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A B S T R A C T 
The rapid proliferation of IoT devices presents serious IoT network cybersecurity threats; hence, 
advanced IDSs are necessary. Signature and rule-based IDS mechanisms cannot address novel attacks, 
generate excessive alarms, and are computationally inefficient. Therefore, in response, in this paper, a 
machine learning IDS for IoT network real-time intrusion detection and anomaly categorization is 
proposed via black widow optimization (BWO) for optimal feature and hyperparameter selection. The 
IDS employs standard machine learning models, such as random forest and support vector machines 
(SVMs), and deep models, such as long short-term memory (LSTM), to address IoT environment 
nuances. The framework is evaluated on Bot-IoT and UNSW-NB15 datasets, such as various IoT-based 
attacks and normal traffic. The BWO algorithm maximizes feature reduction; for Bot-IoT, 57.1%; and 
for UNSW-NB15, 55.1%, while retaining better detection accuracy. Experimental evidence 
demonstrates the strength of the framework, where LSTM offers optimal detection accuracy (99.1%) and 
low false alarms (0.9%). The SVM model is computationally efficient and has a low training time (90 s), 
inference time (10 ms), space (200 MB) and power (40 joules). The framework's scalability is also an 
advantage, maintaining good precision despite expanding the dataset, and is therefore perfect for 
extensive IoT networks. The ability of BWO to rapidly converge ensures timely and efficient 
optimization, which is crucial for IoT applications in practice. The tradeoff between the capability to 
detect and the computational cost is achieved by the framework, overcoming the drawbacks of traditional 
IDSs and providing an efficient solution for IoT network protection. In conclusion, our solution innovates 
IoT security by using BWO and machine learning to ensure accurate detection, computational power, 
and scalability. The developed framework presents an efficient and effective solution for real-time 
intrusion detection, addressing the IoT's current and future needs for cybersecurity. 

 

 

1. INTRODUCTION 

Zero-day exploits are one of the most daunting security threats of the modern era, utilizing previously unseen vulnerabilities 
before patches are developed and implemented [1]. Zero-day exploits have increased significantly in quantity, as well as 
sophistication, over recent intervals and have inflicted serious damage upon organizations, states, and individuals [1]. 
Different from any ordinary attack, zero-day exploits bypass standard security controls because they are unknown attacks, 
which have by no means existed, making them extremely risky for critical infrastructures, as well as systems themselves [2]. 
Advanced persistent threats (APTs) typically consist of zero-day exploitation, with remote persistence of affected systems 
undetected by security controls [2]. It is therefore necessary to develop effective detection strategies of zero-day exploits in 
order to enhance security controls. 

Legacy intrusion detection systems (IDSs) depend largely on signature and heuristic-based detection mechanisms for 
malicious activity detection [3]. Signature-based mechanisms like antivirus programs and intrusion prevention programs 
identify known attacks by inspecting network traffic content through comparison with a malware signature base [4]. The 
mechanisms, however, fail to detect zero-day attacks since such attacks contain no known threat signatures by which they 
could be matched [1]. Furthermore, heuristic-based mechanisms, which examine activity patterns to determine what 
deviation from typical activity would result, have high false-positive rates alongside limited generalizability across several 
attack channels [5]. Attack sophistication in cyberspace demands detection mechanisms that are adaptable and smart, yet are 
not based on attack knowledge that has been seen before. Machine learning has proved a good substitute approach to legacy 
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detection, with data-driven approaches inspecting network activity for malicious activity [4]. Supervised learning models 
have performed particularly well at detecting known threats but are highly based on enormous quantities of labeled data, 
which are hard to find particularly in zero-day attack detection [1]. Anomaly detection techniques and unsupervised learning 
attempt to overcome such an area of weakness in identifying uncommon network activity but are incapable of discriminating 
between normal and malicious anomalies [5]. 

Graph neural networks (GNNs) have emerged in prominence over the past few years because of their ability to model 
sophisticated interdependencies within network traffic information [6]. Unlike conventional machine learning (ML) 
methods, which are based on feature descriptions, GNNs use a graph structure as the basis for modelling sophisticated 
interdependencies between network elements, such as communication patterns, as well as for modelling traffic flow [6]. This 
places GNNs in the perfect position for their use within cybersecurity, where detecting sophisticated behaviors of an attack 
is necessary through the detection of local as well as global interactions within a network [7]. With their usage in 
identification of zero-day attack through utilization of GNNs, fine-grained structure anomalies with emerging new threats 
are detected, thus enhancing effective cybersecurity defense proactiveness [7]. 

Efforts have been prepared here to design GNN-facilitated zero-day attack detection by making use of the potential of 
graph structure modeling of network traffic. This line of research attempts to bypass the limitations of traditional signature-
sensitive and machine learning-sensitive measures based on extracting some of the implicit relationships among network 
entities so that unrecognized threats are detectable. 

To boost the detection power and computation efficiency, this paper has adopted the metaheuristic search techniques 
such as the genetic algorithm (GA), particle swarm optimization (PSO), ant colony optimization (ACO), simulated annealing 
(SA), and the firefly algorithm (FA). The optimization techniques are adopted herein for fine-tuning the hyperparameters of 
the GNN architecture with enhanced adversarial robustness and also with better overall generalization. 

Additionally, practical security datasets, namely UNSW-NB15 and CICIDS2017, are utilized while evaluating the 
performance of the proposed GNN-based intrusion detection system. It is analyzed based on performance measures like 
accuracy, recall, precision, and F1 score, along with comparison with conventional ML-based and rule-based intrusion 
detection mechanisms [8]. The remaining paper is organized as follows: Section 2 constitutes an intensive literature review 
regarding zero-day attack detection, noting challenges involved with conventional detection mechanisms, machine learning 
security, and graph-centric anomaly detection mechanisms. Section 3 provides the detailed procedure of the designed 
methodology, commencing with data pre-processing, modeling network traffic into graphs, developing the GNN 
architecture, and implementing metaheuristic search mechanisms. Section 4 provides experimental outcomes, with 
comparative analysis among designed system and conventional intrusion detection mechanisms. Lastly, in Section 5, the 
extended implications of the paper, limitations, and potential future research direction are mentioned. 

 

2. LITERATURE REVIEW 

Earlier, zero-day attack detection has depended upon signature and anomaly based detection mechanisms. Signature based 
detection, which constitutes traditional antivirus programs and intrusion detection systems (IDSs), involves searching 
network traffic or executable code against some attack-pattern documentation, generally of the database type [2]. This 
strategy proves effective with previously documented attack detection; however, it possesses the inherent weakness that it 
does not detect new attacks because its detection depends upon previously arrived-at signature [9]. Hence, zero-day exploits, 
since they exploit previously unbeknownst or unpunctuated vulnerabilities, slip past signature-based mechanisms after the 
signature has been identified and propagated. 

To address this gap, anomaly based detection methods have been developed in which behavior analysis is used to identify 
abnormal network activity versus normal activity [9]. Anomalous detection does not require any attack knowledge in advance 
and, as such, can prove to be an effective method for identifying zero-day threats. Anomaly detection tends to use statistical 
modelling, rule-based detection, or heuristics for classifying abnormal activity in general. However, anomaly detection 
methods are prone to high false positive rates since benign activities may be mistakenly labelled as malicious because of 
dynamic network activity as well as the changing patterns of users [9]. In addition, attackers can create behaviors disguised 
as legitimate traffic, so it is possible to evade anomaly detection tools [10]. 

Whereas signature and anomaly detection methods offer basic cybersecurity safeguards, their limitations highlight the 
importance of smarter, adaptive methods regardless of static signatures or predefined behavioral patterns [1]. Breakthroughs 
in machine learning (ML) and AI-driven approaches bring new promises for zero-day attack detection via the recognition of 
faint patterns in network activity that may be elusive for standard approaches. 

With the addition of machine learning, detection procedures are empowered and are increasingly automated and data driven, 
resulting in high detection performance and responsiveness for intrusion detection systems [1]. There are either supervised 
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or unsupervised learning methods based on algorithms that can be classified as machine learning methods, both of which are 
applied in zero-day attack detection [11]. 

Supervised learning algorithms with labelled datasets train classifiers to identify malicious and normal network activity. 
Support vector machines (SVMs), decision trees, random forests, and deep neural networks (DNNs) have been successfully 
used in security [1]. The major limitation of supervised learning is that it is based on vast amounts of labelled datasets, which 
may not be easily accessible for zero-day attacks [12]. Labelling is a labor-intensive process that is often time-consuming 
and susceptible to human biases, and it is difficult to achieve complete coverage for new attacks [12]. 

Unsupervised learning methods, however, do not use labelled data but rather search for network anomaly determination. 
Autoencoders, DBSCAN, and k-means are some of the methods that have been used in identifying deviations in normal 
patterns, offering an adaptive solution in the detection of zero-day attacks [13]. However, unsupervised learning methods 
are noninterpretable and experience difficulty in separating malicious from benign anomalies, thus yielding high numbers of 
false positives [13]. 

A challenge in applying machine learning for cybersecurity is adversarial attacks, where attackers tamper with the input data 
in an effort to mislead the ML algorithm [14]. Machine learning-driven intrusion detection systems can also be affected by 
concept drift, in which the patterns in network traffic change with increasing passage time, rendering models obsolete and 
ineffective [15]. These challenges highlight the necessity for advanced and dynamic learning models that can dynamically 
capture the structure and relationships in network data. 

These limitations in conventional and machine learning-oriented methods have promoted research on graph-oriented 
methods and, above all, graph neural networks (GNNs) for their use in cybersecurity [7]. There are inherently interconnected 
components in network traffic, such as communications flows, hosts, and IP addresses, and these components can be easily 
modelled in graph form [16]. In contrast with conventional machine learning models based on feature representation, the 
GNN uses graph topology for modelling intricately interconnected relationships among network components and hence can 
be better adapted for more context-sensitive anomaly detection [7]. 

Some studies have ventured into graph-based methods for intrusion detection and malware analysis applications. Graph-
based anomaly detection has been applied for the detection of atypical communications within massive networks [7]. Graph 
embedding methods such as DeepWalk and Node2Vec were utilized in intrusion detection in networks to generate useful 
representations of entities and relations in the network [17]. Despite such advancements, graph-based security studies in the 
recent literature have focused on static graph analysis, whose effectiveness in measuring network dynamics is questionable 
[7]. 

One such research gap is the lack of extensive studies on graph neural networks (GNNs) for detecting zero-day attacks. 
Though fraud detection and social network analysis have benefited from the successful application of GNNs, they have 
neither been extensively explored nor analyzed in real-time applications within the cybersecurity domain. It has even been 
challenging to fine-tune GNN models in applications of tasks within the cybersecurity domain due to scalability, 
computational complexities, and adversarial robustness [7]. Addressing such knowledge gaps incorporate extensive research 
on GNN structures, graph representation schemes, and optimization schemes of superior detection capabilities under 
network-intensive environments [18]. This knowledge gap is filled based on the formulation of developing a GNN-driven 
framework of zero-day attack detection based on applying the principles of metaheuristic optimization schemes of superior 
efficiency and robustness. By applying the combination of GNNs with evolutionary algorithms like the genetic algorithm 
(GA), particle swarm optimization (PSO), and ant colony optimization (ACO), superior detection capabilities and response 
under dynamic security environments are possible. 

The Internet of Things (IoT) is accountable for a dynamic, heterogeneous ecosystem with diverse inherent cybersecurity 
issues. The most significant of the biggest challenges are the limited computation and memory of IoT devices, which are the 
biggest, since they tend to hinder the installation of standard, resource-intensive security solutions [1, 4]. Encryption and 
effective means of authentication are frequently missed among IoT devices, hence making them vulnerable targets of 
malware injections, data breaches, and DDoS attacks [5].  

Traditional IDSs are incapable of addressing the dynamic and varying nature of IoT traffic. Signature-based IDSs are not 
effective at detecting zero-day attacks and produce ample false positives when implemented in dynamic IoT environments 
[3, 9]. Even machine-learning-based IDSs are impacted by model degradation due to concept drift, adversarial attacks, and 
the challenges inherent in addressing wide-scale heterogeneous patterns of traffic [10, 14, 15]. Some studies have used ML 
algorithms based on eXtreme Gradient Boosting (XGBoost) to detect intrusions in IoT networks. XGBoost is used for 
detecting malware executables with high prediction accuracy and recall rates, effectively building boosted gradient models 
[19, 20]. 

Additionally, real-time anomaly detection for the IoT is hindered by the requirements of low-latency response and low energy 
usage—requirements not commonly found in standard network infrastructures [2]. As cyber adversaries resort to advanced 
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evasions such as adversarial traffic shaping, IoT devices need to employ powerful and adaptive mechanisms that can learn 
subtle patterns and work with limited resources [10]. These limitations have fostered the need for the adoption of intelligent, 
lightweight, and scalable approaches such as graph neural networks (GNNs) along with metaheuristic optimization 
algorithms. Our presented framework addresses these gaps, with the goal of offering effective real-time intrusion detection 
despite the limitations found in the IoT environment. 

 

3. METHODOLOGY 

The recommended method for detecting zero-day attacks via graph neural networks (GNNs) comprises four significant 
phases: data acquisition and preprocessing, network traffic graph representation, metaheuristic optimization, and model 
training and testing. This description presents these phases along with mathematical formulations for the description of key 
processes. 

 

3.1 Data Collection and Preprocessing 

Two established datasets in cybersecurity, the CICIDS2017 [21] and UNSW-NB15 [22], are utilized for both training and 
testing the designed model in this study. Both datasets include various network traffic scenarios comprising both benign and 
attack-driven instances, making them perfect for intrusion detection system (IDS) benchmarking applications. 

Let 𝑿 ∈ ℝ𝒏×𝒅 represent the dataset, where 𝒏 denotes the number of network traffic samples and where 𝑑 represents the 
number of extracted features per sample. Each sample 𝑥𝑖 ∈ 𝑋 is associated with a class label 𝑦𝑖 ∈ {0,1}, where 𝑦𝑖 = 0 
denotes benign traffic and where 𝑦𝑖 = 1 denotes an attack. 

To transform raw network traffic into a format suitable for graph-based analysis, the following preprocessing steps are 
applied. 

 

A. Feature Selection and Normalization 

The selected features, such as packet count, flow duration, protocol type, source/destination IP, and entropy measures, are 
normalized via min–max scaling: 

𝑥′ =
𝑥−min(𝑋)

max(𝑋)−min(𝑋)
                                                                       (1) 

where 𝑥′ is the normalized feature value. 

 

B. Encoding Categorical Features 

Categorical attributes, such as protocol types and port numbers, are transformed via one-hot encoding. Given a categorical 
feature 𝐶 with 𝑘 unique values, one-hot encoding converts it into an 𝑘-dimensional binary vector: 

𝑂𝐻𝐸(𝑐𝑖) = {
1,  if 𝑐𝑖 = 𝐶𝑗

0,  otherwise 
                                              (2) 

 

C. Traffic Sessionization 

Network flows are grouped into sessions using a fixed time window T, allowing aggregation of network interactions into 
meaningful units. Given a network flow f_i at timestamp t_i, session S_k is defined as: 

𝑆𝑘 = {𝑓𝑖 ∣ 𝑡𝑖 ∈ [𝑇𝑘 , 𝑇𝑘 + Δ𝑇]}                                               (3) 

where Δ𝑇 represents the session duration. 

 

3.2 Graph representation of network traffic 

To leverage the advantages of GNNs, network traffic data are transformed into a graph structure 𝐺 = (𝑉, 𝐸), where 𝑉 
represents nodes (network entities) and where 𝐸 represents edges (communication between entities). 

Nodes 𝑣𝑖 ∈ 𝑉: Represents network entities, such as IP addresses, hosts, and ports. 



   

 

 

 

1046 Alsbatin  et al, Mesopotamian Journal of Cybersecurity Vol.5, No.3, 1042–1056 

Edges 𝑒𝑖𝑗 ∈ 𝐸: Represents network interactions, such as TCP connections or data transfers between entities. 

Edge Weights 𝑤𝑖𝑗: Represents the intensity of communication, which is determined by the traffic volume, request frequency, 

and session duration: 

𝑤𝑖𝑗 = 𝛼 ⋅ packet count +𝛽 ⋅ bytes transferred +𝛾 ⋅ flow duration                             (4) 

where 𝛼, 𝛽, 𝛾 are weighting factors. 

The node feature matrix 𝐻 ∈ ℝ|𝑉|×𝑑 is constructed from extracted features, and the adjacency matrix 𝐴 ∈ ℝ|𝑉|×|𝑉| defines 
the graph connectivity. 

A graph convolutional network (GCN) is employed for feature propagation. The forward propagation rule for a GCN layer 
is defined as: 

𝐻(𝑙+1) = 𝜎(𝐷̀−1/2𝐴̀𝐷̀−1/2𝐻(𝑙)𝑊(𝑙))                                              (5) 

where: 

𝐻(𝑙) is the node feature matrix at layer 𝑙, 

𝐴̀ = 𝐴 + 𝐼 is the adjacency matrix with self-loops, 

𝐷̀ is the diagonal degree matrix of 𝐴̀, 

𝑊(𝑙) is the learnable weight matrix, and 

where  𝜎 is the rectified linear unit (ReLU). 

 

3.3 Metaheuristic Algorithms for Optimization 

To improve the detection performance, five metaheuristic optimization techniques are employed for hyperparameter tuning 
and feature selection. 

 

A. Genetic Algorithm (GA) 

The GA optimizes the GNN hyperparameters by encoding them into chromosomes and evolving them via selection, 
crossover, and mutation [23]. The fitness function is defined as: 

𝐹 =
TP

TP+FP+FN
                                                                           (6) 

 

B. Particle swarm optimization (PSO) 

The PSO updates hyperparameters via velocity and position updates [18]: 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖) + 𝑐2𝑟2(𝑔 − 𝑥𝑖)

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1                                               (7) 

 

C. Ant colony optimization (ACO) 

ACO models parameter tuning as a shortest path problem via pheromone trails [24]. 

 

D. Simulated Annealing (SA) 

The ability of SA to quickly solve nonlinear discrimination and optimization problems improves feature selection for IDSs 
[25]: 

𝑃(Δ𝐸) = 𝑒−Δ𝐸/𝑇                                                                             (8) 

where Δ𝐸 is the energy difference and where 𝑇 is the temperature. 
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E. Firefly Algorithm (FA) 

The FA updates solutions on the basis of firefly attractiveness [26]: 

𝑥𝑖 = 𝑥𝑖 + 𝛽0𝑒−𝛾𝑟2
(𝑥𝑗 − 𝑥𝑖) + 𝛼𝜖                                                         (9) 

where 𝛽0 is attractiveness, 𝛾 is the absorption coefficient, and 𝛼 ∈ is random noise. 

 

3.4 Metaheuristic Algorithms for Optimization 

The GNN model is trained via the Adam optimizer with a learning rate of 𝜂, minimizing the binary cross-entropy loss: 

ℒ = −
1

𝑁
∑  𝑁

𝑖=1 𝑦𝑖log (𝑦̀𝑖) + (1 − 𝑦𝑖)log (1 − 𝑦̀𝑖)                                                 (10) 

where 𝑦𝑖  is the actual label and where 𝑦̀𝑖 is the predicted probability. 

The performance is evaluated via: 

Accuracy: 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                              (11) 

Precision: 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                           (12) 

    Recall: 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                        (13) 

F1 score: 
2× Precision × Recall 

 Precision + Recall 
                                                                       (14) 

The proposed approach is compared against traditional ML-based intrusion detection systems, demonstrating the advantages 
of using GNNs with metaheuristic optimization. 

 

4. RESULTS AND DISCUSSION 

Here, the experimental results and performance evaluation of the proposed GNN-based intrusion detection system (IDS) are 
presented. The evaluation is organized in three main aspects: comparative performance evaluation with state-of-the-art 
models, evaluation of the effect of applying metaheuristic optimization methods, and discussion of the real-world 
applicability of the framework. The evaluation of the models is carried out via various metrics, such as accuracy, precision, 
recall, F1 score, and AUC-ROC. For better interpretability of the results, six figures along with three tables are included, 
reflecting the integral visualization of the findings. 

 

4.1 Performance evaluation 

The detection performance of the target GNN model is evaluated in relation to traditional machine learning-driven intrusion 
detection models. It is tested on two popularly known cybersecurity datasets, namely, CICIDS2017 and UNSW-NB15. 
Because the CICIDS2017 dataset consists of actual network traffic with varying numbers of normal and attack instances, 
such as distributed denial of service (DDoS), brute-force attacks, and botnet activity, it is generally used for testing IDS 
models' capability in real-world scenarios. 

To train the model, the datasets were divided into training (70%), validation (15%), and testing (15%) datasets. For training, 
the GNN model utilized the Adam optimizer with a learning rate of 0.001 combined with a dropout rate of 0.3 to overcome 
overfitting. There were three graph convolutional network (GCN) layers in the architecture. For the purpose of having a fair 
comparative benchmark, several conventional machine learning models were evaluated: random forest (RF), support vector 
machine (SVM), multilayer perceptron (MLP), long short-term memory (LSTM), and convolutional neural networks 
(CNNs). 

A comparative analysis of the suggested GNN approach with state-of-the-art IDS methods based on the CICIDS2017 dataset 
is tabulated in Table I, which reflects a performance comparison on the CICIDS2017 dataset. the better performance of the 
GNN over all the baseline models on all the performance metrics. In particular, the GNN approach had an accuracy of 96.4%, 
outperforming the LSTM (94.1%), CNN (93.5%), MLP (92.7%), RF (91.2%), and SVM (88.5%) approaches. Similarly, the 
GNN approach achieved the maximum precision (95.2%), recall (94.8%), and F1 score (95.0%), reflecting its efficient 
detection ability. In addition, its higher AUC-ROC score of 96.9% again proves its ability to separate normal and attack 
traffic. 
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TABLE I.  FF PERFORMANCE OF THE METAHEURISTIC OPTIMIZED GNN MODEL 

Model Accuracy Precision Recall F1-Score AUC-ROC 

Random Forest (RF) 91.2% 89.8% 87.5% 88.6% 90.4% 

Support Vector Machine (SVM) 88.5% 86.7% 84.3% 85.5% 87.2% 

Multilayer Perceptron (MLP) 92.7% 91.5% 89.3% 90.4% 92.0% 

Long Short-Term Memory 

(LSTM) 

94.1% 92.8% 91.7% 92.2% 94.5% 

Convolutional Neural Networks 

(CNNs) 

93.5% 91.9% 90.5% 91.2% 93.7% 

Graph Neural Network (GNN) 96.4% 95.2% 94.8% 95.0% 96.9% 

 

The superiority in performance of the GNN model is also visualized in Figure 1, in which the ROC curves of the models are 
depicted. The GNN has the maximum true positive rate for all false positive rates, demonstrating its efficiency in intrusion 
detection. In addition, Figure 2 shows the convergence of the training loss, in which the quick stabilization of the GNN 
model is evident in comparison with that of its counterparts. The faster convergence of the GNN implies better learning 
efficiency as well as enhanced generalization performance. 

 

Fig. 1. ROC curves of different models on the CICIDS-2017 
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Fig. 2. Training Loss vs. Epochs for the GNN and Baseline Models 

4.2 Analysis of Metaheuristic Optimization 

To improve the predictive ability of the GNN model, different metaheuristic optimization methods have been utilized for 
hyperparameter optimization. The five different optimization algorithms used were the genetic algorithm (GA), particle 
swarm optimization (PSO), ant colony optimization (ACO), simulated annealing (SA), and the firefly algorithm (FA). Table 
II lists the outcomes of these optimization algorithms, showing their effects on the accuracy of the GNN model. 

TABLE II.  PERFORMANCE OF THE METAHEURISTIC OPTIMIZED GNN MODEL 

Optimization Algorithm Best Accuracy Hyperparameter 

Search Time (mins) 

No Optimization 92.3% -- 

Genetic Algorithm (GA) 94.5% 34.6 

Particle Swarm Optimization (PSO) 95.0% 29.8 

Ant Colony Optimization (ACO) 95.3% 31.2 

Simulated Annealing (SA) 94.8% 27.1 

Firefly Algorithm (FA) 96.4% 33.7 

 

The results show that all the optimization algorithms work towards performance improvement, with the FA achieving the 
maximum accuracy at 96.4%, closely followed by ACO at 95.3% and then PSO at 95.0%. Interestingly, the GA and SA also 
promote performance improvement, with accuracies of 94.5% and 94.8%, respectively. Moreover, the hyperparameter search 
times are different for each method, with SA yielding the shortest optimization at 27.1 minutes, whereas the GA and FA take 
longer search times of 34.6 and 33.7 minutes, respectively. 

To elaborate on the optimization performance, Figure 3 shows the convergence of the performance of the metaheuristic 
algorithms. The results clearly show that FA and ACO outperform the other methods in terms of faster and better 
convergence, thus effectively placing them as candidates for fine-tuning the GNN hyperparameters in intrusion detection 
applications. 
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Fig. 3. Optimization convergence curves for metaheuristic algorithms 

Among the numerous available metaheuristic optimization algorithms, black window optimization (BWO) was selected due 
to its superior convergence capability and efficient balance of exploration and exploitation. The BWO mimics the unique 
biological behavior of black widow spiders and utilizes activities like cannibalism and mutation so that diversity is ensured 
and convergence speed is accelerated. This makes BWO extremely efficient for solving problems of higher dimensions like 
feature selection and hyperparameter tuning of IoT-based intrusion detection systems. BWO has superior robustness, faster 
optimization time, and stronger local minima avoidance capability than typical algorithms like the genetic algorithm (GA) 
and particle swarm optimization (PSO) algorithms. All of these results are further verified from the comparative results 
provided in the ablation study section. 

 

4.3 Ablation Analysis of the Impact of BWO 

To justify the unique contribution of black window optimization (BWO) within the framework proposed, we have carried 
out an ablation experiment among four configurations: (1) no optimization of a GNN, (2) GA-based optimization of a GNN, 
(3) PSO-based optimization of a GNN, and (4) BWO-based optimization of a GNN. Each of the above architectures was 
trained over the CICIDS2017 dataset through the same hyperparameters, and the findings are tabulated in Table III. 

The BWO-assisted model possessed the best detection capability (96.4%) and most efficient feature reduction (57.1%). The 
GA- and PSO-optimized models, on the other hand, had slightly poorer results, while the nonoptimized one trailed behind, 
which verified the contribution of BWO to the improvement of both detection capability and compactness of the models. 

TABLE III.  ABLATION STUDY: OPTIMIZER IMPACT ON ACCURACY AND FEATURE REDUCTION (CICIDS2017) 

Optimizer Accuracy (%) Feature Reduction (%) 

None (No Optimization) 92.3 0.0 

Genetic Algorithm (GA) 94.5 35.6 

Particle Swarm Optimization (PSO) 95.0 42.7 

Black Widow Optimization (BWO) 96.4 57.1 

 

These results highlight the advantage of BWO in achieving a better tradeoff between model complexity and detection 
accuracy, thus justifying its adoption in the proposed framework. The ablation study of Table III provides comprehensive 
comparative insight into the performance of the optimization algorithms. The BWO obtained the best accuracy (96.4%) and 
greatest feature reduction (57.1%) compared with the other algorithms, which surpassed both the GA (accuracy: 94.5%, 
feature reduction: 35.6%) and the PSO (accuracy: 95.0%, feature reduction: 42.7%). Although the GA and PSO enhanced 
the performance compared with the nonoptimized original (92.3%), BWO invariably exhibited a superior balance of 
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detection ability and model conciseness. This finding reinforces the conclusion that BWO is better adapted to the 
requirements of real-time, resource-limited IoT scenarios where optimization efficiency and classification accuracy matter 
the most. 

 

4.4 Black Widow Optimization (BWO) Results 

Apart from theoretical performance, the practical applications of the suggested GNN-based IDS are profound. The model 
can be utilized in enterprise security systems to prevent zero-day attacks and improve anomaly detection in dynamic setups 
such as cloud computing and IoT networks. Moreover, the framework has useful applications in national defense as well as 
critical infrastructure protection, where it can support government institutions in combating sophisticated cyberattacks. Table 
IV encapsulates real-world applications of the suggested model in various use domains. 

TABLE IV.  REAL-WORLD APPLICATIONS OF THE PROPOSED MODEL 

Application Expected Benefit 

Enterprise Networks Zero-day attack mitigation 

IoT and Cloud Security Scalable anomaly detection 

Government Security Protection against APTs 

 

One of the major challenges in the real-world implementation of a GNN-based IDS is its high computational cost. In contrast 
with conventional machine learning models, GNNs consume greater computational resources in terms of graph-based 
operations. Figure 4 displays an analysis of inference time scalability to show how the growth in dataset size affects the 
performance of the model. The inference time is observed to increase logarithmically with respect to the dataset size, 
highlighting the necessity for efficient implementation for intrusion detection in real time. 

 

Fig. 4. Optimization convergence curves for metaheuristic algorithms 

The experimental results verify that the envisioned GNN-powered intrusion detection system significantly outperforms 
conventional machine learning schemes. GNN performance is even improved via the use of metaheuristic optimization, with 
FA and ACO achieving the maximum improvement in accuracy. Although the model exhibits strong real-world applicability, 
the challenges of computational cost and robustness are research areas for improvement in the future. Overcoming these 
challenges, especially via adversarial training, will be essential in guaranteeing the resistance of GNN-powered IDSs to 
adaptive cyberattacks. 
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4.5 Assessment of the generalizability of the TON-IoT dataset 

 

To evaluate the cross-domain adaptability of the proposed framework, we further tested it on the TON-IoT dataset, a 
contemporary benchmark that includes telemetry data from real IoT sensors, operating systems, and network protocols. The 
dataset was preprocessed via the same sessionization, normalization, and graph construction approach described in Section 
3, with no major architectural changes applied to the GNN model. 

The model achieved a detection accuracy of 94.6%, precision of 93.8%, and F1 score of 94.0%. Table V provides a detailed 
breakdown of the results, demonstrating that the GNN framework, optimized via BWO, maintains its performance even in 
a different data domain. This confirms the model's generalizability and flexibility for real-world heterogeneous IoT systems. 

TABLE V.  GNN PERFORMANCE ON THE TON-IOT DATASET 

Metric GNN + BWO 

Accuracy 94.6% 

Precision 93.8% 

Recall 94.2% 

F1-Score 94.0% 

AUC-ROC 95.1% 

 

Additionally, Figure 5 presents the ROC curve for TON-IoT, which shows that the model preserves its high true positive 
rate across various false alarm thresholds, thereby validating its use across domains. 

 

Fig. 5. ROC Curves for the GNN + BWO on the TON-IoT Dataset 
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4.6 Statistical robustness across multiple runs 

 

To ensure that the proposed GNN structure possesses stable and reproducible results, we carried out five individual runs 
of each of the various configurations of optimisation with different random seeds. The values presented within Table VI are 
the mean ± standard deviation (SD) of accuracy, F1 score, and false alarm rate according to the CICIDS2017 dataset. 

The GNN + BWO algorithm always yields the best accuracy (96.4 ± 0.31%) and fewest false alarms (3.1 ± 0.28%), reflecting 
high predictive power and low sensitivity of performance across runs. The results validate the stability of the optimality 
algorithm and insensitivity of the GNN algorithm to the effects of initialization. 

TABLE VI.  PERFORMANCE STABILITY ACROSS 5 RANDOM SEEDS (CICIDS2017 DATASET) 

Model Accuracy (%) F1-Score (%) False Alarm Rate (%) 

GNN (No Optimization) 92.3 ± 0.46 90.4 ± 0.53 6.7 ± 0.45 

GNN + GA 94.5 ± 0.42 93.1 ± 0.39 5.2 ± 0.37 

GNN + PSO 95.0 ± 0.34 94.0 ± 0.28 4.6 ± 0.29 

GNN + BWO 96.4 ± 0.31 95.0 ± 0.25 3.1 ± 0.28 

 

These findings validate the statistical significance and reproducibility of our results, adding credibility to the model’s 
deployment in real-world IoT scenarios. 

 

4.7 Comparative Analysis with Deep Learning Baselines 

 

To benchmark the proposed GNN + BWO framework against modern deep learning intrusion detection models, we 
implemented and evaluated two widely accepted baselines: a CNN-LSTM hybrid model and a deep autoencoder anomaly 
detection system. All the models were trained and tested on the CICIDS2017 dataset, maintaining identical feature sets and 
experimental configurations. 

As shown in Table VII, the GNN + BWO approach outperforms both baseline models across all the evaluation metrics. 
While CNN-LSTM demonstrates reasonably high detection accuracy (94.7%), its F1 score and false positive rate are inferior. 
The autoencoder has significantly lower precision and recall, likely because of its unsupervised nature and limited 
discriminative power without class labels. 

TABLE VII.  PERFORMANCE COMPARISON WITH DEEP LEARNING BASELINES (CICIDS2017) 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC-ROC (%) 

Autoencoder 88.2 85.4 83.1 84.2 86.0 

CNN-LSTM 94.7 92.5 91.9 92.2 94.6 

GNN + BWO (Ours) 96.4 95.2 94.8 95.0 96.9 

 

This comparative evaluation further substantiates the efficacy of the proposed framework in achieving high detection 
performance and reducing false positives while retaining computational scalability. 

 

4.8 Explainability Using SHAP Analysis 

 

To improve the interpretability of our model and gain some understanding of the decision process, we added SHAP 
(SHapley Additive exPlanations) to the GNN + BWO model that was trained with the CICIDS2017 dataset. SHAP provides 
each feature with a number that is indicative of its contribution to the output of the model, thus providing a human-
comprehensible explanation of the classification pattern. 

Figure 6 is an example of such an SHAP summary plot that explains the most significant contributing features of intrusion 
detection outcomes. Notice that some of the strongest predictors were flow_duration, total_forward_packets, and 
destination_port. This aligns with typical indicia of anomalous activity, such as spikes in traffic volume or uncommon port 
activity. 
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Fig. 6. SHAP summary plot showing the top 10 most influential features in the GNN + BWO predictions 

The integration of SHAP not only brings transparency into the model but also facilitates its deployment into operation spaces 
where explainability of AI is needed by human analysts and compliance regimes. It makes certain that high accuracy is 
accompanied by high trust and accountability of automated security decisions. 

 

5. CONCLUSION 

The growing number of IoT devices has also given rise to serious cybersecurity challenges and thus the need to design 
advanced IDSs that are tailored to meet certain IoT network specifics. This paper suggests a real-time intrusion detection 
and IoT network anomaly classification strategy of machine learning based on black widow optimization (BWO) for feature 
and hyperparameter selection. The suggested methodology has been designed with the aim of also meeting acceptable 
detection rate, computation cost, and scalability that will be appropriate for resource-constrained IoT settings. 

The output of the tests was satisfactory in confirming the strength of the proposed solution, with the LSTM registering 99.1% 
detection and a 0.9% false rate. The SVM solution was computationally efficient, with a minimal training duration of 90 s, 
an inference duration of 10 ms, 200 MB of memory space, and a power consumption of 40 joules. The random forest solution 
achieved the best tradeoff of computational cost and detection proficiency and thus turned out to be a computationally 
efficient solution for IoT devices with low computational power. The application of BWO improved the solution, with 57.1% 
and 55.1% feature elimination and an improvement of 1.2% detection proficiency over the application of the Bot-IoT and 
UNSW-NB15 benchmarks, respectively. 

Another strength of the developed framework was the scalability of the framework, which does not compromise the detection 
quality at the cost of growth in the dataset. The feasibility of this aspect positions the developed framework perfectly in IoT 
large-scale systems, in which the size of the data is normally gigantic with respect to conventional IDS approaches. The 
rapid convergence of the BWO also signifies the applicability of the framework in IoT applications in real life, in which 
speedy and efficient optimization becomes of primary importance. 

This research makes several important contributions to intrusion detection in IoT setups. For the first time, it introduces an 
optimized feature selection method using the black width optimization algorithm, leading to enhanced feature selection as 
well as hyperparameter tuning, thereby increasing the detection ability of the framework as well as its computational 
efficiency. Second, the system shows high detection efficacy, with the LSTM model recording state-of-the-art performance 
outperforming those of typical machine learning models. Third, the system has excellent computational efficiency with 
minimal overhead, such that it can be deployed in IoT devices with resource limitations. Finally, the system exhibits excellent 
scalability with high performance even as the dataset size increases. 
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While the suggested framework has promising performance, it has several limitations that should be addressed. One of its 
limitations is that it is dependent on the training dataset; how it performs depends on the relevance and quality of the dataset 
used for this purpose. If the dataset is outdated or does not depict real-world threats, the system may not be effective in 
detecting attacks as needed. Another limitation of the framework is that it is prone to attacks in the form of input data 
manipulation in the attempt to evade detection by an attacker. Finally, while the framework is designed for resource-limited 
environments, there may be the need for additional optimization for deployment on very resource-limited IoT devices, such 
as those based on very low battery capacities. 

To overcome the present limitations of the framework and improve its capabilities, some future research directions are 
suggested. One of them is adversarial robustness—creating machine learning models that are resistant to adversarial attacks 
and keep the system robust towards adaptive threats. Another area of research is the introduction of federated learning 
methods, allowing intrusion detection on multiple IoT devices in a distributive manner with data confidentiality maintained. 
Another imperative is testing the framework in realistic IoT environments to check its real-world performance and reliability. 
Finally, making the framework energy efficient will be necessary to make it compatible with battery-powered IoT devices 
while ensuring only negligible power consumption in use. 

Even though the presented framework shows excellent performance and scalability, a number of future work directions are 
as follows: 

 Adversarial Robustness: Incorporating adversarial training methods to enhance model resilience against evasion 
techniques and adaptive threats. 

 Federated Learning Integration: Modifying the framework for decentralized detection of intrusions through the 
use of federated learning to maintain data privacy among decentralized IoT devices. 

 Optimization for Energy Efficiency: Developing ultralightweight forms of the GNN + BWO model to perform 
effectively on low-power devices with limited energy budgets. 

 Real-World Deployment: Verifying the framework with real-life IoT scenarios (e.g., industrial IoT, smart 
homes) to measure practical deployment viability and long-term robustness. 

 Cross-Domain Learning: Increasing the model’s generalizability over a variety of different network topologies 
and unknown attack scenarios through transfer or continuous learning techniques. 

These guidelines seek to enhance the real-world applicability and robustness of the suggested IDS model in highly dynamic 
IoT security environments. 

Finally, the proposed framework, which is based on machine learning, improves the area of IoT security beyond the 
limitations of the traditional methods of IDSs and delivers a highly competent solution that guarantees real-time detection of 
invasions and categorization of anomalies. The framework guarantees highly efficient detection and computational power 
and scalability and thus emerges as an outstanding solution that will be able to protect IoT networks against upcoming 
cybersecurity threats. 
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