Distributed Denial of Service Attack Detection in IoT Networks using Deep Learning and Feature Fusion: A Review
Main Article Content
Abstract
The explosive growth of Internet of Things (IoT) devices has led to escalating threats from distributed denial of service (DDoS) attacks. Moreover, the scale and heterogeneity of IoT environments pose unique security challenges, and intelligent solutions tailored for the IoT are needed to defend critical infrastructure. The deep learning technique shows great promise because automatic feature learning capabilities are well suited for the complex and high-dimensional data of IoT systems. Additionally, feature fusion approaches have gained traction in enhancing the performance of deep learning models by combining complementary feature sets extracted from multiple data sources. This paper aims to provide a comprehensive literature review focused specifically on deep learning techniques and feature fusion for DDoS attack detection in IoT networks. Studies employing diverse deep learning models and feature fusion techniques are analysed, highlighting key trends and developments in this crucial domain. This review provides several significant contributions, including an overview of various types of DDoS attacks, a comparison of existing surveys, and a thorough examination of recent applications of deep learning and feature fusion for detecting DDoS attacks in IoT networks. Importantly, it highlights the current challenges and limitations of these deep learning techniques based on the literature surveyed. This review concludes by suggesting promising areas for further research to enhance deep learning security solutions, which are specifically tailored to safeguarding the fast-growing IoT infrastructure against DDoS attacks.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
L. S. Vailshery, “Internet of Things (IoT) and non-IoT active device Connections worldwide from 2010 to 2025,” Statista. 2020. [Online]. Available: https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/#:~:text=The total installed base of,that are expected in 2021.
K.-H. Le, M.-H. Nguyen, T.-D. Tran, and N.-D. Tran, “IMIDS: An Intelligent Intrusion Detection System against Cyber Threats in IoT,” Electronics (Basel), vol. 11, no. 4, p. 524, 2022, doi: 10.3390/electronics11040524.
P. Kumari and A. K. Jain, “A comprehensive study of DDoS attacks over IoT network and their countermeasures,” ComputSecur, vol. 127, p. 103096, 2023, doi: 10.1016/J.COSE.2023.103096.
X.-H. Nguyen and K.-H. Le, “Robust detection of unknown DoS/DDoS attacks in IoT networks using a hybrid learning model,” Internet of Things, vol. 23, p. 100851, Oct. 2023, doi: 10.1016/j.iot.2023.100851.
Y. Zhao and A. Kuerban, “MDABP: A Novel Approach to Detect Cross-Architecture IoT Malware Based on PaaS,” Sensors, vol. 23, no. 6, p. 3060, 2023, doi: 10.3390/s23063060.
G. Polatet al., “Security Issues in IoT: Challenges and Countermeasures,” ISACA. 2019. [Online]. Available: https://www.isaca.org/resources/isaca-journal/issues/2019/volume-1/security-issues-in-iot-challenges-and-countermeasures
R. Ahmad and I. Alsmadi, “Machine learning approaches to IoT security: A systematic literature review,” Internet of Things, vol. 14, p. 100365, 2021, doi: 10.1016/j.iot.2021.100365.
C. Liang et al., “Intrusion Detection System for the Internet of Things Based on Blockchain and Multi-Agent Systems,” Electronics (Basel), vol. 9, no. 7, p. 1120, 2020, doi: 10.3390/electronics9071120.
Statista Research Department, “Selling price of malware and DDoS attack services on the darknet 2023,” Statista. 2023. [Online]. Available: https://www.statista.com/statistics/1350155/selling-price-malware-ddos-attacks-dark-web/
S. Tsimenidis, T. Lagkas, and K. Rantos, “Deep Learning in IoT Intrusion Detection,” Journal of Network and Systems Management, vol. 30, no. 1, pp. 1–40, Jan. 2022, doi: 10.1007/S10922-021-09621-9/FIGURES/13.
L. Aversano, M. L. Bernardi, M. Cimitile, and R. Pecori, “A systematic review on Deep Learning approaches for IoT security,” Comput Sci Rev, vol. 40, p. 100389, May 2021, doi: 10.1016/J.COSREV.2021.100389.
M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and M. Guizani, “A Survey of Machine and Deep Learning Methods for Internet of Things (IoT) Security,” IEEE Communications Surveys and Tutorials, vol. 22, no. 3, pp. 1646–1685, Jul. 2020, doi: 10.1109/COMST.2020.2988293.
M. A. Alsoufiet al., “Anomaly-Based Intrusion Detection Systems in IoT Using Deep Learning: A Systematic Literature Review,” Applied Sciences, vol. 11, no. 18, p. 8383, Sep. 2021, doi: 10.3390/app11188383.
M. Mittal, K. Kumar, and S. Behal, “Deep learning approaches for detecting DDoS attacks: a systematic review,” Soft comput, vol. 27, no. 18, pp. 13039–13075, Sep. 2022, doi: 10.1007/s00500-021-06608-1.
U. Inayat, M. F. Zia, S. Mahmood, H. M. Khalid, and M. Benbouzid, “Learning-Based Methods for Cyber Attacks Detection in IoT Systems: A Survey on Methods, Analysis, and Future Prospects,” Electronics (Basel), vol. 11, no. 9, p. 1502, May 2022, doi: 10.3390/electronics11091502.
A. Alotaibi and A. Barnawi, “Securing massive IoT in 6G: Recent solutions, architectures, future directions,” Internet of Things, vol. 22, p. 100715, Jul. 2023, doi: 10.1016/j.iot.2023.100715.
S. Bharati and P. Podder, “Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions,” Security and Communication Networks, vol. 2022, pp. 1–41, Aug. 2022, doi: 10.1155/2022/8951961.
A. Aldhaheri, F. Alwahedi, M. A. Ferrag, and A. Battah, “Deep learning for cyber threat detection in IoT networks: A review,” Internet of Things and Cyber-Physical Systems, vol. 4, pp. 110–128, 2024, doi: 10.1016/j.iotcps.2023.09.003.
A. Firdaus, M. F. A. Razak, A. Feizollah, I. A. T. Hashem, M. Hazim, and N. B. Anuar, “The rise of ‘blockchain’: bibliometric analysis of blockchain study,” Scientometrics, vol. 120, no. 3, pp. 1289–1331, Sep. 2019, doi: 10.1007/s11192-019-03170-4.
A. Cheema, M. Tariq, A. Hafiz, M. M. Khan, F. Ahmad, and M. Anwar, “Prevention Techniques against Distributed Denial of Service Attacks in Heterogeneous Networks: A Systematic Review,” Security and Communication Networks, vol. 2022, pp. 1–15, May 2022, doi: 10.1155/2022/8379532.
M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of service attacks and its defenses in IoT: a survey,” J Supercomput, vol. 76, no. 7, pp. 5320–5363, Jul. 2020, doi: 10.1007/s11227-019-02945-z.
M. Najafimehr, S. Zarifzadeh, and S. Mostafavi, “DDoS attacks and machine‐learning‐based detection methods: A survey and taxonomy,” Engineering Reports, May 2023, doi: 10.1002/eng2.12697.
F. S. Dantas Silva, E. Silva, E. P. Neto, M. Lemos, A. J. Venancio Neto, and F. Esposito, “A Taxonomy of DDoS Attack Mitigation Approaches Featured by SDN Technologies in IoT Scenarios,” Sensors, vol. 20, no. 11, p. 3078, May 2020, doi: 10.3390/s20113078.
S. Wani, M. Imthiyas, H. Almohamedh, K. M. Alhamed, S. Almotairi, and Y. Gulzar, “Distributed Denial of Service (DDoS) Mitigation Using Blockchain—A Comprehensive Insight,” Symmetry (Basel), vol. 13, no. 2, p. 227, Jan. 2021, doi: 10.3390/sym13020227.
A. Bhardwaj, V. Mangat, R. Vig, S. Halder, and M. Conti, “Distributed denial of service attacks in cloud: State-of-the-art of scientific and commercial solutions,” Comput Sci Rev, vol. 39, p. 100332, Feb. 2021, doi: 10.1016/j.cosrev.2020.100332.
R. M. A. Haseeb-ur-rehmanet al., “High-Speed Network DDoS Attack Detection: A Survey,” Sensors, vol. 23, no. 15, p. 6850, Aug. 2023, doi: 10.3390/s23156850.
S. Karnani and H. K. Shakya, “Mitigation strategies for distributed denial of service (DDoS) in SDN: A survey and taxonomy,” Information Security Journal: A Global Perspective, vol. 32, no. 6, pp. 444–468, Nov. 2023, doi: 10.1080/19393555.2022.2111004.
M. Ragab, S. M. Alshammari, L. A. Maghrabi, D. Alsalman, T. Althaqafi, and A. A.-M. AL-Ghamdi, “Robust DDoS Attack Detection Using Piecewise Harris Hawks Optimizer with Deep Learning for a Secure Internet of Things Environment,” Mathematics, vol. 11, no. 21, p. 4448, Oct. 2023, doi: 10.3390/math11214448.
M. Cherian and S. L. Varma, “Secure SDN–IoT Framework for DDoS Attack Detection Using Deep Learning and Counter Based Approach,” Journal of Network and Systems Management, vol. 31, no. 3, 2023, doi: 10.1007/s10922-023-09749-w.
B. A. Alabsi, M. Anbar, and S. D. A. Rihan, “Conditional Tabular Generative Adversarial Based Intrusion Detection System for Detecting Ddos and Dos Attacks on the Internet of Things Networks,” Sensors, vol. 23, no. 12, 2023, doi: 10.3390/s23125644.
F. M. Aswad, A. M. S. Ahmed, N. A. M. Alhammadi, B. A. Khalaf, and S. A. Mostafa, “Deep learning in distributed denial-of-service attacks detection method for Internet of Things networks,” Journal of Intelligent Systems, vol. 32, no. 1, 2023, doi: 10.1515/jisys-2022-0155.
A. Ahmim, F. Maazouzi, M. Ahmim, S. Namane, and I. B. Dhaou, “Distributed Denial of Service Attack Detection for the Internet of Things Using Hybrid Deep Learning Model,” IEEE Access, vol. 11, pp. 119862–119875, 2023, doi: 10.1109/ACCESS.2023.3327620.
S. S. Mahadik, P. M. Pawar, and R. Muthalagu, “Edge-HetIoT defense against DDoS attack using learning techniques,” ComputSecur, vol. 132, 2023, doi: 10.1016/j.cose.2023.103347.
S. Mahadik, P. M. Pawar, and R. Muthalagu, “Efficient Intelligent Intrusion Detection System for Heterogeneous Internet of Things (HetIoT),” Journal of Network and Systems Management, vol. 31, no. 1, 2023, doi: 10.1007/s10922-022-09697-x.
J. G. Almaraz-Rivera, J. A. Cantoral-Ceballos, and J. F. Botero, “Enhancing IoT Network Security: Unveiling the Power of Self-Supervised Learning against DDoS Attacks,” Sensors, vol. 23, no. 21, p. 8701, Oct. 2023, doi: 10.3390/s23218701.
M. Aljebreen, H. A. Mengash, M. A. Arasi, S. S. Aljameel, A. S. Salama, and M. A. Hamza, “Enhancing DDoS Attack Detection Using Snake Optimizer With Ensemble Learning on Internet of Things Environment,” IEEE Access, vol. 11, pp. 104745–104753, 2023, doi: 10.1109/ACCESS.2023.3318316.
S. A. Khanday, H. Fatima, and N. Rakesh, “Implementation of intrusion detection model for DDoS attacks in Lightweight IoT Networks,” Expert Syst Appl, vol. 215, 2023, doi: 10.1016/j.eswa.2022.119330.
M. I. T. Hussan, G. V. Reddy, P. T. Anitha, A. Kanagaraj, and P. Naresh, “DDoS attack detection in IoT environment using optimized Elman recurrent neural networks based on chaotic bacterial colony optimization,” Cluster Comput, Nov. 2023, doi: 10.1007/s10586-023-04187-4.
L. Alamer and E. Shadadi, “DDoS Attack Detection using Long-short Term Memory with Bacterial Colony Optimization on IoT Environment,” Journal of Internet Services and Information Security, vol. 13, no. 1, pp. 44–53, 2023, doi: 10.58346/JISIS.2023.I1.005.
P. Bhale, D. R. Chowdhury, S. Biswas, and S. Nandi, “OPTIMIST: Lightweight and Transparent IDS With Optimum Placement Strategy to Mitigate Mixed-Rate DDoS Attacks in IoT Networks,” IEEE Internet Things J, vol. 10, no. 10, pp. 8357–8370, May 2023, doi: 10.1109/JIOT.2023.3234530.
K. Kethineni and G. Pradeepini, “Intrusion detection in internet of things-based smart farming using hybrid deep learning framework,” Cluster Comput, 2023, doi: 10.1007/s10586-023-04052-4.
T. H. H. Aldhyani and H. Alkahtani, “Cyber Security for Detecting Distributed Denial of Service Attacks in Agriculture 4.0: Deep Learning Model,” Mathematics, vol. 11, no. 1, 2023, doi: 10.3390/math11010233.
A. Zainudin, L. A. C. Ahakonye, R. Akter, D.-S. Kim, and J.-M. Lee, “An Efficient Hybrid-DNN for DDoS Detection and Classification in Software-Defined IIoT Networks,” IEEE Internet Things J, vol. 10, no. 10, pp. 8491–8504, May 2023, doi: 10.1109/JIOT.2022.3196942.
S. Y. Diaba and M. Elmusrati, “Proposed algorithm for smart grid DDoS detection based on deep learning,” Neural Networks, vol. 159, pp. 175–184, 2023, doi: 10.1016/j.neunet.2022.12.011.
T. Liu, F. Sabrina, J. Jang-Jaccard, W. Xu, and Y. Wei, “Artificial intelligence-enabled ddos detection for blockchain-based smart transport systems,” Sensors, vol. 22, no. 1, 2022, doi: 10.3390/s22010032.
M. Zeeshan et al., “Protocol-Based Deep Intrusion Detection for DoS and DDoS Attacks Using UNSW-NB15 and Bot-IoT Data-Sets,” IEEE Access, vol. 10, pp. 2269–2283, 2022, doi: 10.1109/ACCESS.2021.3137201.
M. M. Fadel, S. M. El-Ghamrawy, A. M. T. Ali-Eldin, M. K. Hassan, and A. I. El-Desoky, “The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework,” PLoS One, vol. 17, no. 7 July, 2022, doi: 10.1371/journal.pone.0271436.
F. Sattari, A. H. Farooqi, Z. Qadir, B. Raza, H. Nazari, and M. Almutiry, “A Hybrid Deep Learning Approach for Bottleneck Detection in IoT,” IEEE Access, vol. 10, pp. 77039–77053, 2022, doi: 10.1109/ACCESS.2022.3188635.
O. Yousuf and R. N. Mir, “DDoS attack detection in Internet of Things using recurrent neural network,” Computers and Electrical Engineering, vol. 101, 2022, doi: 10.1016/j.compeleceng.2022.108034.
S. Hariprasad, T. Deepa, and N. Bharathiraja, “Detection of DDoS Attack in IoT Networks Using Sample Selected RNN-ELM,” Intelligent Automation and Soft Computing, vol. 34, no. 3, pp. 1425–1440, 2022, doi: 10.32604/iasc.2022.022856.
S. P. K. Gudla, S. K. Bhoi, S. R. Nayak, and A. Verma, “DI-ADS: A Deep Intelligent Distributed Denial of Service Attack Detection Scheme for Fog-Based IoT Applications,” Math ProblEng, vol. 2022, 2022, doi: 10.1155/2022/3747302.
S. Balaji and S. Sankaranarayanan, “Hybrid Deep-Generative Adversarial Network Based Intrusion Detection Model for Internet of Things Using Binary Particle Swarm Optimization,” International Journal of Electrical and Electronics Research, vol. 10, no. 4, pp. 948–953, 2022, doi: 10.37391/ijeer.100432.
P. Kumar, H. Bagga, B. S. Netam, and V. Uduthalapally, “SAD-IoT: Security Analysis of DDoS Attacks in IoT Networks,” Wirel Pers Commun, vol. 122, no. 1, pp. 87–108, 2022, doi: 10.1007/s11277-021-08890-6.
A. A. Alashhab, M. S. M. Zahid, A. Muneer, and M. Abdukkahi, “Low-rate DDoS attack Detection using Deep Learning for SDN-enabled IoT Networks,” International Journal of Advanced Computer Science and Applications, vol. 13, no. 11, pp. 371–377, 2022, doi: 10.14569/IJACSA.2022.0131141.
N. Mahajan, A. Chauhan, H. Kumar, S. Kaushal, and A. K. Sangaiah, “A Deep Learning Approach to Detection and Mitigation of Distributed Denial of Service Attacks in High Availability Intelligent Transport Systems,” Mobile Networks and Applications, vol. 27, no. 4, pp. 1423–1443, 2022, doi: 10.1007/s11036-022-01973-z.
S.-H. Lee, Y.-L. Shiue, C.-H. Cheng, Y.-H. Li, and Y.-F. Huang, “Detection and Prevention of DDoS Attacks on the IoT,” Applied Sciences (Switzerland), vol. 12, no. 23, 2022, doi: 10.3390/app122312407.
A. A. Elsaeidy, A. Jamalipour, and K. S. Munasinghe, “A Hybrid Deep Learning Approach for Replay and DDoS Attack Detection in a Smart City,” IEEE Access, vol. 9, pp. 154864–154875, 2021, doi: 10.1109/ACCESS.2021.3128701.
M. A. Ferrag, L. Shu, H. Djallel, and K.-K. R. Choo, “Deep learning-based intrusion detection for distributed denial of service attack in agriculture 4.0,” Electronics (Switzerland), vol. 10, no. 11, 2021, doi: 10.3390/electronics10111257.
S. Manimurugan, S. Al-Mutairi, M. M. Aborokbah, N. Chilamkurti, S. Ganesan, and R. Patan, “Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network,” IEEE Access, vol. 8, pp. 77396–77404, 2020, doi: 10.1109/ACCESS.2020.2986013.
M. V. O. de Assis, L. F. Carvalho, J. J. P. C. Rodrigues, J. Lloret, and M. L. Proença Jr, “Near real-time security system applied to SDN environments in IoT networks using convolutional neural network,” Computers and Electrical Engineering, vol. 86, 2020, doi: 10.1016/j.compeleceng.2020.106738.
M. Shurman, R. Khrais, and A. Yateem, “DoS and DDoS attack detection using deep learning and IDS,” International Arab Journal of Information Technology, vol. 17, no. 4A Special, pp. 655–661, 2020, doi: 10.34028/iajit/17/4A/10.
K. N. K. Thapa and N. Duraipandian, “Malicious Traffic classification Using Long Short-Term Memory (LSTM) Model,” Wirel Pers Commun, vol. 119, no. 3, pp. 2707–2724, Aug. 2021, doi: 10.1007/s11277-021-08359-6.
N. Bakhmat, O. Kolosova, O. Demchenko, I. Ivashchenko, and V. Strelchuk, “Application of International Scientometric Database in the Process of Training Competative Research and Teaching Staff: Opportunities of Web of Science (WOS), Scopus, Google Scholar,” J Theor Appl Inf Technol, vol. 15, no. 13, 2022, [Online]. Available: www.jatit.org
A. D. Aguru and S. B. Erukala, “A lightweight multi-vector DDoS detection framework for IoT-enabled mobile health informatics systems using deep learning,” Information Sciences, vol. 662, p. 120209, Mar. 2024, doi: https://doi.org/10.1016/j.ins.2024.120209.
L. Xie et al., “MRFM: A Timely Detection Method for DDoS Attacks in IoT with Multidimensional Reconstruction and Function Mapping,” Computer standards & interfaces, vol. 89, pp. 103829–103829, Apr. 2024, doi: https://doi.org/10.1016/j.csi.2023.103829.
I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “Developing Realistic Distributed Denial of Service (DDoS) Attack Dataset and Taxonomy,” 2019 International Carnahan Conference on Security Technology (ICCST), Oct. 2019, doi: https://doi.org/10.1109/ccst.2019.8888419.
N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset,” Future Generation Computer Systems, vol. 100, pp. 779–796, 2019, doi: https://doi.org/10.1016/j.future.2019.05.041.
C. Pinto, Sajjad Dadkhah, R. Ferreira, Alireza Zohourian, R. Lu, and A. A. Ghorbani, “CICIoT2023: A Real-Time Dataset and Benchmark for Large-Scale Attacks in IoT Environment,” Sensors, vol. 23, no. 13, pp. 5941–5941, Jun. 2023, doi: https://doi.org/10.3390/s23135941.
I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization,” Proceedings of the 4th International Conference on Information Systems Security and Privacy, vol. 1, 2018, doi: https://doi.org/10.5220/0006639801080116.
N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set),” IEEE Xplore, Nov. 01, 2015, doi: https://doi.org/10.1109/MilCIS.2015.7348942.
M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the KDD CUP 99 data set,” 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Jul. 2009, doi: https://doi.org/10.1109/cisda.2009.5356528.
A. Alsaedi, N. Moustafa, Z. Tari, A. Mahmood, and A. Anwar, “TON_IoT Telemetry Dataset: A New Generation Dataset of IoT and IIoT for Data-driven Intrusion Detection Systems,” IEEE Access, vol. 8, pp. 165130 - 165150, 2020, doi: https://doi.org/10.1109/access.2020.3022862.
M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-IIoTset: A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT Applications for Centralized and Federated Learning,” IEEE Access, vol. 10, pp. 40281–40306, 2022, doi: https://doi.org/10.1109/access.2022.3165809.
N. Ahuja, G. Singal, and D. Mukhopadhyay, “DDOS attack SDN Dataset,” Mendeley Data, vol. 1, Sep. 2020, doi: https://doi.org/10.17632/jxpfjc64kr.1.
Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, D. Breitenbacher, A. Shabtai, and Y. Elovici, “N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders,” IEEE Pervasive Computing, vol. 17, no. 3, pp. 12–22, Jul. 2018, doi: https://doi.org/10.1109/mprv.2018.03367731.
Canadian Institute for Cybersecurity, “CSE-CIC-IDS2018 on AWS: A collaborative project between the Communications Security Establishment (CSE) & the Canadian Institute for Cybersecurity (CIC),” https://www.unb.ca/cic/datasets/ids-2018.html (accessed Mar. 23, 2024).
Y. R. KUMBAM, “APA-DDoS Dataset,” https://www.kaggle.com/datasets/yashwanthkumbam/apaddos-dataset (accessed Mar. 28, 2024).
I. Ullah and Q. H. Mahmoud, “A Scheme for Generating a Dataset for Anomalous Activity Detection in IoT Networks,” Advances in Artificial Intelligence, vol. 12109, pp. 508–520, 2020, doi: https://doi.org/10.1007/978-3-030-47358-7_52.
J. G. Almaraz-Rivera, J. A. Perez-Diaz, J. A. Cantoral-Ceballos, J. F. Botero, and L. A. Trejo, “Toward the Protection of IoT Networks: Introducing the LATAM-DDoS-IoT Dataset,” IEEE Access, vol. 10, pp. 106909–106920, 2022, doi: https://doi.org/10.1109/access.2022.3211513.
M. M. Salim, A. E. Azzaoui, X. Deng, and J. H. Park, “FL-CTIF: A federated learning based CTI framework based on information fusion for secure IIoT,” Information Fusion, vol. 102, pp. 102074–102074, Feb. 2024, doi: https://doi.org/10.1016/j.inffus.2023.102074.
M. Adnan Khan, T. M. Ghazal, S.-W. Lee, and A. Rehman, “Data Fusion-Based Machine Learning Architecture for Intrusion Detection,” Computers, Materials & Continua, vol. 70, no. 2, pp. 3399–3413, 2022, doi: https://doi.org/10.32604/cmc.2022.020173.
H. Mohammed, S. R. Hasan, and F. Awwad, “Fusion-On-Field Security and Privacy Preservation for IoT Edge Devices: Concurrent Defense Against Multiple Types of Hardware Trojan Attacks,” IEEE Access, vol. 8, pp. 36847–36862, 2020, doi: https://doi.org/10.1109/access.2020.2975016.
S. Yaras and M. Dener, “IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm,” Electronics, vol. 13, no. 6, Mar. 2024, doi: https://doi.org/10.3390/electronics13061053.
X. Yang, G. Peng, D. Zhang, and Y. Lv, “An Enhanced Intrusion Detection System for IoT Networks Based on Deep Learning and Knowledge Graph,” Security and Communication Networks, vol. 2022, Apr. 2022, doi: https://doi.org/10.1155/2022/4748528.
D. Chen, F. Zhang, and X. Zhang, “Heterogeneous IoT Intrusion Detection Based on Fusion Word Embedding Deep Transfer Learning,” IEEE Transactions on Industrial Informatics, vol. 19, no. 8, pp. 9183–9193, Aug. 2023, doi: https://doi.org/10.1109/tii.2022.3227640.
V. Ravi, R. Chaganti, and M. Alazab, “Recurrent deep learning-based feature fusion ensemble meta-classifier approach for intelligent network intrusion detection system,” Computers and Electrical Engineering, vol. 102, p. 108156, Sep. 2022, doi: https://doi.org/10.1016/j.compeleceng.2022.108156.
A. Sahu, Z. Mao, P. Wlazlo, H. Huang, K. Daviz, A. Goulart, and S. Zonouz, “Multi-Source Multi-Domain Data Fusion for Cyberattack Detection in Power Systems,” IEEE Access, vol. 9, pp. 119118–119138, 2021, doi: https://doi.org/10.1109/access.2021.3106873.
M. Al-Hawawreh and M. S. Hossain, “A privacy-aware framework for detecting cyber attacks on internet of medical things systems using data fusion and quantum deep learning,” Information Fusion, vol. 99, p. 101889, Nov. 2023, doi: https://doi.org/10.1016/j.inffus.2023.101889.
G. Li, Z. Yan, Y. Fu, and H. Chen, “Data Fusion for Network Intrusion Detection: A Review,” Security and Communication Networks, vol. 2018, pp. 1–16, 2018, doi: https://doi.org/10.1155/2018/8210614.
W. Ding, X. Jing, Z. Yan, and L. T. Yang, “A survey on data fusion in internet of things: Towards secure and privacy-preserving fusion,” Information Fusion, vol. 51, pp. 129–144, Nov. 2019, doi: https://doi.org/10.1016/j.inffus.2018.12.001.
K.-H. Lin et al., “Fusion-Extracted Features by Deep Networks for Improved COVID-19 Classification with Chest X-ray Radiography,” Healthcare, vol. 11, no. 10, pp. 1367–1367, May 2023, doi: https://doi.org/10.3390/healthcare11101367.
W. Guo, H. Qiu, Z. Liu, J. Zhu, and Q. Wang, “GLD-Net: Deep Learning to Detect DDoS Attack via Topological and Traffic Feature Fusion,” Computational Intelligence and Neuroscience, vol. 2022, pp. 1–20, Aug. 2022, doi: https://doi.org/10.1155/2022/4611331.
H. Liao et al., “A Survey of Deep Learning Technologies for Intrusion Detection in Internet of Things,” IEEE Access, Jan. 2024, doi: https://doi.org/10.1109/access.2023.3349287.
B. Bala and S. Behal, “AI techniques for IoT-based DDoS attack detection: Taxonomies, comprehensive review and research challenges,” Computer science review, vol. 52, May 2024, doi: https://doi.org/10.1016/j.cosrev.2024.100631.