of advances and against adversarial injections made against these 

recommendations. With this methodological improvement, we can better understand harmful behavior, with the aim of 

improving detection and therefore improving graph-based RSs against an adversarial attack. The fourth study is a graph-

contextualized trip recommendation, GC-TripRec, which improves trip recommendations produced through adversarial 

learning by identifying and capturing more complex relationships regarding point-of-interest (POI) [68]. This study uses 

graph representation learning to create trip recommendations in conjunction with POI global and trip representations 

naturally. The model provides better contextual understanding regarding user preferences, better adaptation to the POI to 

user preferences across POI during the trip, and ideally improves the user experience by providing better and more relevant 

trip recommendations. The fifth study investigates how hyperactive users impact political dialogue across online social 

networks (OSNs) on social media, and relationships draw out similar benefits, making viewpoint statements or viewpoints 

dominate along with ways to affect some factors incidentally through bias [69]. By examining the role of adversarial attacks 

on recommendation algorithms to expose or suppress particular content or information, they amplify biased narratives to 

reconstruct the perceived political realm. Their results suggest that adversarial attacks manipulate recommendation systems 

to deploy and steer modes of discussion, ideology, and negligence. 

4.3.4 Deep Learning-Based Attack Detection for RSs 

This section presents two studies (N=2) that examine advanced deep learning-based techniques for discovering adversarial 

attacks in recommendation systems. The goal of these studies is to improve the efficient use of models (e.g., performance, 

accuracy, and precision). The first study develops CNN-BAG, a new hybrid method that combines convolutional neural 

networks (CNNs) with bagging (BAG) for the discovery of recommendation attacks. CNNs are ideal because they are deep 

neural networks that automate the process of feature extraction, reduce human adjustment, and improve detection 

performance when confronted with attacks [2]. The second study examines the complexity challenges of generalized 

adversarial network recommendation models, which is a barrier to their recognized applied use [70]. This study focuses on 

parameter efficiency, knowledge transfer, and model compression, with a special emphasis on the difficulty of optimizing 

student models when trained on adversarial training data. This is important because, in adversarial training, noisy 

knowledge can affect the performance of attack detection systems. These studies contribute to deep learning-based 

adversarial detection, which specializes in efficiency and readability when executing applied use in particular. 

4.4 Integration based on RSs, Clustering, and Adversarial Learning 

This section of this paper (N=4) analyses the integration of RSs, clustering, and adversarial learning and identifies the value 

towards the development of more intelligent and efficient recommendations. RSs are the basis of personalized content 

delivery that dynamically adapts to a user's preferences in order to improve engagement. However, as data become 

increasingly complex and voluminous, there is a greater demand for and need for structured approaches. Clustering affords 

models an efficient means of organizing a set of users or items by any inherent similarities in data instances to improve the 

accuracy and computational efficiency of the recommendations. This is critical for system scalability. Adversarial learning 

through the use of reinforcement learning methods enables greater diversity and stability of RSs by being able to account 

for shortcomings of the learner (such as indications of poisoning and faulty recommendations). Clustering, RSs, and 

adversarial learning are complementary and incorporate three critical aspects of AI that support a more intelligent, secure 

and scalable recommendation model and are valuable and highly sought after in the area of research for next-generation 

AI-driven personalization systems. Three subcategories of the analyses of the targeted studies are addressed in the 

following analysis. 

4.4.1 Improving RSs 

This subsection provides a total of two papers focusing on (N=2) RSs, which are essential for filtering large pools of data 

and the importance of providing users with effective suggestions, with the importance of improving their accuracy, 



 

 

992 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

efficiency, and resiliency. To improve RSs, new techniques must focus on improving user interaction modelling and 

learning strategies [71]. One paper proposed a new bandit problem called Online Learning and Detecting Corrupted Users 

(OLDCU), which is used to infer latent user relationships through online behaviors as they dynamically evolve. Using a 

conversational learning approach, this study proposes analysing user interactions with the RCLUB-WCU bandit algorithm 

in order to develop effective relational inferences. The paper also proposed a detection algorithm, the OCCUD framework, 

in order to automatically learn and refine a set of possible user patterns over time for continual improvement of 

recommendations. Furthermore, another paper attempted to develop an unsupervised divide-and-conquer method to 

classify profiles in RSs [72]. This method proposes a distinction between standard attacks and obfuscation behavior attacks 

by developing a separate model for each type of classification. Overall, this method removes the traditional aspect of 

needing any annotated references, allowing it to autonomously, and on a scalable level, identify any sort of behavioral 

pattern. In summary, both studies classify and improve the recommender system through computational efficiency to help 

maintain the integrity of a recommender system and therefore provide a system with the ability to produce high-quality 

personalized recommendations. 

4.4.2 Dealing with Fake Data and Attacks to Robust Performance 

This subsection is based on one research paper (N=1) in which ensuring the resilience of an RSs against adversarial 

manipulation necessitates a comprehensive understanding of how synthetic user profiles influence system performance. 

One study critically examines the ramifications of single-user adversarial control, wherein an attacker operates with an 

extremely limited number of fake users (potentially as few as one) to compromise the integrity of recommendation outputs 

[31]. To formalize this phenomenon, the study introduces a clustering-based framework for generating synthetic user 

profiles, which can be strategically deployed within poisoning attacks targeting deep learning-driven recommender 

architectures. By demonstrating the efficacy of these attack mechanisms, this study underscores the imperative for more 

robust defensive strategies, suggesting the development of countermeasures capable of mitigating adversarial perturbations 

at both the structural and algorithmic levels. Through this lens, the study contributes to a broader discourse on fortifying 

recommendation models against data-driven manipulations, ensuring sustained performance reliability. 

4.4.3 Recommendation in Distributed Environments 

This subsection is based on one research paper (N=1) in which the evolution of RSs in large-scale, heterogeneous 
infrastructures necessitates the development of distributed learning paradigms that enhance efficiency and adaptability. One 
study introduced the distributed variational autoencoder sequential recommendation method (DistVAE), a distributed 
variational autoencoder designed to optimize sequential recommendation processes within decentralized computational 
frameworks [32]. By leveraging the availability of diverse and distributed infrastructures, DistVAE aims to refine 
recommendation accuracy while maintaining scalability across complex environments. A key methodological innovation in 
this study is the mitigation of gradient randomness during distributed model aggregation. To achieve this, the research 
employs the Gaussian mixture model (GMM) clustering algorithm, which systematically stabilizes gradient variations across 
multiple computational nodes. This methodological refinement ensures that recommendation models trained in distributed 
settings can achieve greater convergence stability and predictive reliability, ultimately fostering robust, scalable, and high-
performance recommendation architectures within decentralized environments. 

5. DISCUSSION 

This section aims to elucidate and discuss three fundamental concepts derived from the gathered articles: (1) the 

motivations, advantages, and significance of the issues that prompted researchers to emphasize and seek solutions for 

problems; (2) the challenges encountered by current and former researchers regarding the cases and obstacles reported; and 

(3) the recommendations and prospective work suggested by the authors concerning future applications at the intersection 

of RSs, clustering, and adversarial learning. 

5.1 Motivation 
This section provides a comprehensive analysis of the underlying motivations derived from the extracted studies. Figure 7 

illustrates that these motivations have been systematically categorized into six primary groups, each reflecting a distinct 

aspect of the intersection between adversarial learning, RSs, and clustering methodologies. A detailed discussion of these 

categories is presented, highlighting the interdependencies that shape advancements in these fields. 
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Fig. 7 Motivations of the studies 

5.1.1 Adversarial Dynamics and Robustness in RSs 

The drive to protect RSs from malicious attacks stems from a blend of practical, ethical, and strategic imperatives [46]. At 

its heart is a fundamental challenge: balancing the openness needed for personalized recommendations with the security 

required to maintain trust [67]. Studies such as MetaC and InfoAtk reveal how attackers exploit weaknesses in systems 

designed to detect fraud (e.g., GraphRfi), turning their own logic against them [59]. Rather than viewing these flaws as 

dead ends, researchers use them as starting points to innovate defenses such as PDR, which adapts to uncertainty, proving 

that vulnerabilities can fuel progress when approached with creativity [23], [27] Central to this effort is redefining how 

systems identify threats. Tools such as Infmix and CNN-BAG address the blurred line between legitimate user behavior 

and hidden attacks [2], [62]. Ethically, the focus shifts from chasing perfection to managing imperfection. Methods such 

as PTCF and TCD accept that no system can fully eliminate poisoned data [60], [61]. Instead, they build resilience by 

working with compromised datasets, acknowledging that real-world data are often flawed [3]. This pragmatic mindset 

extends to societal trust studies such as ClusterPoison and Unsupervised Contaminated User Profiling, which highlight 

how attacks on recommendations are not just technical breaches that erode user confidence. ensuring that users retain 
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control over algorithmic decisions [31], [72] The back-and-forth between attacks and defenses drives progress. Each new 

threat, such as poisoning clustering algorithms, sparks better solutions, creating a cycle where systems evolve by 

confronting challenges head-on. 

5.1.2 Improving Recommendation Accuracy via Clustering and Deep Learning 

The motivation for these studies was based upon the increasing need to improve the content accuracy, efficiency, and 

adaptability of RSs in diverse contexts [64], [68]. An increasing digital landscape is characterized by an increase in 

applications that stretch across e-commerce and online education, smart cities, and the IoT [38], [70]. It is becoming even 

more critical to provide accurate and customized recommendations. These studies highlight the importance of using 

sophisticated methodologies to refine recommendation approaches, providing more relevant interactions with users and 

better decision making [1], [4], [39]. The integration of clustering methods and deep learning methods supports the 

identification of complicated schemas that determine user behavior, preferences and related contextual factors to increase 

the accuracy of recommendations [42]. Additionally, acknowledging the integration of generative models and knowledge 

distillation supports a better representation of the data and minimizes complexity, which could yield data that scales and 

are deployable [41]. Collectively, these studies look to enhance RSs towards personalization, fairness and adaptability, 

which can enhance user experiences across digital ecosystems. 

5.1.3 Domain-Specific and Personalized Recommendations 

The impetus for these investigations arises from the volatile and evolving landscape of domain-related and personalized 

recommendation systems, which cater to unmatched demands relating to distinct areas across a disparate range of domains 

such as political discourse, news communication, movie recommendations and user behavior management on digital 

platforms. One of these studies examines the hyperactive use of political communication in OSNs, particularly how the 

disproportionate influence of hyperactive users influences public opinion and affects the outcome of their recommendations 

[69]. The study advocates algorithmic transparency in order to promote fairness and democratically empower users. The 

second study sought to develop a recommendation system based on news, utilizing the semantic richness of the news 

content, in order to enhance its ability to provide a more comprehensive feature and varied recommendation model that 

would improve user engagement and satisfaction [37]. The third study develops a recommendation system for movie 

recommendations that sends content-based recommendations for discovering movies that ensure that they match their 

personal preferences [43]. The fourth study addresses how to improve recommendations for “new” users using both content 

and collaborative recommendations for initial recommendations to persuade the user to trust and engage with their 

recommendations even when the user has had no prior sign of activity [40]. The fifth study outlines optimization strategies 

using collaborative signals such as knowledge graphs and CF to enhance item representation and user representation [44]. 

Finally, the sixth study takes a new angle to reward user behaviors such as misleading ratings by declaring and leveraging 

social connections and user relations to enhance the intelligence and speed of users [71]. All six studies contribute to the 

body of literature on personalized recommendation systems that seek to increase their accuracy, with fairness and user 

satisfaction across different domains. 

5.1.4 Network Analysis and Advanced Representation Learning 

Network analysis and representation learning have progressed to the point that researchers are further focusing on methods 

with more complex models that can encode and learn complicated relationships within data [66]. The same goal of 

improving user representation learning, knowledge transfer, and multiview information should be adopted, thus improving 

the transferability and intelligibility of machine learning systems [48]. A primary area is continuing to improve cross-

domain recommendations that utilize both types of shared knowledge from the source domain, but the model also learns, 

doing this with risks presented explicitly in the source domain and not requiring data from directly from topically similar 

domains [47]. Studies of clustering algorithms also suggest that they can be extended to incorporate both topological and 

feature information, and findings suggest that dual linages have the potential to be more meaningful than embedded clusters 

[54]. The contributions of generative and adversarial learning include infinitely improving the expressiveness of latent 

representation spaces, potentially when the probability convergence of embeddings is stopped, thus enabling social 

networks, RSs, and graph-structure-based learning [58]. These "commensurate" studies working to increase the robustness 

of network embeddings and deep clustering algorithms with improved architecture aim to contribute to more efficient, 

portable, reliable, and interpretable network analysis [5], [27]. The improvement of adversarial learning and deep 

generative methods has led to enormous improvements in representation learning methods, and this progress can also be 

seen in better decision making with recommendation systems and better information retrieval models that leverage network 

structures, each hopefully from sufficiently wide distributions of applications. 

5.1.5 Privacy and Fairness in RSs 

The driving context for each of these studies is the improvement of privacy, fairness, and trust in the RSs across multiple 

applications. One study focused specifically on fairness and objectivity in clustering algorithms when adversarial 

manipulation was present and not well rooted [57]. It investigates how distance functions can be designed to produce 

unbiased results, which ultimately increases the trust of users in any cluster assignment. A second study is inspired by the 

need to promote healthy market practices in smart cities and improve analyses of large volumes of multidimensional market 
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data [49]. This study proposes advanced techniques, eClusterGAN and GAN intrusion detection systems to improve 

clustering accuracy and data storage safety. A third study is guided by the goal of improving trust management in IWSNs 

and employs GANs to improve (i) resilience and (ii) adaptability [29]. A fourth study seeks to improve e-commerce RSs 

via the generation of recommendations that account for trust, user overlap, and time to improve the accuracy of 

recommendations [19]. A final study aimed to improve recommendation system performance via DistVAE, which captures 

long-term dependencies in user interactions to improve accuracy [32]. This aspect was a focus of the final study. Each of 

these studies has an aligned goal in improving privacy, fairness, and trust and hence building better and more accurate RSs. 

5.1.6 Data Analysis for Non-Traditional Applications 

The increasing complexity of real-world data and changing security threats has pushed research toward advanced analytical 

techniques and applications that extend beyond traditional use [55]. A common impetus across several areas of research is 

to improve the performance of machine learning models at recognizing anomalies, recognizing adversarial threats within 

data, and finding subtle patterns in data from complex environments [63], [65]. These areas of research range from 

improving the robustness of recommendation systems from adversarial attack or manipulation to improving network 

intrusion detection and phishing prevention mechanisms; the goal is to improve the analytics in data-driven defenses [22], 

[45]. More recently, with advances in unsupervised learning, it has become possible to improve the recognition and 

classification of complex entities in limited instances with little expert labelled data, such as individuals in surveillance 

video footage or paintings in fine art [56], [58]. Research has also focused on learning meaningful representations in 

adversarial situations with a point of emphasis on clustering techniques and the ability to adaptively cluster, where finding 

the optimal number of clusters does not rely on the subjective choice and can even be determined dynamically with 

improved accuracy classification [50], [53]. Thus, in the industrial or organizational realm, there is a need for robust fault 

diagnosis methods that are resilient to domain shifts to provide accurate detection of failure [21]. Overall, these aspects of 

research can be seen as contributions to the more general conception of data analytics across unconventional fields and in 

developing methodologies that can search for the right mixture of interpretability, adaptability and security in their machine 

learning objectives [52]. 

5.2 Challenge 

This study examines the challenges encountered by researchers at the intersection of RSs, clustering, and adversarial 

learning. These challenges have been systematically categorized into seven distinct clusters, with each cluster comprising 

studies that address similar issues. The classification framework, as illustrated in Figure 8, provides a structured overview 

of the shared research obstacles within these domains. 

 

 
 

Fig. 8 Challenges of studies 
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5.2.1 Concerns Vulnerabilities and Adversarial Attacks in RSs 

The increasing reliance on RSs across various domains has raised significant concerns regarding their vulnerability to 

adversarial manipulation. These challenges manifest in multiple forms, including susceptibility to fake user profiles, 

poisoning attacks, and complex optimization problems inherent in both attack strategies and defense mechanisms[5], [61], 

[62]. One fundamental difficulty lies in the supervised nature of fraud detection, which depends on the availability of clean 

labels and struggles against sophisticated adversarially learned attacks that mimic genuine user behavior [3]. Additionally, 

existing defense strategies face limitations in terms of generalizability and robustness, particularly when confronted with 

bi-level optimization problems that intertwine attack adjustments with model parameter updates [60]. 

CF systems are particularly sensitive to adversarial perturbations, with their performance degrading significantly under 

malicious interference [65]. While knowledge graph-based recommendation systems are inherently susceptible to 

adversarial threats, the overwhelming number of possible ways to attack the system further complicates this vulnerability; 

it is impractical to analyse and defend against all potential attacks on a knowledge-based recommender system. In addition 

to threat vulnerabilities, reinforcement learning-based RSs are challenged by the need to manage large discrete action 

spaces, develop continuous and accurate profiles across task domains, and utilize useful transferable signals to improve 

adversarial learning strategies [67]. In today's systems, learning the accuracy of the modelled user representation is also a 

hinderance, as many existing models do not disentangle the many complex layers of interactions between the user's higher-

level and more specific intentions, resulting in weak interpretability and nonrobust user representations [54]. Even further 

still, it is difficult to accurately assessing the potential harm caused by adversarial acts, particularly in bi-level poisoning, 

which is a crucial factor in evaluating the threat, is difficult [25]. These vulnerabilities demonstrate the necessity for 

flexible, robust, and interpretable RSs capable of withstanding adversarial actions without compromising system 

performance and fairness. To mitigate these issues moving forward, a shift in orientation should occur, defensively with a 

focus on multiview learning, adaptive user profiling, and adversary-aware optimization strategies. 

5.2.2 Concerns in Detecting Malicious Users and Adversarial Manipulations 

The ever-increasing sophistication of adversarial manipulations of RSs and networks is hindering detection methods. A 

malicious actor can take advantage of the design flaws in these systems to generate fictitious user profiles, generate 

fictitious ratings, and bypass detection methods by using attacks based on deep learning, such as GSA-GAN and 

adversarially learned injection attacks [3], [63]. These types of attacks are designed to closely resemble genuine users to 

confuse and overwhelm standard input detection models that are trying to determine whether the user or the entity is 

legitimate. The overall performance of the detection models is significantly weakened when there are insufficient labelled 

training data, and the decline in overall accuracy is further complicated by the discovery of novel attack schemes. 

Furthermore, group shilling attacks pose additional challenges by implementing the GOAT adversarial techniques or mixed 

attack groups. It is especially difficult to detect smaller group shilling attacks, as the models we have been developing say 

they can be easily fooled when the malicious number of participants are reduced [64]. Additionally, hyperparameter tuning 

interferes with stability in detection and limits the accuracy of the results, making them very sensitive to any changes in 

parameter selection. Like identifying influential users within a network graph, detecting attacks is a very difficult analytical 

task that may be assumptive to simple statistical descriptions without fully considering how online interactions progress. 

We therefore need detection approaches that are adaptive to new and emerging attacks. One primary challenge in detecting 

malicious users arises from the use of traditional collaborative filtering recommender systems (CFRSs), which rely on user 

ratings to generate recommendations [3]. Sophisticated attackers can generate fictitious ratings that may conceal or bias 

recommenders. The situation is worse, as attack profiles are often underrepresented (although they outnumbered user 

profiles), leading to detection methods failing in an absolute sense but performing poorly with supervised methods. Like 

others, deep learning or learned-based recommendation attacks, such as GANs, are very strong at concealment and are not 

conducive to detection methods that depend on features derived from user profiles [2]. Importantly, we have an 

automatically adaptive detection approach that learns not only the attack space but also the relationship between the 

adversarial attack profile and exposure. A further challenge in the area of recommendation security is detecting corrupted 

user behaviors. When a web-based recommender system has deceptive click ratings or artificially manipulated interactions, 

traditional bandit learning algorithms can be disrupted significantly because the nature of the algorithms developing 

learning knowing only about the individual user and failing to consider their implicit social relationships with other users 

[71]. There is a pressing need for novel approaches that can dynamically infer user relationships and detect corrupted 

behaviors in real time. Moreover, existing profile identification methods are often tailored to specific attack scenarios, 

limiting their generalizability. Many require labelled data, leading to high annotation costs and risks of overfitting. An 

unsupervised approach that can be generalized across different types of attacks, particularly standard and obfuscated 

behavior attacks, would greatly increase detection precision [72]. Another key challenge in adversarial detection involves 

generating realistic malicious user profiles for training robust models. Ensuring that synthetic users accurately reflect the 

distribution and diversity of real malicious users remains difficult [22]. Traditional data augmentation techniques fail to 

balance these aspects, leading to inconsistencies that weaken the detection effectiveness. Similarly, GAN-based network 

embedding methods struggle to distinguish between meaningful node representations and Gaussian noise, compromising 

overall performance [58]. The existing adversarial learning strategies apply primarily to representation results rather than 

the mechanisms themselves, limiting their ability to capture the full potential of GANs. In addition to recommendation 
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systems, adversarial manipulations extend to cybersecurity threats, such as phishing and network intrusion detection. 

Attackers must carefully modify phishing website features to evade classifiers while preserving functional and visual 

coherence, increasing detection risk. Minimizing both the number of manipulated features and the cost of modifications 

remains a challenge, as excessive changes increase the likelihood of exposure [52]. Similarly, adversarial attacks on NIDS 

pose difficulties in classifying legitimate traffic, direct attacks, and obfuscated intrusions [53]. Mutated traffic patterns 

further complicate detection, as they often resemble normal network activity. The complexity of generating effective base 

clustering for intrusion detection models presents additional constraints, particularly in resource-limited environments. In 

light of these challenges, the development of more robust adversarial detection mechanisms is imperative. Given the rapid 

evolution of attack techniques, detection frameworks must not only identify malicious behaviors with high precision but 

also anticipate and adapt to emerging threats in an ever-changing digital landscape. 

5.2.3 Data Sparsity, Cold Start, Complexity, Scalability, and Efficiency Challenges 

The effectiveness of RSs is increasingly limited by issues such as data sparsity, cold start problems, scalability constraints, 

computational complexity, and efficiency limitations. These challenges arise from the rapid expansion of data in digital 

environments, the limitations of traditional recommendation models, and the growing demand for personalized 

recommendations with minimal computational overhead [1]. Addressing these concerns requires advancements in hybrid 

modelling, knowledge distillation, clustering techniques, and distributed learning methodologies to ensure more accurate, 

scalable, and efficient recommendation frameworks. Data sparsity remains a fundamental issue, as users typically interact 

with only a small subset of available items, leading to insufficient data for reliable recommendations [19], [42], [43]. This 

limitation significantly affects CF methods, which rely on shared user‒item interactions [39]. The problem is further 

compounded by the cold start issue, where newly introduced users and items lack historical data, making it difficult to 

generate personalized recommendations. To mitigate these challenges, hybrid recommendation models that integrate 

content-based and CF techniques have been proposed, allowing for a more robust feature representation and improved 

adaptability to new data [4]. Another critical challenge is the high computational complexity of deep clustering and deep 

learning-based recommendation models[70]. The training of complex models, such as eClusterGAN and deep variational 

autoencoders, often requires extensive resources, making their application in real-world scenarios difficult [49]. The 

dependency on predefined cluster numbers and the instability of generative adversarial training further hinder the practical 

deployment of these models. Additionally, high execution times in recommendation processing can negatively impact user 

satisfaction, necessitating optimizations in clustering efficiency, feature extraction, and representation learning [40]. 

Scalability poses yet another significant barrier, particularly as the volume of user-generated data continues to grow 

exponentially [41]. Traditional recommendation techniques struggle with the increasing number of potential neighbors in 

CF approaches, making real-time processing inefficient. The complexity of computing the similarities between users and 

items further exacerbates this issue, especially in IoT-driven environments where millions of data points must be processed 

simultaneously [39]. To address this, distributed learning approaches such as the DistVAE model leverage heterogeneous 

infrastructures to increase computational efficiency while improving recommendation accuracy through client-based 

clustering [32]. In light of these challenges, future advancements in RSs must prioritize the development of efficient, 

scalable, and interpretable models. By integrating hybrid techniques, optimizing clustering strategies, and leveraging 

distributed learning, researchers can overcome the limitations of existing methods. The continuous refinement of these 

approaches will be crucial in ensuring that recommendation systems remain effective, adaptable, and capable of delivering 

high-quality, personalized recommendations in increasingly complex digital ecosystems. 

5.2.4 Domain-Specific Challenges in Network Security and Vision Systems 

Clustering techniques face certain limitations in domain-specific set-ups in network security and vision systems. More 

specifically, IWSNs, where there are limited labelled examples for novel attacks and trust uncertainty that occurs because 

of node failures, inhibit our potential to harness previous experiences to become more informed on anomaly detection. The 

limitations of the sensors themselves make creating trustworthy models or even robust trust models challenging [29]. 

Similarly, unsupervised person re-ID faces challenges with angle view variations, where images are clustered together of 

persons who are verified to look similar because of camera view rather than identified persons. This issue is exacerbated 

by the negative transfer and usage of pseudo-labels. It was proposed that conditional adversarial networks have been 

proposed to be more efficient at clustering [55]. Both areas highlight the need to develop better adaptive techniques to 

address domain-specific constraints regarding security and vision systems. 

5.2.5 Concerns in Challenge Determining the Number of Clusters 

The problem of choosing the number of clusters creates a serious problem in clustering methods, particularly with respect 

to fundamental difficulties with deep spectral clustering. A substantial problem arises from the use of ε-semimetrics, which 

can skew distance calculations in a subtle way with the appearance of objectivity, and as a result, unethically clustered 

solutions may be obtained [57]. The manipulations made to distance could be considerably more risky when compared to 

normal data poisoning attacks; most non-experts are not aware that they have been manipulated with respect to the distance 

metric, creating issues of fairness and reliability in clustering as a basis for decision-making. 

Conventional spectral clustering has issues with leveraging the graph structure to its full potential, but with deep spectral 

clustering, the problems escalate, and the clustering performance is compromised [50]. The challenge is very complicated, 



 

 

998 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

as we have noted, and while we can optimize deep spectral embeddings, there is not a one-size-fits-all approach; one would 

need to determine specific methods for specific datasets, making the issue of clustering challenging across a diversity of 

applications. If not trivial, hyperparameter tuning is an ongoing concern. We know that if we can tune the hyperparameters 

of the model, we will increase how accurate the clustering is, but it is not easy, especially if all we have real datasets for 

which we do not know the ideal configurations. Addressing the set of questions and challenges raised in this segment 

requires developing robust, scalable, and interpretable clustering techniques that can accommodate the historical and 

structural characteristics of the datasets while maintaining computational efficiency and integrity and are performed 

without explicit bias. 

5.2.6 Concerns Ethical and Algorithmic Bias in RSs 

The increased use of RSs to influence social (digital) discourse and its potential ramifications with respect to commitment 

to ethics and algorithm dynamics has garnered robust coverage [21]. These systems drive user preferences and decision-

making; however, their inability to provide transparency and political contextual intelligence may pose serious 

ramifications. In this context, a salient issue remains regarding recommendation algorithms that control political 

communication in online social networks. The lack of clarity in data-dominant RSs restricts the understanding of the role 

algorithms play in shaping political discourse, especially when formalized knowledge can be deduced from algorithm 

mediation, thus potentially altering the discourse on political theory, political discourse, collective action, and social 

movements [69]. This challenge is further compounded from hyperactive users that tend to bias the recommendation from 

data that are driven from recommendations that they may over-influence, which can distort public debate from large and 

disparate user engagement. These issues call into question the recommender system's role as a political mediator, especially 

from the perspective of expanding the equality and fairness of algorithm-produced outputs. In addition to the political 

discourse effects of RSs, structural weaknesses, such as deep multiview clustering architectures, exist in RSs. For example, 

these systems not only are limited in their robustness but also often lack the physical patterns and experiential representation 

of many views/channels of their actual semantics [48]. These common weaknesses are consequential and exasperated by 

adversarial attack strategies, as machine learning-based RSs have anatomical weaknesses in their algorithms that users can 

exploit to induce false outputs. For hypotheses and experimental news RSs, structural weaknesses extend to problems of 

timely recommendations and recommendations that can affect user personalization, which can be severe in systems where 

the need to recommend and action is constant and frequently changing. Timely recommendations tend to be a relevant 

problem due to the news cycle, which makes news rapidly obsolete with infrequent usage, inducing cold start problems or 

seriously limiting an evolving understanding of user interest and preferences [37]. The lack of obvious user feedback makes 

personalization even harder and suggests that some types of recommendation systems need to be clear and dynamic. 

Clearly, algorithmic bias is a major obstacle for researchers, especially for subjective discretion pathways such as in some 

aspects of artistic classification [56]. Similarly, ethical issues exist for consideration in health, and recommendation systems 

are often murky; defensibility and similarity measurements plus issues with sparseness can suggest too much and therefore 

detract from purpose and greater action. Although demographic elements such as age and health for recommendation 

engines may mitigate bias, they all too readily collapse any distinctions in terms of rights or privacy. We also note that the 

convergence of RSs and cybersecurity presents weaknesses. NIDS can be presented with class imbalance and bias risk 

through successful attempts at adversity with classes [51]. Furthermore, traditional over-sampling methods can easily create 

overfitting errors, whereas under-sampling methods can create meaning but additional computational costs. For example, 

in phishing detection, suggestions we concede in creating adversarial samples that are classifiable without loss of look or 

functionality from concerned samples. This approach also captures the risks that exist for adversarial manipulators while 

at the same time making broader appeals against algorithmic safety: confidence in future work on solutions in 

recommendatory structures. These issues are also similar for models relying on variational autoencoder-based models, 

which have been explored to improve performance and struggle with biased variational inference, underfitting, and 

inference gaps due to data sparsity [5]. Adversaries may have caused concerns that unique and minimally injected profiles 

can reasonably effectively compose an adversary to the base norms of not only the RSs but also suspected claims that might 

coexist with false users to perpetrate a faux attack on a recommender system. In closing, to whatever extent the entitlement 

of any guidance to manage ethical and algorithmic bias, as initially presented in RSs, is possible, some ranging methods 

will work. Future use of any works in these areas must demonstrate how to be distinct and open with systems, and there 

are clear definitions for adversarial defenses and any automated method for ethics assessment. These findings present vital 

work ahead both in research and practice in terms of how we work ahead. 

5.2.7 General Adversarial Threats to Clustering Algorithms 

Clustering algorithms are increasingly confronting new challenges that impede resilience against adversarial threats, which 

may hinder the robustness of clustering for decision-making applications. The foremost challenge is the resilience of 

clustering models to adversarial noise, which may obscure the result and hinder the models' ability to measure/interpret the 

data. Unlike supervised learning models and because many clustering algorithms are not differentiable, we have fewer 

options for applying standard gradient-based adversarial defenses. The literature suggests that little attention has been given 

to black-box adversarial attacks that exploit clustering vulnerabilities without knowledge of the model [28]. Another 

growing challenge lies in the ability to manipulate clustering results via adversarial examples mixed with data poisoning 
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attacks. With malicious data input, adversaries may mislead common clustering algorithms such as K-means and Gaussian 

mixture models with adversarial examples, potentially altering decision boundaries [46]. Beyond model performance 

hindrances, privacy raises challenges associated with adversarial examples, causing personal data to be effectively 

unlearnable. Despite these challenges being noted and the problems accepted, the body of research evaluating adversarial 

threats in an unsupervised learning context remains limited. Further research is necessary on real-world adversarial threats 

in an unsupervised learning context associated with developing greater resilience to threats and developing robust 

mechanisms to implement adversarial transferability between unsupervised and supervised models. 

5.3 Recommendations and Future Work 

This section aims to analytically review the recommendations made by various researchers and the proposed next steps in 

the field. Figure 9 offers a concise representation of the recommendations made, which includes the researchers' 

recommendations and insight into the next steps in research. The next subsections detail the proposed next steps for the 

field. 

 
 

Fig. 9 Recommendations and future work 
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5.3.1 Hybrid Solutions to Address Data Dispersion and Cold Start 

Recent research highlights the value of implementing content-based filtering, collaborative filtering, clustering approaches, 

and deep learning models together to balance multiple recommendation contexts and improve outcomes. One approach is 

the DAAN model, which uses both domain-shared and domain-specific knowledge to fill in sparse user‒item interaction 

matrices in cross-domain recommendations [66]. The DAAN model uses attention to determine whether it is less relevant 

to recommend domain-shared knowledge or domain-specific knowledge and suggests relevance in recommendation. In 

future research, we expect to include things such as adding auxiliary information from user reviews and item content to 

create better recommendations and expanding their recommendations to other tasks beyond just item recommendations, 

e.g., predicting ratings. Similar hybrid recommendation algorithms that combine content filtering and CF outperform single 

methods when dealing with sparse datasets [4]. To this extent, these hyperparameter-tuning approaches create better 

outcomes in the selection of nearest neighbors and the details of similarity filtering, which are relevant to their adaptation 

to new users and items. Moreover, clustering-based recommendation systems (CBRS) are being developed to address 

scalability and diversity and even utilize a vector space model borrowing from information retrieval [39]. Future research 

and development involving hybrid clustering and consensus clustering should improve CBRS performance. In addition to 

clustering and filtering, CF approaches using machine learning models have been used to improve personalized 

recommendations, particularly in domains such as movie recommendations [43]. Co-clustering and slope-one methods 

could be added to provide even more successful recommendation results. Cross-domain recommendation systems could 

provide even more improvement by integrating time, trust, context, location and/or sentiment analysis with the aim of 

enhancing recommendation quality. The Trust-Aware Spatial-Temporal Activity-Based Denoising Autoencoder 

(TSTDAE) method can minimize cold start issues and provide filtered biased user information while clustering users with 

similar behavior in context toward a recommendation [19]. Not only could TSTDAE provide context-aware 

recommendations to users, but it was also able to recommend the best timing to implement the recommendation to maintain 

user interest and provide user satisfaction. Finally, in developing and overcoming the challenges of sequential 

recommendations, distributed learning approaches such as DistVAE offer a new way of doing this [32]. The significant 

aspect of DistVAE is that it functions as a client–server architecture and protects data informatics. Using clustering and the 

GMM, the DistVAE minimizes gradient noise, mitigates issues of low strategy adoption and builds stability for learning. 

By using masked attention layers, DistVAE improves the modelling of long-term dependencies, creating a richer user-

context environment, which aggregates useful user information in providing greater recommendations. The results of their 

example show that DistVAE perceives better outcomes than centralized versions of DistVAE do and thus greater usability 

and relevance to real-world applications. Overall, numerous hybrid approaches indicate that integrating various 

recommendations may facilitate the handling of their identified goals of sparsity, cold start, and scalability. Future work 

will likely explore the development of hybrid methods through more advanced clustering modalities, aiding auxiliary data, 

and creating more adaptive frameworks for learning to streamline the adaptability and effectiveness of RSs. 

5.3.2 Improving Representations Using Graphs and Neural Networks 

A key starting point for improving RSs is improving representation learning. Many studies are beginning to pay attention 

to the role of graph representation learning, neural networks, and hybrid methods in developing representations of users 

and items, enhancing clustering, and improving recommendation quality across various applications. One study discussed 

travel recommendation system improvements that could be achieved by using variational autoencoders and other generative 

models to enhance the specifics of existing models (e.g., implementing state-of-the-art models and fine-tuning) and 

improve performance [68]. They mention composite models that take advantage of contextual information and utilize CF 

techniques to more accurately refine destination recommendations tailored to individual travellers and develop improved 

methods to understand complex relationships between POI and user preferences to increase accuracy. An area of study 

may focus on adversarial learning tasks to improve trip recommendation via graphs as well. Additionally, another study 

revealed that the AG-cluster also contains off-the-shelf attention mechanisms employing a GCN, which are improvements 

over previous clustering methods (e.g., item‒item similarity), yielding results that are both more accurate and robust when 

predicting POI stored by users in a personalized recommendation framework [47]. Another study described future 

directions for exploring alternative network representations rather than just relying on node2vec alone for use in RSs [38]. 

In addition, a promising area of research would be to explore how combining various recommendation algorithms and 

utilizing network embedding methods would improve representation learning and recommendation quality/results [39]. In 

another area, online education, this study explores the use of clustering followed by deep learning processes to enhance 

course recommendations. The grouped course recommendations describe integrated bidirectional long short-term memory 

(BiLSTM) and multilayer perceptrons (MLPs) to provide users with scalable and personalized recommendations to 

maximize learner engagement and results [41]. The continued target of future work will be to enhance the dynamic 

clustering updates in their project and hybrid recommendations, which incorporate the same approaches using various CF 

techniques to bring these hybrids into more robust methods. Finally, in a capture of importance based on observed signals 

in estimating items and entities to potentially update beyond classical/implicit observations if just to enrich 

recommendations, expanding representations include distinctive signal observations and their integration to enhance 

description/assessment, leading to rationalized estimation [44]. Including large language models (LLMs) may also capture 



 

 

1001 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

unique node representations and identify additional collaborative signal relationships, which could direct greater accuracy 

to recommendations. 

5.3.3 Detecting Attacks Using Clustering and Unsupervised Learning 

The increasing complexity of adversarial attacks on RSs has necessitated the progression of different clustering-based and 

unsupervised detection methods to specifically detect and mitigate adversarial attacks. One of the papers introduced the 

InfoAtk framework, which refines adversarial attacks while optimizing its detection evasion, remaining stealthy. The 

authors emphasize balancing attack effectiveness with stealth and always contend that they want all manipulation to be 

unnoticed [59]. To help defend against adversarial attacks and in response to the InfoAtk framework, some authors have 

suggested various semisupervised learning (SSL) detection methods, such as the DSSD-ImMPL and KC-GCN approaches, 

which rely on leveraging user relationship graphs as well as meta-learning and communication graphs to streamline the 

approaches and, in general, increase the detection mean accuracy across RSs [59], [63]. Overall, all the papers emphasized 

the automatic detection of influential users participating in group shilling attacks on recommendation systems. Another 

part of the discussion also called attention to adversarial-learned injection attacks and showed how final representations 

using knowledge graphs and VAEs necessitated the reconstruction of embedding vectors and indicated the need to explore 

malicious profiles with VAEs [3]. This methodology not only detects attacks generated adversarially but also detects 

attacks generated heuristically; it performs better than normal detection approaches do. With respect to not only RSs but 

also NIDS, several ensemble clustering methods, such as ECT-Subspace and ECT-Noise, have enhanced classification 

performance with respect to obfuscated intrusions in NIDS [53]. Rather than relying on defined class labels, such as 

traditional methods do, ensemble clustering can utilize a generalized feature mapping transformation while still maintaining 

predictive competency and robustness toward adversarial attacks. Fully unsupervised, divide-and-conquer clustering 

methodologies, such as the OPTICS algorithm, constitute a means of detecting shilling attacks, at the risk of not providing 

any prior knowledge or labelled attack profiles to the inspecting user [72]. Attack behaviors can be divided into standard 

and obfusgated behavior attacks, but detection still remains intact; however, the computational overhead is reduced. Part 

of this research highlights the preferred delineation of target item aspects for further refinement of methods to characterize 

attacks. 

5.3.4 Advanced Defences Against Malicious Attacks 

The existing body of research suggests the importance of adaptive detection modules, hardened training methods, and 

modelling adversarial behavior to resist these types of attack scenarios [61]. The possibilities for defenses in this domain 

are vast, but the initial proposed work includes an adaptive fraudster detection module against node injection attacks with 

a system of TCD for adversarial robustness [60]. Future work will include tests of defenses that are cross-domain and 

improved attack/defense dynamics via GCoAttack. In CF environments, understanding adversarial strategies and 

vulnerabilities is essential for strengthening defense mechanisms, particularly against botnets and corrupted benign data. 

Adversarial training techniques such as Infmix and APT are being explored to enhance security, especially in non-matrix 

factorization models [62]. Robust training strategies, including stagewise hints training and noise layers, have shown 

promise in reducing malicious user attacks while maintaining prediction accuracy [65]. Future work will focus on 

improving anomaly detection, refining clustering techniques, and optimizing poisoning data generation algorithms [31]. 

Overall, multilayered defense frameworks that integrate fraud detection, adversarial modelling, and cooperative defense 

strategies are essential for ensuring the long-term security and reliability of RSs in real-world applications. 

5.3.5 Adversarial Generation and Recommendation Representation Enhancement 

Recent research highlights adversarial learning, GAN-based models, trust management, and normalization techniques as 

key strategies for enhancing recommendation system resilience and representation learning. One approach leverages cross-

domain user profiling to enhance adversarial attacks on black-box RSs, improving attack effectiveness while ensuring 

targeted item selection [25]. Future work aims to replace existing models with GAN-based embedding frameworks to 

reduce training costs and improve scalability [70]. Beyond adversarial attacks, trust management frameworks are being 

explored through GAN-based models, Q-Learning, Federated Learning, and blockchain integration, which enhance 

training efficiency and security [29]. Additionally, adversarial learning is being applied to representation mechanisms 

rather than just embeddings, utilizing multi-channel GCN and attention mechanisms to strengthen representation 

robustness [58]. Adversarial training and normalization techniques are essential for model generalization and stability, with 

research showing a significant drop in performance when these components are removed [27]. Finally, the GI-AAE 

demonstrates a group influence-based deep adversarial autoencoder, which improves the recall performance and decision-

making quality [42]. To conclude, these studies not only exemplified the necessity of scalable, trust-aware, and 

adversarially robust recommendation systems but also approached the continuing accuracy and resiliency of future systems. 

5.3.6 Specialized Applications and Performance Optimization in Specific Contexts 

In recent studies of recommendation systems, One of the studies suggested that knowledge graph modifications, 

disentangled latent factors, deep learning improvements and clustering methods as the main strategies for enhancing 

robustness, accuracy and interpretability [54]. Studies mention knowledge graph (KG) modifications to sustain better 

resilience against poisoning attacks and study hyperactive user behaviour influenced by political agenda-setting in OSNs 
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[67], [69]. Disentangled latent factors for more interpretable user representations and the use of spectral clustering help to 

improve the accuracy of cluster estimations with GANs [50]. For news RSs, the combination of graph neural networks, bat 

optimization, and attention improves semantic vectorization and the relevance of content to the user [37]. In movie 

recommendation, transformer models improve sequential pattern recognition, increasing recall and accuracy [40]. These 

findings emphasize the importance of context-specific optimizations in recommendation systems, with future research 

focusing on clustering techniques, KG adaptations, and deep learning advancements to enhance performance and resilience 

across diverse domains. 

6. A CRITICAL ANALYSIS OF LITERATURE 

In this section, we critically examine and analyse the data extracted from the collected research. Table I provides a 

comprehensive overview of the datasets used, categorizing them based on type, classification, quantity, volume, and 

domain (e.g., commercial, entertainment, etc.) within the context of RSs, adversarial learning, and clustering. A thorough 

analysis of these datasets reveals significant trends, strengths, and limitations in existing research methodologies. The 

following subsections explore these aspects in detail, highlighting key patterns, potential biases, and areas requiring further 

investigation. 

6.1 Prevalence and Standardization of Dataset Usage 

One highlighted trend from the literature is the reliance on benchmark datasets such as MovieLens, Amazon, Netflix, and 

Yelp, which are tremendously popular datasets in recommender system research. Researchers have relied on these data 

since they are structured, big data, and widely used in the literature. The ubiquity of their usage enables comparability, 

allowing researchers to benchmark their models against something relatively stable and widely accepted. The reliance on 

a limited number of state-of-the-art local benchmarks raises concerns about overfitting the methodological approach, 

considering that any research findings may not be generalizable due to limited application areas. Figure 10 depicts the 

influence of film-related datasets, which were the most employed datasets in this review. In contrast, social media datasets 

were incorporated in a highly selective manner, indicating a narrower focus on user interactions within social platforms. 

Moreover, datasets such as CCV and Yelp occupied an intermediate position, suggesting a moderate level of adoption in 

studies exploring RSs, clustering, and adversarial learning. This distribution highlights a potential imbalance in dataset 

selection, with an apparent emphasis on entertainment-based data. 

 

 
 

Fig. 10 Frequently used dataset for the SLR 

 

6.2 Nature of Data: Text, Images, Reviews, and Citation Networks 

Most studies focus on structured numerical ratings (e.g., MovieLens, Yelp, Netflix) and textual reviews (Amazon, IMDb, 

Yelp). Image-based datasets (e.g., CIFAR, Market-1501) remain underutilized despite their potential for visual-based 

recommendations. Similarly, citation networks (Cora, PubMed, Citeseer) appear in clustering and adversarial learning 

research but are rarely applied to RSs. This suggests an opportunity for adversarial learning to enhance research paper 

recommendations, fake citation detection, and scholarly influence assessments. 
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6.3 Redundancy and Dataset Selection Bias 

The literature reveals redundancy in dataset selection, with repeated use of benchmark datasets. While standard datasets 

facilitate reproducibility, they fail to capture the complexities of real-world recommendation environments. The lack of 

diverse datasets hinders the evaluation of adversarial robustness. Future work should explore real-time streaming data, user 

behavior logs, and multimodal datasets to enhance recommendation system adaptability. 

6.4 Adversarial Threats and Defenses 

Adversarial learning has been widely investigated in RSs, clustering, and security applications, yet its full potential remains 

unexplored. Many studies rely on synthetic attack datasets instead of real-world adversarial cases, limiting their practical 

applicability. Future research should focus on dynamic social networks, misinformation filtering, financial fraud 

prevention, and online security systems where adversarial threats evolve over time. 

6.5 Neglected Domains: Absence of Financial Datasets and the Need for Adversarial Robustness 

In Table I, which extracts all the details and features of the dataset in SLR, a critical gap in the literature is the 

underrepresentation of financial, healthcare, and other datasets in recommender system research. While recommendation 

models have been widely applied in entertainment, retail, and e-commerce, their integration into financial domains, such 

as investment strategies, credit scoring, fraud detection, and risk assessment, remains insufficiently explored. Given the 

global dependence on financial systems, the absence of adversarially robust recommendation models in this domain 

presents a significant research shortcoming. Financial recommendation systems are highly susceptible to adversarial 

attacks, which can manipulate investment recommendations, exploit trading algorithms, or deceive credit scoring models. 

The lack of adversarial learning strategies in financial RSs leaves them vulnerable to data poisoning, model inversion, and 

recommendation bias, potentially leading to severe financial fraud, misinformation, and market manipulation. Future 

research should prioritize the integration of adversarial defenses into financial recommendation models to enhance their 

resilience and robustness against such threats. This includes developing robust fraud detection mechanisms, ensuring 

fairness in loan approval RSs, and securing financial trading algorithms from adversarial exploitation. Expanding the 

dataset diversity beyond traditional entertainment-based benchmarks will also improve the applicability of 

recommendation systems in high-stakes financial decision-making. 

This study proposes the utilization of financial data, specifically the "All Lending Club loan data", which is a 

comprehensive financial dataset designed to track loan performance. The Lending Club dataset is characterized by its high-

dimensional nature, comprising 151 distinct features, making it a rich source of information for financial analysis. 

Additionally, the dataset qualifies as a "large dataset" with more than 1,048,576 samples and a total size exceeding 3.2 

gigabytes, which presents both challenges and opportunities for data processing and analysis. Despite the substantial 

volume and dimensionality of the dataset, it remains neither complex nor challenging for application to the three key 

concepts introduced in this study. Additionally, concepts of parameter flexibility, robustness, and scalability can be 

effectively implemented, ensuring that the dataset can be leveraged for accurate and reliable results. The flexibility of the 

dataset allows for various analytical approaches, the robustness ensures that the findings are resilient under different 

conditions, and the scalability facilitates the processing of large datasets, thereby enabling the extraction of meaningful 

insights. Consequently, this study highlights the potential of "All Lending Club loan data" as a tool for applying and testing 

the proposed methodologies in financial data analysis. 
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TABLE I Description dataset used and information extraction from the SLR. 

Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[48] 1- CCV 

2- MSRC-V1 

3- Reuters 
4- MINIST 

5- CaLTECH101-20 

6- VOC 
 

1- https://www.ee.columbia.edu/ln/dvmm/CCV/ 

2- https://linqs-data.soe.ucsc.edu/public/lbc/ 

3- https://kdd.ics.uci.edu/databases/reuters21578/ 
4- http://yann.lecun.com/exdb/mnist/ 

5- http://www.vision.caltech.edu/Image-Datasets/Caltech101/ 

6- https://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/ 
 

 

1- 6773 

2- 210 

3- 1200 
4- 2000 

5- 2386 

6- 5649 

1- N/A 

2- N/A 

3-N/A 
4- 784 

5- N/A 

6- N/A 

Image + text 

[45] 1- UCI Handwritten     Digits 
2- MNIST 

3- MoCap Hand Postures 

1- https://archive.ics.uci.edu/dataset/236/seeds 
2- https://www.kaggle.com/datasets/hojjatk/mnist-dataset 

3- https://archive.ics.uci.edu/dataset/391/mocap+hand+postures 

 

1-70 
2-200 

3-200 

N/A Image 

[51] ASNM dataset https://ieeexplore.ieee.org/document/9115004/ 11,445 14 Text 

[47] 1-DBLP 
2-ACM 

3-Citeseer 

4-Cora 
5-Pubmed 

6-Karate 

7-Game of Thrones 

1- https://www.kaggle.com/datasets/dheerajmpai/dblp2023 
2- https://paperswithcode.com/dataset/acm 

3- https://paperswithcode.com/dataset/citeseer 

4- https://paperswithcode.com/dataset/cora 
5- https://paperswithcode.com/dataset/pubmed 

6- https://networkrepository.com/soc-karate.php 

7- N/A 
 

1- N/A 
2- N/A 

3- nodes =3327, edges =4732 

4- nodes =2708, edges =5429 
5- nodes=19717, edges =44338 

6- N/A 

7- Nodes= 107, edges=353 

1-N/A 
2- N/A 

3- 3703 

4- 1433 
5- 500 

6-N/A 

7-N/A 

Citation network 

[57] MNIST https://www.kaggle.com/datasets/hojjatk/mnist-dataset 

 

handwritten digits (0–9) 4 Image 

[49] 1- MNIST 

2- Fashion-MNIST 

3- 10x_73k 
4- Pendigit 

1- https://www.kaggle.com/datasets/hojjatk/mnist-dataset 

2- https://www.kaggle.com/datasets/zalando-research/fashionmnist 

3- N/A 
4- https://archive.ics.uci.edu/dataset/81/pen+based+recognition+of

+handwritten+digits 

Sampling (Data Dimension) 

1- 70,000 (28 × 28) 

2- 70,000(28 × 28) 
3- 73,233(1 × 720) 

4- 10,992(1 × 16) 

N/A 1- Image 

2- Image 
3- RNA discrete data 

4- Time sequences 

[54] 1- early-Twitter 

2- late-Twitter 
3- Synthetic 

1- N/A 

2- N/A 
3- N/A 

1- 4312 

2- 4312 
3- 4000 

N/A Network structures 

+ text 

[52] 1- DS-1 
2- DS-2 

3- DS-3 

4- DS-4 

1 & 2 = https://phishtank.com/ 
http://www.Alexa.com 

3-https://archive.ics.uci.edu/ 

4- https://data.mendeley.com/ 

Sampling (Leg%, phi%)1 
1. 2210 (44.7,55.2) 

2. 11055 (55.6,44.3) 

3. 1250 (43.8,56.1) 
4. 10000 (50,50) 

1. 7 
2. 30 

3. 9 

4. 48 

Text 

https://www.ee.columbia.edu/ln/dvmm/CCV/
https://linqs-data.soe.ucsc.edu/public/lbc/
https://kdd.ics.uci.edu/databases/reuters21578/
http://yann.lecun.com/exdb/mnist/
http://www.vision.caltech.edu/Image-Datasets/Caltech101/
https://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
https://archive.ics.uci.edu/dataset/236/seeds
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://archive.ics.uci.edu/dataset/391/mocap+hand+postures
https://ieeexplore.ieee.org/document/9115004/
https://www.kaggle.com/datasets/dheerajmpai/dblp2023
https://paperswithcode.com/dataset/acm
https://paperswithcode.com/dataset/citeseer
https://paperswithcode.com/dataset/cora
https://paperswithcode.com/dataset/pubmed
https://networkrepository.com/soc-karate.php
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://archive.ics.uci.edu/dataset/81/pen+based+recognition+of+handwritten+digits
https://archive.ics.uci.edu/dataset/81/pen+based+recognition+of+handwritten+digits
https://phishtank.com/
http://www.alexa.com/
https://archive.ics.uci.edu/
https://data.mendeley.com/


 

 

1005 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[53] ASNM dataset https://ieeexplore.ieee.org/document/9115004/  11,445 176 Text 

[55] 1. Market-1501 

2. DukeMTMC-reID 
3. MSMT17 

1. https://paperswithcode.com/dataset/market-1501 

2. https://paperswithcode.com/dataset/dukemtmc-reid 
3. https://paperswithcode.com/dataset/msmt17 

 

1. 36,036 

2. 36,411 
3. 126,441 

2048 Image 

[50] 1. Coil20 

2. Extended YaleB 

3. Orl 
4. Coil100 

5. USPS 

6. MNIS 

1. https://www.kaggle.com/datasets/cyx6666/coil20 

2. https://paperswithcode.com/dataset/extended-yale-b-1 

3. https://paperswithcode.com/dataset/orl 
4. https://www.kaggle.com/datasets/jessicali9530/coil100 

5. https://paperswithcode.com/dataset/usps 

6. https://www.kaggle.com/datasets/hojjatk/mnist-dataset 

1. 1,440 

2. 2,432 

3. 400 
4. 7,200 

5. 9,298 

6. 70,000 

1. 1,024 

2. 1,024 

3. 4,096 
4. 1,024 

5. 256 

6. 784 

Image 

 

[58] 
 

 

 
 

 

 

 

 

1. Cornell 
2. Texas 

3. Washington 

4. Wisconsin 
5. Citeseer 

6. Cora 

7. Pubmed 

 

1,2,3,4:https://paperswithcode.com/dataset/webkb 
5. https://paperswithcode.com/dataset/citeseer 

6. https://paperswithcode.com/dataset/cora 

7. https://paperswithcode.com/dataset/cora 
 

 

 

No Nodes Edges 

1 195 304 

2 183 328 
3 217 446 

4 262 530 

5 3,312 4,732 
6 2,708 5,429 

7 19,717 44,338 
 

1- 1703 

2- 1703 
3- 1703 

4- 1703 

5- 3703 
6- 1433 

7- 500 

Citation Networks 

 

[56] 

 
 

 

1. Dataset 1 

2. Dataset 2 
3. Dataset 3 

N/A 1. 4,105 

2. 18,038 
3. 5,313 

N/A Images 

[21] 1. PU 

2. CWRU 

3. IMS 
4. XJTU-SY 

5. wheelset 

1. https://mb.uni-paderborn.de/kat/forschung/kat-

datacenter/bearing-datacenter/data-sets-and-download 

2. https://www.kaggle.com/datasets/brjapon/cwru-bearing-datasets 
3. https://paperswithcode.com/dataset/ims-bearing-dataset 

4. https://www.kaggle.com/datasets/zwming/xjtu-sy 
5. https://www.kaggle.com/datasets/sravanchittupalli/wheels-

dataset 

 
 

1. 24,000 

2. 13,200 

3. 3,600 
4. 3,600 

5. 8,400 

All= 1200 Time-Series 

[28] 1. Fashion-MNIST 

2. CIFAR-10 
3. 20-Newsgrous 

4. UCI Digits 

 

1. https://www.kaggle.com/datasets/zalando-

research/fashionmnist 
2. https://paperswithcode.com/dataset/cifar-10 

3. https://www.kaggle.com/datasets/crawford/20-newsgroups 

4. https://archive.ics.uci.edu/dataset/80/optical+recognition+of+h
andwritten+digits 

 

NO Size Subset 

1 70,000 1,600 

2 60,000 1,600 
3 20,000 1,600 

4 5,620 N/A 
 

1- 784 

2- 2,048 
3- 80 

4- 64 

Image 

https://ieeexplore.ieee.org/document/9115004/
https://paperswithcode.com/dataset/market-1501
https://paperswithcode.com/dataset/dukemtmc-reid
https://paperswithcode.com/dataset/msmt17
https://www.kaggle.com/datasets/cyx6666/coil20
https://paperswithcode.com/dataset/extended-yale-b-1
https://paperswithcode.com/dataset/orl
https://www.kaggle.com/datasets/jessicali9530/coil100
https://paperswithcode.com/dataset/usps
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://paperswithcode.com/dataset/webkb
https://paperswithcode.com/dataset/citeseer
https://paperswithcode.com/dataset/cora
https://paperswithcode.com/dataset/cora
https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter/data-sets-and-download
https://mb.uni-paderborn.de/kat/forschung/kat-datacenter/bearing-datacenter/data-sets-and-download
https://www.kaggle.com/datasets/brjapon/cwru-bearing-datasets
https://paperswithcode.com/dataset/ims-bearing-dataset
https://www.kaggle.com/datasets/zwming/xjtu-sy
https://www.kaggle.com/datasets/sravanchittupalli/wheels-dataset
https://www.kaggle.com/datasets/sravanchittupalli/wheels-dataset
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://paperswithcode.com/dataset/cifar-10
https://www.kaggle.com/datasets/crawford/20-newsgroups
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits
https://archive.ics.uci.edu/dataset/80/optical+recognition+of+handwritten+digits
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Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[46] 1. Iris 
2. MNIST 

3. Fashion-MNIST 
4. CIFAR-2 

5. TIMIT 

1. https://www.kaggle.com/datasets/vikrishnan/iris-dataset 
2. https://www.kaggle.com/datasets/hojjatk/mnist-dataset 

3. https://www.kaggle.com/datasets/zalando-research/fashionmnist 
4. https://paperswithcode.com/dataset/cifar-10 

5. https://paperswithcode.com/dataset/timit 

 
 

1. 150 
2. 70,000 

3. 60,000 
4. 10,000 

5. 630 

1- 4 
2- 784 

3- 784 
4- 3,072 

5- 39 

1. Text 
2. Image 

3. Image 
4. Image 

5. audio 

 

[27] 

1- Citeseer 

2- Cora 
3- Pubmed 

 

1- https://paperswithcode.com/dataset/acm 

2- https://paperswithcode.com/dataset/citeseer 
3- https://paperswithcode.com/dataset/cora 

 

NO Node Edges 

1 3,327 4,732 

2 2,708 5,429 

3 19,717 44,338 

 

1-3703 

2-1433 
3-500 

Citation Networks 

 

 

[23] 

1. YelpCHI 

2. Movies 

1. https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset 

2. https://www.kaggle.com/datasets/shivamb/amazon-prime-movies-and-tv-

shows 

Users Items Edges 
Fake 
Users 

38,063 201 67,395 7,739 

39,578 71,187 232,082 19,909 
 

        N/A Text (reviews) + 

numerical (ratings). 

[59] 1. ML-100k 

2. ML-1M 
3. Douban 

4. Epinions 

1. https://www.kaggle.com/datasets/odedgolden/movielens-1m-

dataset 
2. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-

dataset 

3. https://www.kaggle.com/datasets/fengzhujoey/douban-

datasetratingreviewside-information 

4. https://paperswithcode.com/dataset/epinion 

 
 

Users Items 2Int 3Spa 

943 1,682 100,000 93.6% 

6,040 3,952 1,000,000 95.8% 
2,831 36,821 805,611 99.2% 

46,846 40,706 305,249 99.9% 
 

    N/A Text (reviews) + 

numerical (ratings). 

[60] 1. FilmTrust 

2. ML-100k 
3. ML-1M 

 

 

1. https://www.kaggle.com/datasets/abdelhakaissat/film-trust 

2. https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset 
3. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset 

 

Users Items Ratings 3Spa 

796 2011 30880 98.07 
943 1682 100,000 98 

6040 3706 1000,209 95.5 
 

1- 128 

2- 128 

Text (reviews) + 

numerical (ratings 

[63] 1. MovieLens 10M 

2. FilmTrust 

3. Amazon 
 

1. https://grouplens.org/datasets/movielens/10m/ 

2. https://www.kaggle.com/datasets/abdelhakaissat/film-trust 

3. https://www.amazon.com/ 

Users Items Ratings 

71,567 10,681 10,000,054 

1,227 2,059 34,886 
4(GE=2,275, 

ATT=1,508) 
16,885 47,408 

 

N/A 1. Text (reviews) + 

numerical (ratings 

2. Text (reviews) + 
numerical (ratings 

3. User-item interactions 

with labelled 
attack/genuine users 

 

[61] 1. Jester 
2. Movie 

3. E-Shopping 

1. https://grouplens.org/datasets/jester/ 
2. N/A 

3. N/A 

Users Items Ratings 

3,000 150 ~30,000 
10,000 23,000 181,382 

5,000 40,000 420,292 
 

N/A Text (reviews) + 
numerical (ratings 

https://www.kaggle.com/datasets/vikrishnan/iris-dataset
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://paperswithcode.com/dataset/cifar-10
https://paperswithcode.com/dataset/timit
https://paperswithcode.com/dataset/acm
https://paperswithcode.com/dataset/citeseer
https://paperswithcode.com/dataset/cora
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/shivamb/amazon-prime-movies-and-tv-shows
https://www.kaggle.com/datasets/shivamb/amazon-prime-movies-and-tv-shows
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/fengzhujoey/douban-datasetratingreviewside-information
https://www.kaggle.com/datasets/fengzhujoey/douban-datasetratingreviewside-information
https://paperswithcode.com/dataset/epinion
https://www.kaggle.com/datasets/abdelhakaissat/film-trust
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://grouplens.org/datasets/movielens/10m/
https://www.kaggle.com/datasets/abdelhakaissat/film-trust
https://www.amazon.com/
https://grouplens.org/datasets/jester/
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Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[64] 1. Netflix 
2. Amazon 

1. https://paperswithcode.com/dataset/netflix-prize 
2. https://www.amazon.com/ 

Users Items Ratings 

2,000 4,000 
215,884 

5,055 17,610 53,777 
 

1. 4 
2. 4 

Text (reviews) + 
numerical (ratings 

[62] 
 

 

 
 

 

 

1. FilmTrust 
2. ML-100k 

3. ML-1M 

4. Yelp 
 

1. https://www.kaggle.com/datasets/abdelhakaissat/film-trust 
2. https://www.kaggle.com/datasets/odedgolden/movielens-1m-

dataset 

3. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-
dataset 

4. https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset 

Users Items ratings 3Spa 

796 2011 30880 98.07 
943 1682 100,000 93.7 

6040 3706 1000,209 95.5 

14575 25602 569949 99.8 
 

N/A Text (reviews) + 
numerical (ratings) 

[68] 1. Edinburgh 

2. Glasgow 

3. Osaka 
4. Toronto 

https://www.kaggle.com/datasets/javidtheimmortal/yfcc100msfmda

taset 

Users POI Visits Trips 

1,454  
 

33,944 5,028 

601 11,434 2,227 
450 7,747 1,115 

1,395 39,419 6,057 

 
 

N/A Trajectory dataset 

[65] 1. ML-100k 

2. ML-1M 

1. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-

dataset 
2. https://www.kaggle.com/datasets/odedgolden/movielens-1m-

dataset 

 

Users Items ratings 

943 1682 100,000 

6040 3952 1000,209 
 

N/A Text (reviews) + 

numerical (ratings). 

[66] 

 

 
 

 

 
 

1. Amazon 

2. Netflix & MovieLens 

 

1. http://jmcauley.ucsd.edu/data/amazon/ 

2. https://grouplens.org/datasets/movielens/ 

3. https://www.kaggle.com/netflix-Inc./netflix-prize-data 
 

 

Task Users Items Ratings Spa 

Task 1 1,640 18,025 72,195 99.76% 

- 1,640 5,295 24,186 99.72% 

Task 2 835 5,852 15,499 99.68% 
- 835 5,976 15,055 99.70% 

Task 3 3,820 46,318 321,649 99.82% 

- 3,820 7,641 61,222 99.79% 
 

    N/A Text (reviews) + 

numerical (ratings). 

[25] 1. ML10M 

2. ML20M 

1.  

2.  

 

1. https://www.kaggle.com/datasets/amirmotefaker/movielens-10m-

dataset-latest-version 
2. https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset 

Domain Users Items Int 

Target 

(ML10M) 
19,267 6,984 437,746 

Source 

(Flixster) 
93,702 N/A 4,680,700 

Target 
(ML20M) 

38,087 8,325 838,491 

Source 

(Netflix) 
474,471 N/A 62,937,958 

 

 

1. 8 

2. 8 

Text (reviews) + 

numerical (ratings). 

 1. Amazon 
2. MovieLens-basic 

3. MovieLens-adv 

1. https://www.amazon.com/ 
2. https://grouplens.org/datasets/movielens/100k/ 

3. N/A 

 

Leg 5MaU Items Ratings 

3,118 1,937 16,885 51,346 
943 168 1,682 127,416 

943 169 1,682 123,407 
 

1. 32 
2. 32 

3. 32 

Malicious user 
detection 

https://paperswithcode.com/dataset/netflix-prize
https://www.amazon.com/
https://www.kaggle.com/datasets/abdelhakaissat/film-trust
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset
https://www.kaggle.com/datasets/javidtheimmortal/yfcc100msfmdataset
https://www.kaggle.com/datasets/javidtheimmortal/yfcc100msfmdataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
http://jmcauley.ucsd.edu/data/amazon/
https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-Inc./netflix-prize-data
https://www.kaggle.com/datasets/amirmotefaker/movielens-10m-dataset-latest-version
https://www.kaggle.com/datasets/amirmotefaker/movielens-10m-dataset-latest-version
https://www.kaggle.com/datasets/grouplens/movielens-20m-dataset
https://www.amazon.com/
https://grouplens.org/datasets/movielens/100k/


 

 

1008 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[67] 1. MovieLens-1M 
2. Fund 

1. https://www.kaggle.com/datasets/odedgolden/movielens-1m-
dataset 

2. N/A 

Users Items Int 6KGT 

6,036 2,347 753,772 20,195 

90,218 2,368 698,140 6,312 
 

1. 64 
2. 64 

 

knowledge graph 
poisoning 

[3] 

 
 

 

 
 

 

 
 

 

1. DS1=MovieLens-1M 

2. DS2=Book-Crossing 
3. DS3=Nowplaying 

 

 

1. https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset 

2. https://www.kaggle.com/datasets/somnambwl/bookcrossing-dataset 
3. https://www.kaggle.com/datasets/chelseapower/nowplayingrs 

 
 

 

Metric DS1 DS2 DS3 

Domain Movies Books Music 

Ratings 753,772 69,872 361,346 
Users 6,036 17,860 4,776 

Items 2,445 14,967 26,911 

KG 

Entities 

182,011 77,903 Valence-

based links 

KG 

Relations 

12 25 N/A 

 

1. 261 

2. 261 
3. 261 

knowledge graph 

[2] 1. Movielens-10M 
2. Amazon 

1. https://www.kaggle.com/datasets/amirmotefaker/movielens-

10m-dataset-latest-version 

2. https://www.amazon.com/ 

Metric Movielens-10M Amazon 

Domain Movies Products 
Total Users 71,567 4,902 

Total Items 10,681 16,885 

Ratings 10,000,054 51,346 
Attack 

Types 

Random, Average, 

Bandwagon, GSA-

GAN 

Real-world 

attacks 

 

 

N/A Text (reviews) + 
numerical (ratings). 

[70] 1. Ciao 
2. LastFM 

1. https://www.kaggle.com/datasets/aravindaraman/ciao-data 
2. files.grouplens.org/datasets/hetrec2011/ 

 

Users Items Int Domain 

996 1,927 18,648 E-commerce 
1,892 17,631 92,834 Music 

 

 
 

N/A Text (reviews) + 
numerical (ratings). 

[69]. Political Facebook Pages 
 

 

N/A 1. 4 M users, 3 M+ reactions 4 Interaction-based 

 
[5] 

1. MovieLens-1M 
2. CiteULike 

3. LastFM 

1. https://www.kaggle.com/datasets/odedgolden/movielens-1m-
dataset 

2. https://paperswithcode.com/sota/recommendation-systems-on-

citeulike 

3. files.grouplens.org/datasets/hetrec2011/ 

 

 

Users Items Int Spa 

6,040 3,544 993,482 95.4% 
5,551 16,980 204,986 99.8% 

1,892 17,632 92,834 97.3% 
 

N/A Text + ratings 

 

[37] 

1. DS1=Baidu News 

2. DS2=MIND 

3. DS3=Adressa 
4. DS4=Digg 

 

1. https://www.kaggle.com/code/mpwolke/baidu-news 

2. https://www.kaggle.com/datasets/arashnic/mind-news-dataset 

3. https://www.kaggle.com/datasets/ayushhirdani/adressa 
4. N/A 

 

Users Items Int 

853 N/A 3,654 

920,056 N/A 6,325 

3,083,438 48,486 27,223,576 
139,409 3,553 3,018,197 

 

N/A 1. Text 

2. Text 

3. User interactions 
4. Social links 

https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/somnambwl/bookcrossing-dataset
https://www.kaggle.com/datasets/chelseapower/nowplayingrs
https://www.kaggle.com/datasets/amirmotefaker/movielens-10m-dataset-latest-version
https://www.kaggle.com/datasets/amirmotefaker/movielens-10m-dataset-latest-version
https://www.amazon.com/
https://www.kaggle.com/datasets/aravindaraman/ciao-data
file:///D:/research/systmatic/files.grouplens.org/datasets/hetrec2011/
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://paperswithcode.com/sota/recommendation-systems-on-citeulike
https://paperswithcode.com/sota/recommendation-systems-on-citeulike
file:///D:/research/systmatic/files.grouplens.org/datasets/hetrec2011/
https://www.kaggle.com/code/mpwolke/baidu-news
https://www.kaggle.com/datasets/arashnic/mind-news-dataset
https://www.kaggle.com/datasets/ayushhirdani/adressa
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Ref Dataset Dataset resource/availability Sample NOF Dataset type 

 
[38] 

1. Yelp (Pittsburgh) 
2. Yelp (Madison) 

3. Amazon 
4. MovieLens 

 

1. https://www.kaggle.com/datasets/mobasshir/yelpdata 
2. https://www.kaggle.com/datasets/mobasshir/yelpdata 

3. https://www.amazon.com/ 
4. N/A 

User Item Link category 

466 1672 10373 161 

332 1172 5597 150 

6831 32054 71661 912 
943 1682 100000 50 

 

1- 100 
2- 100 

3- 100 
4- 100 

1. Business Reviews 
2. Business Reviews 

3. Product Reviews 
4. Movie Ratings 

 

 
 

[1] 

1. MovieLens 100K 

2. MovieTweetings 10K 

3. FilmTrust 

1. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-

dataset 

2. https://www.kaggle.com/datasets/tunguz/movietweetings 
3. https://www.kaggle.com/datasets/abdelhakaissat/film-trust 

 

Users Items Ratings 

943 1,682 100,000 

123 3,096 2,233 

1,508 2,071 35,497 
 

N/A Text (reviews) + 

numerical (ratings) 

[4] 1. MovieLens 

2. Scientific-Literature 

1. https://grouplens.org/datasets/movielens/ 

2. N/A 
Users Items Ratings 

248 1,120 12,500 
N/A N/A N/A 

 

N/A 1. Rating 

2. Text 

[39] 

 
 

 
 

 

 
 

 

 
 

 

 
 

1. LDOS-CoMoDa 

2. InCarMusic 
3. Apps in Frappe’ 

4. POI in STS 
5. Hotels in -TripAdvisor 

6. Apple Store 

7. Drug Review 

1. https://www.lucami.org/en/research/ldos-comoda-dataset/ 

2. N/A 
3. https://huggingface.co/datasets/abadesalex/Frappe-mobile-app-

usage 
4. N/A 

5. https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-

reviews 
6. https://www.kaggle.com/datasets/gauthamp10/apple-appstore-apps 

7. https://archive.ics.uci.edu/dataset/461/drug+review+dataset+druglib

+com 
 

Domain Users Items Ratings 

Movies 189 3,029 4,316 
Songs 43 139 4,012 

Mobile app 

usage 
1,000 ~24,000 ~24,000 

Points of 

Interest 
239 184 1,379 

Hotel 
reviews 

2,731 2,269 14,175 

iOS app 

ratings 
7,197 7,000+ N/A 

Patient drug 

reviews 
4,143 645 N/A 

 

1- N/A 

2- 8 
3- N/A 

4- N/A 
5- N/A 

6- N/A 

7- N/A 

Structured ratings 

[43] 

 
 

 

 
 

1. MovieLens 25M https://grouplens.org/datasets/movielens/25m/ 1. 25 million ratings (used 697,561) 

2. 1 million tags 
3. 62,000 movies (62,423 used) 

4. 162,000 users 

5. 99% Sparsity 
 

N/A Structured ratings 

[19] 1. AliExpress https://www.kaggle.com/datasets/abdullahbuzaid/ali-express-data Aspect Details 

Domains 

Source: Hair & Wigs, Home 

Appliances. 
Target: Apparel Accessories, 

Education & Office Supplies. 

Size 

~2,000–4,500 users; ~1,500–2,900 
items; ~2,000–4,600 ratings per 

domain. 

 
 

 

100 E-commerce 

[40] 

 
 

 

1. Movielens https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset 1. 3,900 movies 

2. 1,000,209 ratings 
3. 6,040 users 

N/A Structured ratings 

https://www.kaggle.com/datasets/mobasshir/yelpdata
https://www.kaggle.com/datasets/mobasshir/yelpdata
https://www.amazon.com/
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/tunguz/movietweetings
https://www.kaggle.com/datasets/abdelhakaissat/film-trust
https://grouplens.org/datasets/movielens/
https://www.lucami.org/en/research/ldos-comoda-dataset/
https://huggingface.co/datasets/abadesalex/Frappe-mobile-app-usage
https://huggingface.co/datasets/abadesalex/Frappe-mobile-app-usage
https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-reviews
https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-reviews
https://www.kaggle.com/datasets/gauthamp10/apple-appstore-apps
https://archive.ics.uci.edu/dataset/461/drug+review+dataset+druglib+com
https://archive.ics.uci.edu/dataset/461/drug+review+dataset+druglib+com
https://grouplens.org/datasets/movielens/25m/
https://www.kaggle.com/datasets/abdullahbuzaid/ali-express-data
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
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Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[41] MOOCs https://www.kaggle.com/discussions/general/307061  12,340 
 

5 Text 

 

[42] 

1. MovieLens 100K 

2. MovieLens-1M 
3. FilmTrust 

 

1. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-

dataset 
2. https://www.kaggle.com/datasets/odedgolden/movielens-1m-

dataset 

3. https://www.kaggle.com/datasets/abdelhakaissat/film-trust 
 

Ratings Users Items Spa 

100,000 943 1,682 93.70% 

1,000,209 6,040 3,952 95.74% 
35,497 1,508 2,701 98.90% 

 

N/A Text + ratings 

 

[44] 
 

 

 
 

 

 
 

 

 

1. DS1=MovieLens-1M 

2. DS2=Amazon-Book 
3. DS3=LastFM 

 

1. https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset 

2. https://www.kaggle.com/datasets/bittupanchal/amazon-books-dataset 
3. files.grouplens.org/datasets/hetrec2011/ 

Metric DS1 DS2 DS3 

Users 1,872 70,769 6,036 

Items 3,846 24,915 2,478 

Interactions 21,173 652,614 306,937 

KG Entities 9,366 29,713 102,569 

KG- 
Relations 

60 39 32 

KG Triplets 15,518 686,514 499,474 

Embedding- 
Size 

64 64 64 
 

64 Knowledge Graph 

[71] 1. DS1=Synthetic 

2. DS2=Movieles 

3. DS3=Amazon 
4. DS4=Yelp 

5. DS5=LastFM 

 

1. N/A Dataset Original Size Subset 

DS1 
1,000 users,  

1,000 arms 
- 

DS2 
2,113 users,  
10,197 movies 

1,000 users, 
 1,000 items 

DS3 
1,429 users, 

900 items 

1,400 users, 

 800 items 

DS4 
1,987,929 users, 

 150,346 items 

2,000 users, 

 2,000 items 

DS5 
1,892 users,  
17,632 artists 

500 users, 
 2,000 arms 

 

 

50 User behavior in 

recommendation 

systems 

[32] 

 

 
 

 

 
 

 

1. DS1=ML-latest 

2. DS2=ML-1M 

3. DS3=MovieTweetings 
4. DS4=PEEK 

1. https://grouplens.org/datasets/movielens/latest/ 

2. https://www.kaggle.com/datasets/odedgolden/movielens-1m-

dataset 
3. https://www.kaggle.com/datasets/tunguz/movietweetings 

4. https://github.com/sahanbull/PEEKC-Dataset 

Datas

et 

Record

s 

Users Items 7Avg Spa 

DS1 46K 604 7,363 76.2 98.9% 

DS2 580K 6,034 3,533 95.3 97.3% 
DS3 57K 3,758 7,418 15.2 99.8% 

DS4 56K 7,152 7,031 7.8 99.8% 
 

1- 128 

2- 128 

3- 128 
4- 128 

1. Movie 

Recommendations 

2. Movie 
Recommendations 

3. Movie Ratings 

4. Educational Videos 

[31] 
 

 
 

 

 
 

 

1. Beauty 
2. Sports 

1. https://www.kaggle.com/datasets/satrapankti/amazon-beauty-
product-recommendation 

2. https://www.kaggle.com/datasets/deovcs/amazon-dataset 
 

Metric DS1 DS2 

Users 22,363 35,598 

Items 12101 18357 

Int 198502 296337 
Fake Users 1 1 

Proportion 0.0045% 0.0028% 
 

N/A 1. Beauty Products 
2. Amazon Sports 

 

https://www.kaggle.com/discussions/general/307061
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/abdelhakaissat/film-trust
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/bittupanchal/amazon-books-dataset
file:///D:/research/systmatic/files.grouplens.org/datasets/hetrec2011/
https://grouplens.org/datasets/movielens/latest/
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/odedgolden/movielens-1m-dataset
https://www.kaggle.com/datasets/tunguz/movietweetings
https://github.com/sahanbull/PEEKC-Dataset
https://www.kaggle.com/datasets/satrapankti/amazon-beauty-product-recommendation
https://www.kaggle.com/datasets/satrapankti/amazon-beauty-product-recommendation
https://www.kaggle.com/datasets/deovcs/amazon-dataset
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Ref Dataset Dataset resource/availability Sample NOF Dataset type 

[72] 1. DS1=MovieLens-100K 
2. DS2=Netflix 

1. https://www.kaggle.com/datasets/prajitdatta/movielens-100k-
dataset 

2. https://www.kaggle.com/datasets/victorsoeiro/netflix-tv-shows-
and-movies 

Metric DS1 DS2 

Users 943 2,000 

Items 1,682 4,000 

Ratings 100,000 280,015 
Attack Focus Shilling Shilling 

 

N/A 1. Movie 
Recommendations 

2. Movie 
Recommendations 

(NOF= Number of features), 1 (Leg= Legitimate, Phi= Phishing), 2 (Int=Interaction), 3 (Spa=Sparsity), 4 (GE=genuine, ATT=attack), 5 (MaU=Malicious Users), 6 (KGT =KG 

Triples), (DS= Dataset), 7 (Avg =Avg. Sequence Length( 

https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/prajitdatta/movielens-100k-dataset
https://www.kaggle.com/datasets/victorsoeiro/netflix-tv-shows-and-movies
https://www.kaggle.com/datasets/victorsoeiro/netflix-tv-shows-and-movies
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6.6 Evaluation and Comparative Analysis 

As previously presented, this study is based on a classification based on four axes, which are the intersection between the 

three concepts, in addition to the integration among the three concepts combined with each other. Table 2 shows the 

extracted results for each study from the literature, where the first column represents the reference, the second column 

represents the data used, and the third column categorizes the work by the methods employed in each study, while the 

remaining part of this column presents the metrics for evaluating the results of these methods. in the literature is based on 

specific criteria based on its specific axis. Each author used methods based on what they deemed appropriate to achieve 

high results and accuracy. For example, [48] presents the results when three datasets are used and the method AGARL is 

applied. In addition, four evaluation criteria were adopted: accuracy (ACC), normalized mutual information (NMI), 

precision (PRE), and purity (PUR). The proposed method was compared with other methods from the literature, and based 

on the results indicated by the author, the proposed model achieved the highest results on all announced criteria. In addition, 

owing to the use of more than one dataset, this work demonstrated that the proposed method can be generalized because 

three datasets were used for the proposed method and achieved high results and accuracy. While [37] presented a proposed 

method that was compared with four other methods used in the literature, this proposed method reflected the accuracy 

described by the authors and the flexibility of implementation. This work was applied to four news datasets (Chinese, 

English, Addressa, and Digg). The quality and originality of the models were evaluated based on three criteria: PRE, recall 

(REC), and F1-score (F1). The proposed model, as explained by the authors, achieved better results than the methods used 

in the literature did, leading to a widespread perception that the model proposed by them provides high performance. In 

contrast, the fourth axis, which is built on the integration of the three concepts, plays a fundamental role. A notable 

contribution in this domain is the study by [32], which introduces the DistVAE model for sequential recommendation tasks. 

This model was empirically evaluated using four prominent datasets: ML-latest, ML-1M, MTweeting, and PEEK. The 

authors benchmarked DistVAE against eight established methods in the literature, namely, GRU4Rec, Caser, BERT4Rec, 

SVAE, ACVAE, FedFast, FedRec+, and FMSS. To ensure comprehensive performance assessment, the study employed 

three widely recognized evaluation metrics: REC, normalized discounted cumulative gain (NDCG), and mean reciprocal 

rank (MRR). The experimental results demonstrated that DistVAE consistently outperformed competing models across 

most evaluation settings. Specifically, on the ML-latest dataset, DistVAE achieved superior performance across all the 

metrics except Recall, where ACVAE slightly outperformed it. For the MTweeting dataset, DistVAE maintained a 

dominant position across all the evaluation metrics. Finally, regarding the PEEK dataset, the proposed model exhibited 

leading performance across all criteria except NDCG, where ACVAE marginally outperformed it. These findings 

underscore the robustness and adaptability of the DistVAE framework across diverse data environments. However, the 

occasional outperformance of ACVAE in certain recall and NDCG benchmarks suggests that while DistVAE is a highly 

competitive model, further refinement may be required to optimize its sensitivity to specific ranking-based metrics.
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TABLE II Methods and evaluation metric results extracted from the literature. 
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M
R

R
 

[48] CCV DiMSC 0.222 0.199 0.255 0.127 

  

 

               

RAMSC 0.259 0.23 0.29 0.146 

                  

MLFA 0.218 0.193 0.244 0.158 

                  

DAMC 0.259 0.227 0.267 0.2 

                  

AGARL 0.275 0.279 0.296 0.292 

                  

MSRC-

V1 

DiMSC 0.708 0.582 0.709 0.556 

                  

RAMSC 0.69 0.639 0.719 0.589 

                  

MLFA 0.657 0.649 0.692 0.633 

                  

DAMC 0.51 0.435 0.543 0.525 

                  

AGARL 0.864 0.79 0.872 0.865 

                  

Reuters DiMSC 0.482 0.308 0.517 0.321 

                  

RAMSC 0.512 0.309 0.526 0.351 

                  

MLFA 0.358 0.266 0.508 0.337 

                  

DAMC 0.238 0.061 0.262 0.237 

                  

AGARL 0.537 0.318 0.547 0.552 

                  

MNIST DiMSC 0.32 0.187 0.326 0.205 

                  

RAMSC 0.782 0.745 0.782 0.676 

                  

MLFA 0.697 0.643 0.68 0.635 

                  

DAMC 0.755 0.635 0.755 0.77 

                  

AGARL 0.868 0.843 0.876 0.856 

                  

Caltech10

1-20 

DiMSC 0.28 0.342 0.571 0.466 

                  

RAMSC 0.488 0.659 0.767 0.732 

                  

MLFA 0.597 0.588 0.693 0.516 

                  

DAMC 0.357 0.49 0.67 0.302 

                  

AGARL 0.61 0.672 0.773 0.746 

                  

VOC DiMSC 0.488 0.496 0.517 0.498 

                  

RAMSC 0.527 0.546 0.539 0.523 

                  

MLFA 0.558 0.556 0.544 0.538 

                  

DAMC 0.56 0.552 0.583 0.601 

                  

AGARL 0.607 0.615 0.628 0.62 

                  

mailto:HR@
mailto:NDCG@
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[51] 

 

NN/FF-MAGO 

    

83.89 

                 

 

NN/FF-MINO 

    

84.1 

                 

 

NN/FF-OVL 

    

85.14 

                 

 

C4.5/FF-MAGO 

    

39.54 

                 

 

C4.5/FF-MINO 

    

39.54 

                 

 

C4.5/FF-OVL 

    

40.37 

                 

 

SVM/FF-MAGO 

    

19.03 

                 

 

SVM/FF-MINO 

    

18.61 

                 

 

SVM/FF-OVL 

    

19.66 

                 

 

LR/FF-MAGO 

    

66.94 

                 

 

LR/FF-MINO 

    

66.52 

                 

 

LR/FF-OVL 

    

67.78 

                 

[49] Image-

MNIST 

k-means 

 

0.432 0.513 

   

0.327 

               

ClusterGAN 

 

0.894 0.901 

   

0.881 

               

InfoGAN 

 

0.816 0.839 

   

0.852 

               

GAN-SOM 

 

0.798 0.855 

   

0.724 

               

eClusterGAN 

 

0.815 0.926 

   

0.8 

               

Image-

Fashion-

MNIST 

k-means 

 

0.326 0.423 

   

0.227 

               

ClusterGAN 

 

0.614 0.603 

   

0.505 

               

InfoGAN 

 

0.559 0.621 

   

0.443 

               

GAN-SOM 

 

0.569 0.663 

   

0.416 

               

eClusterGAN 

 

0.614 0.711 

   

0.53 

               

Discrete 

data -

MNIST 

k-means 

 

0.541 0.534 

   

0.476 

               

ClusterGAN 

 

0.734 0.811 

   

0.657 

               

InfoGAN 

 

0.578 0.645 

   

0.437 

               

GAN-SOM 

 

0.787 0.846 

   

0.669 

               

eClusterGAN 

 

0.801 0.875 

   

0.71 

               

Discrete 

data -

Fashion-

MNIST 

k-means 

 

0.503 0.512 

   

0.489 

               

ClusterGAN 

 

0.743 0.776 

   

0.626 

               

InfoGAN 

 

0.753 0.728 

   

0.634 
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GAN-SOM 

 

0.765 0.718 

   

0.639 

               

eClusterGAN 

 

0.789 0.82 

   

0.79 

               

[54] early-

twitter 

MF 0.603 

                     

DW 0.579 

                     

JNET 0.601 

                     

STMF 0.612 

                     

DisVAE 0.647 

                     

DisVAEF 0.663 

                     

late-

twitter 

MF 0.625 

                     

DW 0.583 

                     

JNET 0.637 

                     

STMF 0.643 

                     

DisVAE 0.696 

                     

DisVAEF 0.718 

                     

Synthetic MF 0.639 

                     

DW 0.552 

                     

JNET 0.595 

                     

STMF 0.655 

                     

DisVAE 0.712 

                     

DisVAEF 0.733 

                     

[52] DS-1 DT 94.8 

   

95.25 

                 

GB 95.49 

   

96.18 

                 

KNN 94.82 

   

95.93 

                 

RF 95.35 

   

96.25 

                 

SVM 93.96 

   

93.67 

                 

DS-2 GB 94.32    92.25 

 

      

          

DT 92.1    86.77 

                 

SVM 94.14    91.88 

  

      

         

RF 95.76 

   

94.25 

                 

KNN 92.21    90.61 

                 

DS-3 DT 82.51 

   

84.97 
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GB 83.76 

   

87.23 

                 

KNN 81.16 

   

84.95 

                 

RF 82.89 

   

85.84 

                 

SVM 82.4 

   

87.88 

   

      

        

DS-4 KNN 93.76    93.97 

  

      

         

SVM 95.2    95.69 

                 

DT 95.73    96.14 

                 

RF 97.8 

   

97.85 

                 

GB 97.52    97.65 

                 

[53] 

 

NB-FSS 

    

98.148 98.148 

 

0.028 

              

 

NB-ECT-subspace 

    

95.679 95.975 

 

0.056 

              

 

NB-ECT-noise 

    

96.914 97.05 

 

0.019 

              

 

NB-ECT-combined 

    

98.148 98.452 

 

0.019 

              

 

NB-LPP 

    

92.593 93.75 

 

0.074 

              

 

NB-NPE 

    

91.358 92.5 

 

0.093 

              

 

NB-IsoP 

    

93.827 95 

 

0.056 

              

 

C4.5-FSS 

    

95.062 94.19 

 

0.102 

              

 

C4.5-ECT-subspace 

    

94.444 94.737 

 

0.074 

              

 

C4.5-ECT-noise 

    

95.679 94.801 

 

0.093 

              

 

C4.5-ECT-combined 

    

96.914 96.615 

 

0.056 

              

 

C4.5-LPP 

    

90.123 90.966 

 

0.12 

              

 

C4.5-NPE 

    

88.889 93.705 

 

0.102 

              

 

C4.5-IsoP 

    

91.975 92.315 

 

0.139 

              

 

SVM-FSS 

    

81.481 88.889 

 

0.028 

              

 

SVM-ECT-subspace 

    

84.568 89.251 

 

0.074 

              

 

SVM-ECT-noise 

    

85.802 89.389 

 

0.093 

              

 

SVM-ECT-combined 

    

88.272 92.557 

 

0.037 

              

 

SVM-LPP 

    

82.099 86.645 

 

0.111 

              

 

SVM-NPE 

    

79.63 87.162 

 

0.046 

              

 

SVM-IsoP 

    

80.864 86.903 

 

0.065 
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LR-FSS 

    

69.136 75.676 

 

0.204 

              

 

LR-ECT-subspace 

    

74.074 79.734 

 

0.176 

              

 

LR-ECT-noise 

    

75.926 81.457 

 

0.157 

              

 

LR-ECT-combined 

    

76.543 81.579 

 

0.167 

              

 

LR-LPP 

    

66.049 72.546 

 

0.241 

              

 

LR-NPE 

    

67.284 73.649 

 

0.231 

              

 

LR-IsoP 

    

64.815 73.091 

 

0.185 

              

[58] Cornell node2vec 33.85 6.65 

 

72.63 

    

70.99 

             

GraRep 31.79 8.8 

 

47.42 

    

43.87 

             

SNE 41.08 11.11 

 

51.51 

    

52.99 

             

VGAE 36.72 7.77 

 

85.99 

    

82.94 

             

ARVGA 38.21 10.26 

 

85.54 

    

83.92 

             

ArmGANm 54.36 21.07 

 

91.9 

    

88.56 

             

ArmGANd 48.2 15.24 

 

92.55 

    

91.32 

             

Texas node2vec 47.54 4.49 

 

57.31 

    

55.3 

             

GraRep 36.72 12.43 

 

47.35 

    

44.42 

             

SNE 41.53 12.63 

 

50.98 

    

51.57 

             

VGAE 48.35 8.52 

 

85.71 

    

80.88 

             

ARVGA 41.48 7.28 

 

81.08 

    

76.45 

             

ArmGANm 60.66 18.42 

 

92.29 

    

89.16 

             

ArmGANd 56.28 13.55 

 

93.23 

    

89.7 

             

Washingt

on 

node2vec 37.33 2.94 

 

60.89 

    

56.63 

             

GraRep 31.36 5.18 

 

47.89 

    

45.57 

             

SNE 48.8 17.43 

 

49.51 

    

49.89 

             

VGAE 43.73 9.03 

 

80.55 

    

75.54 

             

ARVGA 43.66 12.6 

 

83.66 

    

77 

             

ArmGANm 60.83 25.91 

 

86.25 

    

80.66 

             

ArmGANd 60.82 25.82 

 

85.98 

    

81.47 

             

Wisconsin node2vec 49.62 7.86 

 

70.75 

    

69.43 

             

GraRep 33.24 8.02 

 

47.73 

    

45.43 
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SNE 55.3 19.84 

 

52.23 

    

54.07 

             

VGAE 43.28 9.31 

 

85.68 

    

83.3 

             

ARVGA 42.81 11.22 

 

76.25 

    

68.78 

             

ArmGANm 56.49 19.72 

 

92.05 

    

89.64 

             

ArmGANd 58.01 19.94 

 

92.97 

    

91.01 

             

Cora node2vec 56.3 42.02 

 

74.61 

    

77.39 

             

GraRep 48.29 35.46 

 

52.89 

    

55.31 

             

SNE 39.44 16.28 

 

76.85 

    

84.68 

             

VGAE 57.06 42.92 

 

93.51 

    

92.38 

             

ARVGA 64.08 44.95 

 

92.99 

    

92.8 

             

ArmGANm 76.11 58.43 

 

94.52 

    

94.29 

             

ArmGANd 74.04 58.22 

 

95.26 

    

94.99 

             

Citeseer node2vec 40.76 12.99 

 

68.09 

    

67.31 

             

GraRep 31.2 9.61 

 

64.11 

    

69.03 

             

SNE 31.17 7.31 

 

75.3 

    

83.09 

             

VGAE 53.46 27.93 

 

92.66 

    

91.44 

             

ARVGA 43.5 22.72 

 

93.48 

    

92.41 

             

ArmGANm 70.18 44.56 

 

96.13 

    

95.46 

             

ArmGANd 67.77 42.89 

 

96.79 

    

96.81 

             

Pubmed node2vec 65.56 25.02 

 

76.97 

    

78.03 

             

GraRep 54.43 17.76 

 

48.26 

    

46.33 

             

SNE 65.13 25.61 

 

78.73 

    

75.52 

             

VGAE 58.64 17.83 

 

94.86 

    

94.46 

             

ARVGA 58.76 18.4 

 

96.29 

    

96.11 

             

ArmGANm 71.55 33.7 

 

95.64 

    

95.64 

             

ArmGANd 70.96 32.91 

 

96.34 

    

96.7 

             

[56] Dataset1/Res

Net-50-IO 
k-means 0.9022 

        

379837 145.38 0.6847 0.62 

         

ACS 0.9502 

        

384091 154.61 0.7437 0.69 

         

Dataset1/Res

Net-50-AS 
k-means 0.9101 

        

335414 157.86 0.7183 0.66 

         

ACS 0.9597 

        

339441 168.38 0.769 0.7 
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Dataset2/Res

Net-50-IO 
k-means 0.2446 

        

148483 236.42 0.244 0.19 

         

ACS 0.2643 

        

150272 246.56 0.264 0.21 

         

Dataset2/Res

Net-50-AS 
k-means 0.2816 

        

13272 253.42 0.2816 0.24 

         

ACS 0.3025 

        

134145 260.11 0.302 0.26 

         

Dataset3/Res

Net-50-IO 
k-means N/A 

        

57279 111.92 0.891 N/A 

         

ACS N/A 

        

58392 124.83 0.915 N/A 

         

Dataset3/Res

Net-50-AS 

 

k-means N/A 

        

38577 93.13 0.874 N/A 

         

ACS N/A 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
39826 106.95 0.904 

N/A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

[46] Iris K-means C= 89.3, 
P=47.3 

C= 0.775, 
P=0.363 

  

 

        

N/A N/A 

       

GMM C= 96.7, 

P=52.9 

C= 0.898, 

P=0.395 

           

N/A N/A 

       

MNIST K-means C= 52.8, 

P=22.5 

C= 0.501, 

P=0.291 

           

51.10% 0.00 

       

GMM C= 53.7, 

P=24 

C= 0.525, 

P=0.303 

           

53.20% 0.10 

       

 TIMIT GMM-

UBM 

C= 63.6, 

P=1.2 

C= 0.598, 

P=0.171 

           

60.40% 0.00 

       

[27] Cora GAE 0.679 0.504 

 

0.726 

 

0.673 0.443 

               

VGAE 0.696 0.519 

 

0.71 

 

0.679 0.473 

               

ARGA 0.708 0.517 

 

0.72 

 

0.694 0.472 

               

ARVGA 0.68 0.52 

 

0.687 

 

0.658 0.462 

               

EVGAE 0.678 0.502 

 

0.685 

 

0.666 0.45 

               

GNAE 0.712 0.543 

 

0.737 

 

0.692 0.504 

               

VGNAE 0.717 0.544 

 

0.718 

 

0.695 0.508 

               

ARVGNA 0.734 0.571 

 

0.744 

 

0.718 0.54 

               

CiteSeer GAE 0.455 0.258 

 

0.549 

 

0.423 0.134 

               

VGAE 0.608 0.373 

 

0.587 

 

0.555 0.338 

               

ARGA 0.447 0.255 

 

0.558 

 

0.419 0.118 

               

 

 

ARVGA 0.595 0.368 

 

0.587 

 

0.549 0.326 

               

EVGAE 0.551 0.305 

 

0.565 

 

0.523 0.261 

               

GNAE 0.599 0.382 

 

0.593 

 

0.556 0.345 
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VGNAE 0.562 0.335 

 

0.603 

 

0.542 0.265 

               

ARVGNA 0.623 0.388 

 

0.613 

 

0.585 0.36 

               

PubMed GAE 0.653 0.249 

 

0.674 

 

0.64 0.247 

               

VGAE 0.661 0.258 

 

0.674 

 

0.647 0.263 

               

ARGA 0.662 0.265 

 

0.681 

 

0.649 0.264 

               

ARVGA 0.662 0.255 

 

0.674 

 

0.647 0.264 

               

EVGAE 0.659 0.259 

 

0.673 

 

0.646 0.261 

               

GNAE 0.674 0.278 

 

0.687 

 

0.66 0.283 

               

VGNAE 0.674 0.275 

 

0.684 

 

0.661 0.284 

               

ARVGNA 0.677 0.283 

 

0.69 

 

0.664 0.29 

               

[23] YelpCHI Average 

               

0.587 

      

Popular 

               

0.54 

      

Random 

               

0.584 

      

Trial 

               

0.694 

      

PoisonT 

               

0.661 

      

MetaC 

               

0.864 

      

Movies Average 

               

0.392 

      

Popular 

               

0.384 

      

Random 

               

0.398 

      

Trial 

               

0.409 

      

PoisonT 

               

0.401 

      

MetaC 

               

0.828 

      

[59] ML-1M RandomAttack 

               

0.06 0.0055 

     

Bandwagon 

               

0.0595 0.0047 

     

AUSH 

               

0.0764 0.0049 

     

FedRecAttack 

               

0.1049 0.0221 

     

RAPU-G 

               

0.0922 0.0287 

     

GTA 

               

0.0824 0.0199 

     

PoisonRec 

               

0.0842 0.0274 

     

InfoAtk 

               

0.0958 0.0167 
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Douban RandomAttack 

               

0.0003 -0.0136 

     

Bandwagon 

               

0.0002 -0.0249 

     

AUSH 

               

0.0029 -0.0126 

     

FedRecAttack 

               

0.0044 -0.0145 

     

RAPU-G 

               

N/A N/A 

     

GTA 

               

0.0056 -0.0109 

     

PoisonRec 

               

0.006 -0.0113 

     

InfoAtk 

               

0.0113 -0.0088 

     

Epinions RandomAttack 

               

0.0182 -0.0154 

     

Bandwagon 

               

0.0298 -0.0201 

     

AUSH 

               

0.0236 -0.0136 

     

FedRecAttack 

               

0.0627 -0.0112 

     

RAPU-G 

               

– – 

     

GTA 

               

0.0232 -0.0154 

     

PoisonRec 

               

0.0292 -0.015 

     

InfoAtk 

               

0.0775 -0.0024 

     

[68] Edinburgh C-ILP 

     

0.509 

                

TRED 

     

0.577 

                

DeepTrip 

     

0.633 

                

GC-TripRec 

     

0.671 

                

Glasgow C-ILP 

     

0.634 

                

TRED 

     

0.633 

                

DeepTrip 

     

0.673 

                

GC-TripRec 

     

0.735 

                

Osaka C-ILP 

     

0.463 

                

TRED 

     

0.602 

                

DeepTrip 

     

0.617 

                

GC-TripRec 

     

0.682 

                

Toronto C-ILP 

     

0.58 

                

TRED 

     

0.668 

                

mailto:HR@
mailto:NDCG@


 

 

1022 Alqaysi  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 977–1041 

R
e
f. 

D
a

ta
set 

      Metrics 

 

Methods 

A
c
c
 

N
M

I 

P
u

r 

P
R

E
 

R
E

C
 

F
1
 

A
R

I 

F
P

R
 

A
U

C
 

W
C

S
S

 

C
H

I 

A
_

u
su

 

α
 

T
C

 

T
est A

E
 

H
R

@
 

N
D

C
G

@
 

A
tta

ck
 

ty
p

e 

M
A

E
 

R
M

S
E

 

M
S

E
 

M
R

R
 

DeepTrip 

     

0.69 

                

GC-TripRec 

     

0.748 

                

[65] 
MovieLens 1M FNCF 

               

0.6576 0.3802 

     

FNCF-Single 

               

0.6575 0.3821 

     

FNCF-Multi 

               

0.6571 0.3824 

     

MovieLens 

100K 

FNCF 

               

0.7158 0.4216 

     

FNCF-Single 

               

0.7137 0.4216 

     

FNCF-Multi 

               

0.7094 0.4188 

     

[25] ML10M-FX Without AT 

               

0.0228 0.0195 

     

RL-GEN 

               

0.0324 0.0222 

     

RandomAT 

               

0.023 0.0195 

     

TA-AT40 

               

0.0583 0.0195 

     

TA-AT70 

               

0.0854 0.0341 

     

TA-AT100 

               

0.052 0.0209 

     

PolicyNetwork 

               

0.0665 0.0258 

     

CopyAT-Masking 

               

0.0227 0.0195 

     

CopyAT-Length 

               

0.0434 0.0177 

     

CopyAttack 

               

0.1103 0.0425 

     

CopyAT+(Two) 

               

0.1123 0.0402 

     

CopyAT+(Joint) 

               

0.1313 0.0516 

     

ML20M-NF Without AT 

               

0.0043 0.0013 

     

RL-GEN 

               

0.039 0.0226 

     

RandomAT 

               

0.005 0.0015 

     

TA-AT40 

               

0.0405 0.0133 

     

TA-AT70 

               

0.0402 0.0132 

     

TA-AT100 

               

0.0006 0.0002 

     

PolicyNetwork 

               

N/A N/A 

     

CopyAT-Masking 

               

0.0045 0.0001 

     

CopyAT-Length 

               

0.0018 0.0005 

     

CopyAT 

               

0.124 0.0609 
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CopyAT+(Two) 

               

0.1273 0.0627 

     

CopyAT+(Joint) 

               

0.1332 0.0656 

     

[3] MovieLens-1M DAAKG-

Rdrop 

                 

WRMF-

SGD=0.929 

ItemAE=0.939 
GOAT=0.959 

Average=0.974 

BandWagon=0.974 

mixed attack=0.964 

    

DAAKG-S 

                 

WRMF-

SGD=0.919 

ItemAE=0.924 
GOAT=0.939 

Average=0.964 

BandWagon=0.964 

Mixed 

attack=0.959 

    

Book-

Crossing 

DAAKG-

Rdrop 

                 

WRMF-

SGD=0.938 

ItemAE=0.948 
GOAT=0.974 

Average=0.980 

BandWagon=0.990 

mixed attack=0.984 
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DAAKG-S 

                 

WRMF-

SGD=0.906 

ItemAE=0.918 
GOAT=0.959 

Average=0.9796Ba

ndWagon=0.979 

 mixed 

attack=0.964 

    

Nowplaying 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DAAKG-

Rdrop 

                 

WRMF-

SGD=0.952 

ItemAE=0.947 
GOAT=0.979 

Average=0.989 

BandWagon=0.989 

 mixed 

attack=0.989 

    

DAAKG-S 

                 

WRMF-

SGD=0.927 

ItemAE=0.936 
GOAT=0.959 

Average=0.974 

BandWagon=0.979 

 mixed 

attack=0.9799 

    

[70] Ciao APR 

   

0.0482 0.1432 

           

0.1104 

     

BUIR 

   

0.0536 0.1653 

           

0.1239 

     

IRGAN 

   

0.0437 0.1252 

           

0.1084 

     

CFGAN 

   

0.0547 0.1599 

           

0.1238 

     

FairGAN 

   

0.0556 0.1621 

           

0.1254 

     

StuGAN 

   

0.0574 0.1692 

           

0.1303 

     

LastFM APR 

   

0.1431 0.1936 

           

0.2132 
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BUIR 

   

0.1368 0.1978 

           

0.2249 

     

IRGAN 

   

0.1039 0.1624 

           

0.1713 

     

CFGAN 

   

0.1416 0.1925 

           

0.2146 

     

FairGAN 

   

0.1446 0.1969 

           

0.2235 

     

StuGAN 

   

0.1502 0.2032 

           

0.2308 

     

[69]  

 

 

CF 

    

0.2 

           

0.11 

     

HCF 

    

0.2 

           

0.13 

     

DNN-

BWMRB 

    

0.4 

           

0.28 

     

[5] MovieLen
s 

BPR 

   

0.1776 0.0742 

           

0.4416 

     

CDL 

   

0.1412 0.0726 

           

0.4375 

     

CVAE 

   

0.1532 0.0874 

           

0.4465 

     

CVAE-B 

   

0.1825 0.0915 

           

0.4502 

     

IRGAN 

   

0.1459 0.0753 

           

0.4391 

     

VAE-AR 

   

0.1964 0.0979 

           

0.4706 

     

CLVAE 

   

0.1981 0.0969 

           

0.4701 

     

CFGAN 

   

0.1785 0.0927 

           

0.4562 

     

MVAE 

   

0.1897 0.0942 

           

0.4643 

     

CAF 

   

0.2139 0.1069 

           

0.4856 

     

CiteULike BPR 

   

0.0885 0.0824 

           

0.3201 

     

CDL 

   

0.1008 0.1047 

           

0.3514 

     

CVAE 

   

0.1461 0.1291 

           

0.375 

     

CVAE-B 

   

0.1627 0.1482 

           

0.4021 

     

IRGAN 

   

0.1015 0.114 

           

0.3502 

     

VAE-AR 

   

0.1322 0.1172 

           

0.3628 

     

CLVAE 

   

0.1447 0.1256 

           

0.3724 

     

CFGAN 

   

0.1412 0.1026 

           

0.3583 

     

MVAE 

   

0.1546 0.1056 

           

0.362 

     

CAF 

   

0.1795 0.1649 

           

0.4587 

     

LastFM BPR 

   

0.2853 0.2614 

           

0.5249 

     

CDL 

   

0.3102 0.294 

           

0.5612 
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CVAE 

   

0.3361 0.3148 

           

0.6079 

     

CVAE-B 

   

0.3543 0.3274 

           

0.6312 

     

IRGAN 

   

0.3068 0.3002 

           

0.5776 

     

VAE-AR 

   

0.3615 0.3366 

           

0.6328 

     

CLVAE 

   

0.3671 0.3006 

           

0.6099 

     

CFGAN 

   

0.3226 0.3117 

           

0.6142 

     

MVAE 

   

0.3418 0.302 

           

0.6035 

     

CAF 

   

0.3804 0.3578 

           

0.6618 

     

[37] Chinese Feedrec 

   

0.54 0.68 0.3 

                

GACF 

   

0.58 0.69 0.32 

                

KEHB 

   

0.48 0.67 0.28 

                

MACR 

   

0.56 0.68 0.31 

                

Proposed 

   

0.61 0.72 0.33 

                

English Feedrec 

   

0.62 0.76 0.29 

                

GACF 

   

0.72 0.82 0.33 

                

KEHB 

   

0.62 0.75 0.29 

                

MACR 

   

0.69 0.8 0.32 

                

Proposed 

   

0.74 0.84 0.36 

                

Adressa Feedrec 

   

0.51 0.65 0.23 

                

GACF 

   

0.69 0.81 0.32 

                

KEHB 

   

0.51 0.64 0.24 

                

MACR 

   

0.58 0.79 0.31 

                

Proposed 

   

0.75 0.82 0.35 

                

Digg KEHB 

   

0.59 0.78 0.39 

                

Feedrec 

   

0.65 0.79 0.41 

                

MACR 

   

0.67 0.79 0.42 

                

GACF 

   

0.69 0.8 0.43 

                

Proposed 

   

0.72 0.83 0.44 

                

[38] Yelp 

(Pittsburgh) 

N2VSCDNNR 

   

0.0153 0.0818 

          

0.201 

      

Metapath2vec++ 

   

0.0095 0.0326 

          

0.1164 

      

BiNE 

   

0.0115 0.0399 

          

0.1352 
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CoFactor 

   

0.0144 0.0735 

          

0.1832 

      

Yelp 

(Madison) 

N2VSCDNNR 

   

0.0166 0.1042 

          

0.217 

      

Metapath2vec++ 

   

0.0101 0.0341 

          

0.1214 

      

BiNE 

   

0.0128 0.0542 

          

0.1512 

      

CoFactor 

   

0.016 0.0951 

          

0.2088 

      

Amazon N2VSCDNNR 

   

0.0093 0.0608 

          

0.124 

      

Metapath2vec++ 

   

0.0038 0.0257 

          

0.0643 

      

BiNE 

   

0.0059 0.0389 

          

0.0875 

      

CoFactor 

   

0.0087 0.0575 

          

0.1141 

      

MovieLens N2VSCDNNR 

   

0.2933 0.2865 

          

0.935 

      

Metapath2vec++ 

   

0.281 0.275 

          

0.8957 

      

BiNE 

   

0.1721 0.1236 

          

0.7108 

      

CoFactor 

   

0.281 0.275 

          

0.8957 

      

[1] Movielens 

100K 

NMF 

                  

0.7519 0.9499 

  

 

 

PMF 

                 

0.7286 0.9226  

  

BPMF 

                 

0.6976 0.888  

  

SVD++ 

                 

0.7109 0.9052  

  

ReDa 

                 

0.7153 0.9114  

  

HRSA 

                 

0.7051 0.8961  

  

 

 

HCRDa 

                 

0.609 0.7879  

  

MovieTweeti

ngs 10K 

NMF 

                 

1.2373 1.7247  

  

PMF 

                 

1.341 1.7526  

  

BPMF 

                 

1.2898 1.7105  

  

SVD++ 

                 

1.1397 1.5296  

  

ReDa 

                 

- -  

  

HRSA 

                 

2.2989 2.4629  

  

HCRDa 

                 

0.617 0.8588  

  

FilmTrust NMF 

                 

0.6476 0.8539  

  

PMF 

                 

0.6948 0.9226  

  

TrustMF 

                 

0.6342 0.828  
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SVD++ 

                 

0.6242 0.8049  

  

TrustSVD 

                 

0.6188 0.7943  

  

HRSA 

                 

0.6256 0.8103  

  

HCRDa 

                 

0.552 0.7225  

  

[4] 

 

CF(DSP) 

                  

0.7591 

   

 

MR(DSP) 

                  

0.7382 

   

 

CF(NN) 

                  

0.7274 

   

 

MR(NN) 

                  

0.7152 

   

[39] LDOS-

CoMoDa 

CBRS (SOM) 

                  

0.999 0.7653 2.087 

 

InCarMusic CBRS (SOM) 

                  

0.863 0.9873 2.083 

 

Apps in Frappe CBRS (SOM) 

                  

0.378 0.1862 1.077 

 

POI in STS CBRS (SOM) 

                  

0.709 0.8092 0.977 

 

Hotels in Trip 
Advisor 

CBRS (SLINK) 

                  

1.252 1.5847 1.512 

 

Drug Reviews CBRS (SOM) 

                  

0.654 0.7334 1.114 

 

Apple Store CBRS (SOM) 

                  

1.335 2.1928 1.376 

 

[43] 

 

CF KNN + 

baseline 

                   

0.8535 

  

 

Co-clustering 

(K-means) 

                   

0.9131 

  

 

NMF 

                   

0.8746 

  

 

slope-one 

                   

0.8864 

  

[19] 

 

TSTDAE 

   

0.0772 

           

0.173 0.1419 

     

 

 

NCF 

   

0.0551 

           

0.0295 0.0991 

     

 

LRML 

   

0.0363 

           

0.2031 0.0845 

     

 

JRL 

   

0.0428 

           

0.0911 0.1069 

     

 

CML 

   

0.0674 

           

0.0571 0.0614 

     

 

UserKNN 

   

0.0659 

           

0.1222 0.1208 

     

 

ItemKNN 

   

0.0685 

           

0.0899 0.102 

     

 

DDTCDR 

   

0.0666 

           

0.1101 0.1021 
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[40] 

 

LSTM 

   

0.282 0.75 

                 

 

CNN 

   

0.25 0.65 

                 

 

Auto-

Encoder 

   

0.27 0.66 

                 

 

GMDH 

   

0.35 0.81 

                 

[41] 

 

LSTM 0.88 

  

0.86 0.83 

                 

 

Attention 0.9 

  

0.88 0.85 

                 

 

Proposed 0.96 

  

0.94 0.94 

                 

[42] Movielens 
100 k 

GI-AAE 

   

0.48 0.09 0.151 

                

AVAE 

   

0.465 0.086 0.145 

                

CDAE 

   

0.46 0.082 0.139 

                

SLIM 

   

0.36 0.128 0.188 

                

LFM 

   

0.346 0.123 0.18 

                

UserCF 

   

0.26 0.1 0.144 

                

ItemCF 

   

0.29 0.11 0.159 

                

Movielens 
1M 

GI-AAE 

   

0.41 0.102 0.163 

                

AVAE 

   

0.38 0.082 0.134 

                

CDAE 

   

0.39 0.08 0.132 

                

SLIM 

   

0.35 0.09 0.143 

                

 LFM 

   

0.336 0.08 0.129 

                

UserCF 

   

0.27 0.07 0.111 

                

ItemCF 

   

0.3 0.06 0.1 

                

FilmTrust 

 

GI-AAE 

   

0.44 0.55 0.488 

                

AVAE 

   

0.43 0.46 0.444 

                

CDAE 

   

0.42 0.425 0.422 

                

SLIM 

   

0.4 0.52 0.452 

                

LFM 

   

0.39 0.51 0.442 

                

UserCF 

   

0.38 0.48 0.424 

                

ItemCF 

 

 

 

 

 

0.35 

 

0.44 

 

0.389 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[44] Last.Fm CKE 

    

0.344 

           

0.173 
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KGAT 

    

0.339 

           

0.160 

     

KGIN 

    

0.361 

           

0.176 

     

KGCL 

    

0.38 

           

0.194 

     

CSEKG 

    

0.395 

           

0.197 

     

Amazon-

book 

CKE 

    

0.173 

           

0.084 

     

KGAT 

    

0.163 

           

0.077 

     

KGIN 

    

0.195 

           

0.093 

     

KGCL 

    

0.187 

           

0.091 

     

CSEKG 

    

0.204 

           

0.098 

     

MovieLe

ns-1M 

CKE 

    

0.296 

           

0.207 

     

KGAT 

    

0.32 

           

0.221 

     

KGIN 

    

0.322 

           

0.239 

     

KGCL 

    

0.338 

           

0.233 

     

CSEKG 

    

0.357 

           

       0.252 

     

[71] Synthetic OCCUD 

        

0.855 

             

GCUD 

        

0.502 

             

NCUD 

        

0.464 

             

Movielens OCCUD 

        

0.85 

             

GCUD 

        

0.492 

             

NCUD 

        

0.449 

             

Amazon OCCUD 

        

0.84 

             

GCUD 

        

0.518 

             

NCUD 

        

0.469 

             

Yelp OCCUD 

        

0.628 

             

GCUD 

        

0.51 

             

NCUD 

        

0.509 

             

[32] ML-latest 
GRU4Rec 

    

0.0804 

           

0.0515 

    

0.1207 

Caser 

    

0.1068 

           

0.0751 

    

0.1288 

 

 

BERT4Rec 

    

0.0877 

           

0.0609 

    

0.1282 
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SVAE 

    

0.1203 

           

0.0889 

    

0.1484 

ACVAE 

    

0.1449 

           

0.1066 

    

0.1793 

FedFast 

    

0.0055 

           

0.0031 

    

0.0042 

FedRec++ 

    

0.0009 

           

0.0008 

    

0.0017 

FMSS 

    

0.081 

           

0.0511 

    

0.1224 

DistVAE 

    

0.1404 

           

0.1103 

    

0.1964 

ML-1M GRU4Rec 

    

0.1309 

           

0.1181 

    

0.221 

Caser 

    

0.1857 

           

0.1639 

    

0.2812 

BERT4Rec 

    

0.1543 

           

0.1293 

    

0.2302 

SVAE 

    

0.2073 

           

0.176 

    

0.2994 

ACVAE 

    

0.2438 

           

0.2122 

    

0.3484 

FedFast 

    

0.0026 

           

0.0054 

    

0.007 

FedRec++ 

    

0.0005 

           

0.0003 

    

0.0002 

FMSS 

    

0.1314 

           

0.1184 

    

0.2207 

DistVAE 

    

0.2454 

           

0.2171 

    

0.3619 

MTweeti

ng 

GRU4Rec 

    

0.155 

           

0.0751 

    

0.0732 

Caser 

    

0.2088 

           

0.1347 

    

0.1326 

BERT4Rec 

    

0.2744 

           

0.1442 

    

0.151 

SVAE 

    

0.2775 

           

0.1591 
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ARI=Adjusted Rand index, FPR=False Positive Rate, AUC=Area Under the Curve, α=Krippendorff’s Alpha-Reliability, C=clean, P= Poison, AE= Adversarial Examples, DSP=Data Sparsity, NN=nearest neighbor, 

MR =Mixed recommendation, A_usup=Accuracy unsupervised, CHI =Calinski‒Harabasz Index, HR@=Hit ratio, MAE= Mean absolute error, RMSE= Root Mean Squared Error, MSE= Mean Squared Error, TC=Test Clean, 

NN=Naive Bayes, LR= Logistic Regression, MAGO=Majority, MINO=Minority, OVL=Overall, RL‒GEN=RL‒Generative, attack=AT, TA=Target 
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6.7 Overview of Integrating Clustering, RSs, and Adversarial Learning 

Table III explains  that the document critically examines four studies addressing challenges in RSs. Study [32] proposes 

DistVAE, a distributed variational autoencoder, to mitigate data sparsity and gradient instability in sequential 

recommendations, although it lacks clarity in handling long-term dependencies and scalability. Study [72] introduces a 

three-phase framework for shilling attack detection, enhancing adaptability but overlooking real-world deployment 

challenges and evolving attack sophistication. Study [71], the OCCUD method leverages online clustering for corrupted 

user detection, offering real-time adaptability but ambiguously defining "corruption" and neglecting scalability for large 

platforms. Study [31] ClusterPoison demonstrated how clustering-enhanced poisoning attacks exploit RSs vulnerabilities 

with minimal fake users but ignore ethical implications and defensive countermeasures. Collectively, these studies 

highlight innovative architectures (e.g., DistVAE, OCCUD) and refined attack strategies but suffer from methodological 

gaps such as undefined evaluation metrics, scalability limitations, and insufficient ethical considerations. While advancing 

theoretical solutions, broader empirical validation, interdisciplinary integration (e.g., ethics, adversarial defense), and 

industrial-scale testing are essential to translate these advancements into robust, real-world RSs frameworks. 

 
TABLE III Overview of integrated clustering, RSs, and adversarial learning 

Ref. Authors Challenges Methods solved 

Challenges 

[32] L. Li et 

al. 

- The paper talks about some of the problems that come up when trying 

to use a distributed version of Variational Autoencoder for sequential 
recommendation. 

 - First, there is not much data on a single device in a distributed setup, 

which makes the gradients used to update the global model more 
random. 

 - Second, people who utilize recommendation systems have very 
different preferences, which might make things more random and cause 

global model updates to be less stable. 

 - Finally, many generative approaches still use GRU, which has trouble 
modelling long-term dependencies in user sequences. 

 

DistVAE  

[72] Fei 
Zhang 

et al. 

  - The article addresses a problem with RSs; they can be manipulated 
by introducing hand-crafted profiles to mislead them, even when only a 

small number of attacked profiles are present. 

-  It notes that within the recent methods of profile classification, many 
methods are performance oriented for certain attack scenarios, limiting 

the generalizability of these methods. 

 

The suggested shilling attack detection 
approach comprises three steps: 

classifying the type of attack, finding 

the suspicious profile, and finding the 
assault profile. 

 

[71] X. Dai 

et al. 

This paper investigated important challenges in the domain of corrupted 

user detection for Collaborative RSs. Corrupted behaviors have the 

potential to corrupt estimates of user preferences, which leads to invalid 
inferences regarding user relationships and poor recommendations. 

 

OCCUD  

[31] Y. 
Wang et 

al. 

- The article addresses the potential threat of manipulating many fake 
users (i.e., many millions of users) on recommendation platforms in 

large settings where it is physically impossible for attackers to go 

undetected. 
- The study underlines the need for better defenses against poisoning 

attacks, when the fake users are, theoretically, extremely limited as any 

one fake user can easily cause harm to the recommendation. 

The paper introduces a framework 
clustering-based scheme for generating 

fake users, which can be integrated into 

various poisoning attacks against deep 
learning-based RSs. 

 

7. CONCLUSION 

In this work, we present a comprehensive study on the intersection between RSs, clustering concepts, and adversarial 

learning. The topics were discussed from several areas on the basis of the motivations of the extracted research, the 

challenges faced by researchers, and the recommendations and future work that the researchers wanted to work on in the 

future. The results of this work revealed that 51 research studies within four reliable databases and taxonomy have four 

main categories: 1) those based on RSs and clustering; 2) those based on clustering and adversarial learning; 3) those based 

on RSs and adversarial learning; and 4) Integration based on RSs, clustering, and adversarial learning. In addition, an 

analysis of studies was explained based on cooperation between countries, the most frequently repeated keywords in the 

research, and other analysis methods specific to the research. Additionally, the intersection that occurs between the RSs 

and clustering concepts produces more accurate results. Since the clustering approach is based on data clustering, 

determining the correct number of clusters is essential. Therefore, recommendation systems are built based on the data 

provided, which must be accurate. The more correct the clusters are, the more accurate the recommendation and vice versa. 

As a result, we found the following: 

First, after counting the data used in each study, we found that the research focused on data related to RSs. Most of the 

research on the data used, or case studies, has focused on entertainment and commerce. Other areas, such as healthcare and 

finance, were neglected. This is considered a research gap that has not been addressed, summarized, or discussed, and 

because challenges and limitations exist in any field, this aspect has not been considered. 
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Second, the other point is that the process of building any model requires building a model that is relatively robust, flexible 
to changes, and generalizable. Relatively, the majority and large percentage of extracted research discussed and provided 
the highest accuracy in the field of research, forgetting an important thing: all research that is built must be flexible and 
robust. In the event that the model is exposed to an attack, it must be highly defensive in its results so that it does not suffer 
any defects or reveal any bias in the event that it is exposed to attacks. Here, the issue of integrating adversarial learning, 
RSs, and clustering concepts in building any model emerged, especially after the great development of internet networks. 
The issue of protecting information is very important, whether from tampering with it or influencing the results and changing 
the recommendations. Most of the topics covered in the research were related to topics of interest to users, as this 
manipulation could affect the quality or accuracy of the results. This could lead to the model being biased toward incorrect 
results, which are reflected back to the user. Ultimately, the recommendations provided by the model are designed to meet 
the user's expectations and do not lead to results that may dissatisfy users or even lead to poor outcomes. The field of 
adversarial learning is crucial for adding RSs and clustering elements to prevent any bias or misleading results from affecting 
the recommendations provided. In summary, this approach opens a new research area to develop models based on adversarial 
learning to be robust and provide accurate results. This is because when building a model, it is exposed to attacks, regardless 
of the nature of the attacks, but avoids any fluctuations in the results. This opens the door to discussion and future research. 
It is considered a guiding principle that adversarial learning must be considered in the model-building process to ensure that 
the model is robust and adaptable. 
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