Integrating Law, Cybersecurity, and AI: Deep Learning for Securing Iris-Based Biometric Systems

Main Article Content

Saif Alaa Hussein
Hasan Ali Al-Tameemi
Ghadeer Ghazi Shayea
Firas Jamal Shakir
Mohd Hazli Mohammed Zabil
Mustafa Abdulfattah Habeeb
Yahya Layth Khaleel

Abstract

The increasing prevalence of biometric authentication systems as part of the organizational cybersecurity ecosystem highlights the need to gain further knowledge of both legal and technical considerations related to biometric data protection. The inherent nature of biometric data (unique to an individual and unchangeable) elicits a vulnerability to cyber abuse along with privacy risks. This study discussed the legal landscape regulating biometric data, underscoring our awareness of legislation inadequacies in regions of the world, with a specific reference to Iraq, and its comparison to international standards that employ laws (GDPR, EU AI Act). This study indicated that there is an urgency in establishing robust, effective, enforceable protections for biometric information from unauthorized collection and circumvention. In terms of cybersecurity practices, ensuring the integrity, confidentiality and availability of biometric data are key. When there are ineffective legal and regulatory measures, the risks of exposing sensitive data and forgetting biometric security have significant potential to degrade the effectiveness of biometric systems for secure authentication. This study suggests that technological innovations with integrated legal considerations will aid in the creation of legitimate biometric systems that can improve quality and security. In addition to the pressing legality themes, this study explores a practical illustration of deep learning through a ResNet50-based model to classify iris health conditions. The model for classifying an iris as "mature" or "immature" has the potential to ensure the reliability of authentic biometric systems, and the model has a validity score of 98%. This specific example presents the employability of AI in potentially advancing biometric security. This study explored ways to recognize the dual structure of legal impact and technological developments in this field to ultimately create a balance where biometric systems remain palatable and convey an ethical obligation.

Article Details

Section

Articles

How to Cite

Integrating Law, Cybersecurity, and AI: Deep Learning for Securing Iris-Based Biometric Systems (S. A. . Hussein, H. A. . Al-Tameemi, G. G. Shayea, F. J. . Shakir, M. H. M. . Zabil, M. A. . Habeeb, & Y. L. . Khaleel , Trans.). (2025). Mesopotamian Journal of CyberSecurity, 5(2), 319-336. https://doi.org/10.58496/MJCS/2025/020

References

[1] S. A. Abdulrahman and B. Alhayani, “A comprehensive survey on the biometric systems based on physiological and behavioural characteristics,” Mater. Today Proc., vol. 80, pp. 2642–2646, 2023, doi: 10.1016/j.matpr.2021.07.005.

[2] R. Alrawili, A. A. S. AlQahtani, and M. K. Khan, “Comprehensive survey: Biometric user authentication application, evaluation, and discussion,” Comput. Electr. Eng., vol. 119, p. 109485, 2024, doi: 10.1016/j.compeleceng.2024.109485.

[3] Q. N. Tran, B. P. Turnbull, and J. Hu, “Biometrics and Privacy-Preservation: How Do They Evolve?,” IEEE Open J. Comput. Soc., vol. 2, pp. 179–191, 2021, doi: 10.1109/ojcs.2021.3068385.

[4] S. Khade, S. Ahirrao, S. Phansalkar, K. Kotecha, S. Gite, and S. D. Thepade, “Iris liveness detection for biometric authentication: A systematic literature review and future directions,” Inventions, vol. 6, no. 4, 2021, doi: 10.3390/inventions6040065.

[5] K. Nguyen, H. Proença, and F. Alonso-Fernandez, “Deep Learning for Iris Recognition: A Survey,” ACM Comput. Surv., vol. 56, no. 9, Apr. 2024, doi: 10.1145/3651306.

[6] T. Kumar, S. Bhushan, P. Sharma, and V. Garg, “Examining the Vulnerabilities of Biometric Systems,” in Leveraging Computer Vision to Biometric Applications, Chapman and Hall/CRC, 2024, pp. 34–67. doi: 10.1201/9781032614663-3.

[7] M. Chaturvedi, M. Kaushik, S. Satija, and R. Kumar, “A STUDY ON ENHANCING DATA SECURITY AND CRIME DETECTION WITH COMPUTATIONAL INTELLIGENCE AND CYBERSECURITY”.

[8] M. Amini and L. Javidnejad, “Legal Regulation of Biometric Data: A Comparative Analysis of Global Standards,” Leg. Stud. Digit. Age, vol. 3, no. 1, pp. 26–34, 2024.

[9] P. Melzi, C. Rathgeb, R. Tolosana, R. Vera, and C. Busch, “An Overview of Privacy-Enhancing Technologies in Biometric Recognition,” ACM Comput. Surv., vol. 56, no. 12, Oct. 2024, doi: 10.1145/3664596.

[10] P. Voigt and A. Von dem Bussche, “The EU General Data Protection Regulation (GDPR),” EU Gen. Data Prot. Regul., vol. 10, no. 3152676, pp. 10–5555, 2020, doi: 10.1093/oso/9780198826491.001.0001.

[11] C. J. Hoofnagle, B. van der Sloot, and F. Z. Borgesius, “The European Union general data protection regulation: What it is and what it means,” Inf. Commun. Technol. Law, vol. 28, no. 1, pp. 65–98, 2019, doi: 10.1080/13600834.2019.1573501.

[12] N. Gruschka, V. Mavroeidis, K. Vishi, and M. Jensen, “Privacy Issues and Data Protection in Big Data: A Case Study Analysis under GDPR,” in Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 2018, pp. 5027–5033. doi: 10.1109/BigData.2018.8622621.

[13] E. J. Kindt, “Privacy and Data Protection Issues of Biometric Applications A Comparative Legal Analysis,” Law, Gov. Technol. Ser., vol. 12, pp. 1–975, 2013.

[14] G. J. Voelz, The Rise of IWAR: Identity, Information, and the Individualization of Modern Warfare. Simon and Schuster, 2018. [Online]. Available: https://www.jstor.org/stable/resrep11804

[15] T. Bisztray, “Investigating Privacy Aspects of Identity Management: From Data Protection Impact Assessment for Biometric Applications to Privacy-Centric Password Testing,” 2023, [Online]. Available: https://www.duo.uio.no/handle/10852/105551%0Ahttps://www.duo.uio.no/bitstream/handle/10852/105551/3/PhD-Bisztray-2023.pdf

[16] Ö. Aslan, S. S. Aktuğ, M. Ozkan-Okay, A. A. Yilmaz, and E. Akin, “A Comprehensive Review of Cyber Security Vulnerabilities, Threats, Attacks, and Solutions,” Electron., vol. 12, no. 6, 2023, doi: 10.3390/electronics12061333.

[17] M. Punia, A. Choudhary, S. Agarwal, and V. Shukla, “Ethical Considerations and Legal Frameworks for Biometric Surveillance Systems: The Intersection of AI, Soft Biometrics, and Human Surveillance,” in Lecture Notes in Networks and Systems, A. Chaturvedi, S. U. Hasan, B. K. Roy, and B. Tsaban, Eds., Singapore: Springer Nature Singapore, 2024, pp. 659–674. doi: 10.1007/978-981-97-0641-9_45.

[18] E. S. Neal Joshua, N. T. Rao, and D. Bhattacharyya, “Managing information security risk and Internet of Things (IoT) impact on challenges of medicinal problems with complex settings,” in Multi-Chaos, Fractal and Multi-Fractional Artificial Intelligence of Different Complex Systems, Y. Karaca, D. Baleanu, Y.-D. Zhang, O. Gervasi, and M. Moonis, Eds., Academic Press, 2022, pp. 291–310. doi: 10.1016/B978-0-323-90032-4.00007-9.

[19] J. R. Malgheet, N. B. Manshor, and L. S. Affendey, “Iris Recognition Development Techniques: A Comprehensive Review,” Complexity, vol. 2021, no. 1, p. 6641247, 2021, doi: 10.1155/2021/6641247.

[20] B. Kaur and S. S. Saini, “Estimation towards the impact of contact lens in iris recognition: A study,” Multimed. Tools Appl., vol. 84, no. 8, pp. 4361–4392, 2024, doi: 10.1007/s11042-024-18818-4.

[21] Y. Yin, S. He, R. Zhang, H. Chang, and J. Zhang, “Deep learning for iris recognition: a review,” Neural Comput. Appl., 2025, doi: 10.1007/s00521-025-11109-5.

[22] M. Elhussein, A. Almuhaideb, F. Alholyal, R. Osman, and S. Elfaki, “Efficient Entry: A Stateful Authentication Approach in Health-Aware Smart Gate Systems,” IEEE Access, vol. 12, pp. 70634–70645, 2024, doi: 10.1109/ACCESS.2024.3398569.

[23] A. M. Almuhaideb et al., “Design Recommendations for Gate Security Systems and Health Status: A Systematic Review,” IEEE Access, vol. 11, pp. 131508–131520, 2023, doi: 10.1109/ACCESS.2023.3335115.

[24] A. Kintonova, I. Povkhan, M. Mussaif, and G. Gabdreshov, “Improvement of Iris Recognition Technology for Biometric Identification of a Person,” Eastern-European J. Enterp. Technol., vol. 6, no. 2–120, pp. 60–69, 2022, doi: 10.15587/1729-4061.2022.269948.

[25] A. Godfrey et al., “Fit-for-Purpose Biometric Monitoring Technologies: Leveraging the Laboratory Biomarker Experience,” Clin. Transl. Sci., vol. 14, no. 1, pp. 62–74, 2021, doi: 10.1111/cts.12865.

[26] M. Gomez-Barrero et al., “Biometrics in the Era of COVID-19: Challenges and Opportunities,” IEEE Trans. Technol. Soc., vol. 3, no. 4, pp. 307–322, 2022, doi: 10.1109/tts.2022.3203571.

[27] A. De Keyser, Y. Bart, X. Gu, S. Q. Liu, S. G. Robinson, and P. K. Kannan, “Opportunities and challenges of using biometrics for business: Developing a research agenda,” J. Bus. Res., vol. 136, pp. 52–62, 2021, doi: 10.1016/j.jbusres.2021.07.028.

[28] E. Awumey, S. Das, and J. Forlizzi, “A Systematic Review of Biometric Monitoring in the Workplace: Analyzing Socio-technical Harms in Development, Deployment and Use,” in 2024 ACM Conference on Fairness, Accountability, and Transparency, FAccT 2024, in FAccT ’24. New York, NY, USA: Association for Computing Machinery, 2024, pp. 920–932. doi: 10.1145/3630106.3658945.

[29] K. Shaheed et al., “A Systematic Review on Physiological-Based Biometric Recognition Systems: Current and Future Trends,” Arch. Comput. Methods Eng., vol. 28, no. 7, pp. 4917–4960, 2021, doi: 10.1007/s11831-021-09560-3.

[30] O. L. Finnegan et al., “The utility of behavioral biometrics in user authentication and demographic characteristic detection: a scoping review,” Syst. Rev., vol. 13, no. 1, p. 61, 2024, doi: 10.1186/s13643-024-02451-1.

[31] Y. Zheng et al., “Biometric identification of taxodium spp. And their hybrid progenies by electrochemical fingerprints,” Biosensors, vol. 11, no. 10, 2021, doi: 10.3390/bios11100403.

[32] B. Meden et al., “Privacy-Enhancing Face Biometrics: A Comprehensive Survey,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 4147–4183, 2021, doi: 10.1109/TIFS.2021.3096024.

[33] N. D. AL-Shakarchy, H. K. Obayes, and Z. N. Abdullah, “Person identification based on voice biometric using deep neural network,” Int. J. Inf. Technol., vol. 15, no. 2, pp. 789–795, 2023, doi: 10.1007/s41870-022-01142-1.

[34] A. Parashar, A. Parashar, A. F. Abate, R. S. Shekhawat, and I. Rida, “Real-time gait biometrics for surveillance applications: A review,” Image Vis. Comput., vol. 138, p. 104784, 2023, doi: 10.1016/j.imavis.2023.104784.

[35] I. Ebert, I. Wildhaber, and J. Adams-Prassl, “Big Data in the workplace: Privacy Due Diligence as a human rights-based approach to employee privacy protection,” Big Data Soc., vol. 8, no. 1, p. 20539517211013052, 2021, doi: 10.1177/20539517211013051.

[36] F. Jimmy, “Emerging Threats: The Latest Cybersecurity Risks and the Role of Artificial Intelligence in Enhancing Cybersecurity Defenses,” Int. J. Sci. Res. Manag., vol. 9, no. 02, pp. 564–574, 2021, doi: 10.18535/ijsrm/v9i2.ec01.

[37] R. Walters and M. Novak, Cyber security, artificial intelligence, data protection & the law. Springer, 2021.

[38] M. Hernandez-de-Menendez, R. Morales-Menendez, C. A. Escobar, and J. Arinez, “Biometric applications in education,” Int. J. Interact. Des. Manuf., vol. 15, no. 2–3, pp. 365–380, 2021, doi: 10.1007/s12008-021-00760-6.

[39] M. Hoffmann, M. Mariniello, and M. Hoffmann, “Biometric technologies at work : a proposed use-based taxonomy Executive summary,” Bruegel, Brussels, 2021. [Online]. Available: https://hdl.handle.net/10419/270503

[40] V. Veeraiah, K. R. Kumar, P. Lalitha Kumari, S. Ahamad, R. Bansal, and A. Gupta, “Application of Biometric System to Enhance the Security in Virtual World,” in 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2022, 2022, pp. 719–723. doi: 10.1109/ICACITE53722.2022.9823850.

[41] B. Hassan, E. Izquierdo, and T. Piatrik, “Soft biometrics: a survey: Benchmark analysis, open challenges and recommendations,” Multimed. Tools Appl., vol. 83, no. 5, pp. 15151–15194, 2024, doi: 10.1007/s11042-021-10622-8.

[42] S. Minaee, A. Abdolrashidi, H. Su, M. Bennamoun, and D. Zhang, “Biometrics recognition using deep learning: a survey,” Artif. Intell. Rev., vol. 56, no. 8, pp. 8647–8695, 2023, doi: 10.1007/s10462-022-10237-x.

[43] C. W. Lien and S. Vhaduri, “Challenges and Opportunities of Biometric User Authentication in the Age of IoT: A Survey,” ACM Comput. Surv., vol. 56, no. 1, Aug. 2023, doi: 10.1145/3603705.

[44] J. Laux, S. Wachter, and B. Mittelstadt, “Trustworthy artificial intelligence and the European Union AI act: On the conflation of trustworthiness and acceptability of risk,” Regul. Gov., vol. 18, no. 1, pp. 3–32, 2024, doi: 10.1111/rego.12512.

[45] A. Ribera Martínez, “The Debiasing Paradox: Facial Recognition Technology and Biometric Identification Systems in the Artificial Intelligence Act,” in European Yearbook of Constitutional Law 2023: Constitutional Law in the Digital Era, C. van Oirsouw, J. de Poorter, I. Leijten, G. van der Schyff, M. Stremler, and M. De Visser, Eds., The Hague: T.M.C. Asser Press, 2024, pp. 137–163. doi: 10.1007/978-94-6265-647-5_7.

[46] I. A. Bogoslov, S. Corman, and A. E. Lungu, “Perspectives on Artificial Intelligence Adoption for European Union Elderly in the Context of Digital Skills Development,” Sustain. , vol. 16, no. 11, 2024, doi: 10.3390/su16114579.

[47] A. H. Lora, “CLASSIFICATION OF AI SYSTEMS AS HIGH-RISK (CHAPTER III, SECTION 1),” EU Regul. Artif. Intell. A Comment., p. 79, 2025.

[48] R. Montinaro, “Emotion Recognition and Personalized Adverting,” Eur. Rev. Priv. Law, vol. 32, no. 6, pp. 1003–1036, 2024, doi: 10.54648/erpl2025012.

[49] P. Ruiu, S. Saiu, and E. Grosso, “Digital Identity in the EU: Promoting eIDAS Solutions Based on Biometrics,” Futur. Internet, vol. 16, no. 7, 2024, doi: 10.3390/fi16070228.

[50] “BTIW ’24: Proceedings of the Behavior Transformation by IoT International Workshop,” New York, NY, USA: Association for Computing Machinery, 2024.

[51] J. Zhang, Z. Liu, and X. (Robert) Luo, “Unraveling juxtaposed effects of biometric characteristics on user security behaviors: A controversial information technology perspective,” Decis. Support Syst., vol. 183, p. 114267, 2024, doi: 10.1016/j.dss.2024.114267.

[52] A. Katirai, “Ethical considerations in emotion recognition technologies: a review of the literature,” AI Ethics, vol. 4, no. 4, pp. 927–948, 2023, doi: 10.1007/s43681-023-00307-3.

[53] S. Ayeswarya and K. J. Singh, “A Comprehensive Review on Secure Biometric-Based Continuous Authentication and User Profiling,” IEEE Access, vol. 12, pp. 82996–83021, 2024, doi: 10.1109/ACCESS.2024.3411783.

[54] S. Kumar, “Biometric Systems Security and Privacy Issues,” in Leveraging Computer Vision to Biometric Applications, Chapman and Hall/CRC, 2024, pp. 68–91. doi: 10.1201/9781032614663-4.

[55] B. Menakadevi, D. S. Kumar, P. Nagasaratha, and K. Parimalam, “Biometric System Attacks-A Case Study,” in ICCECE 2025 - International Conference on Computer, Electrical and Communication Engineering, 2025, pp. 1–7. doi: 10.1109/ICCECE61355.2025.10940734.

[56] H. K. Abdali, M. A. Hussain, Z. A. Abduljabbar, V. O. Nyangaresi, and A. J. Y. Aldarwish, “Comprehensive Challenges to E-government in Iraq,” in Lecture Notes in Networks and Systems, R. Silhavy and P. Silhavy, Eds., Cham: Springer Nature Switzerland, 2024, pp. 639–657. doi: 10.1007/978-3-031-70300-3_47.

[57] M. Rahimi, “A Comprehensive Analysis of Privacy and Data Protection in Conflict-Affected Areas: Revising Human Rights and Humanitarian Law to Address the Challenges of Surveillance Technologies.” 2024.

[58] L. Laishram, M. Shaheryar, J. T. Lee, and S. K. Jung, “Toward a Privacy-Preserving Face Recognition System: A Survey of Leakages and Solutions,” ACM Comput. Surv., vol. 57, no. 6, Feb. 2024, doi: 10.1145/3673224.

[59] M. Constantinides, E. Bogucka, S. Scepanovic, and D. Quercia, “Good Intentions, Risky Inventions: A Method for Assessing the Risks and Benefits of AI in Mobile and Wearable Uses,” Proc. ACM Hum.-Comput. Interact., vol. 8, no. MHCI, Sep. 2024, doi: 10.1145/3676507.

[60] M. A. Azer and R. Samir, “Overview of the Complex Landscape and Future Directions of Ethics in Light of Emerging Technologies,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 7, pp. 1459–1481, 2024, doi: 10.14569/IJACSA.2024.01507142.

[61] M. Mellon, “Facial Recognition Technology and the Dire Need to Regulate It,” SMU L. Rev. F., vol. 77, p. 272, 2024.

[62] C. Dul, “Facial Recognition Technology vs Privacy: The Case of Clearview AI,” Queen Mary Law J., vol. 3, p. 1, 2022, [Online]. Available: https://nissenbaum.tech.cornell.edu/papers/facial_recognition_report.pdf

[63] G. Gültekin Várkonyi, “Navigating data governance risks: Facial recognition in law enforcement under EU legislation,” INTERNET POLICY Rev. J. INTERNET Regul., vol. 13, no. 3, 2024.

[64] N. Khan and M. Efthymiou, “The use of biometric technology at airports: The case of customs and border protection (CBP),” Int. J. Inf. Manag. Data Insights, vol. 1, no. 2, p. 100049, 2021, doi: https://doi.org/10.1016/j.jjimei.2021.100049.

[65] M. Mäkelä, “Artificial intelligence to benefit the passenger experience at the airport,” 2024.

[66] V. Wylde et al., “Cybersecurity, Data Privacy and Blockchain: A Review,” SN Comput. Sci., vol. 3, no. 2, p. 127, 2022, doi: 10.1007/s42979-022-01020-4.

[67] H. M. S. S. Herath, H. M. K. K. M. B. Herath, B. G. D. A. Madhusanka, and L. G. P. K. Guruge, “Data Protection Challenges in the Processing of Sensitive Data,” in Data Protection: The Wake of AI and Machine Learning, C. Hewage, L. Yasakethu, and D. N. K. Jayakody, Eds., Cham: Springer Nature Switzerland, 2024, pp. 155–179. doi: 10.1007/978-3-031-76473-8_8.

[68] C. Wu, “Data privacy: From transparency to fairness,” Technol. Soc., vol. 76, p. 102457, 2024, doi: https://doi.org/10.1016/j.techsoc.2024.102457.

[69] E. G. Popkova and K. Gulzat, “Technological Revolution in the 21st Century: Digital Society vs. Artificial Intelligence,” in The 21st Century from the Positions of Modern Science: Intellectual, Digital and Innovative Aspects, E. G. Popkova and B. S. Sergi, Eds., Cham: Springer International Publishing, 2020, pp. 339–345.

[70] V.-D. Păvăloaia and S.-C. Necula, “Artificial Intelligence as a Disruptive Technology—A Systematic Literature Review,” Electronics, vol. 12, no. 5, 2023, doi: 10.3390/electronics12051102.

[71] A. Albahri et al., “Evaluating date fruit varieties for health benefits using advanced fuzzy decision-making,” Expert Syst. Appl., vol. 281, p. 127656, 2025, doi: https://doi.org/10.1016/j.eswa.2025.127656.

[72] M. A. Habeeb and Y. L. Khaleel, “Enhanced Android Malware Detection through Artificial Neural Networks Technique,” Mesopotamian Journal of CyberSecurity, vol. 5, no. 1 SE-Articles. pp. 62–77. doi: 10.58496/MJCS/2025/005.

[73] M. A. Habeeb, Y. L. Khaleel, R. D. Ismail, Z. T. Al-Qaysi, and A. F. N., “Deep Learning Approaches for Gender Classification from Facial Images,” Mesopotamian J. Big Data, vol. 2024, pp. 185–198, 2024, doi: 10.58496/MJBD/2024/013.

[74] F. K. H. Mihna, M. A. Habeeb, Y. L. Khaleel, Y. H. Ali, and L. A. E. Al-Saeedi, “Using Information Technology for Comprehensive Analysis and Prediction in Forensic Evidence,” Mesopotamian J. CyberSecurity, vol. 4, no. 1, 2024, doi: 10.58496/MJCS/2024/002.

[75] M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Toward Smart Bicycle Safety: Leveraging Machine Learning Models and Optimal Lighting Solutions,” in Proceedings of the Third International Conference on Innovations in Computing Research (ICR’24), K. Daimi and A. Al Sadoon, Eds., Cham: Springer Nature Switzerland, 2024, pp. 120–131.

[76] N. Kalra, P. Verma, and S. Verma, “Advancements in AI based healthcare techniques with FOCUS ON diagnostic techniques,” Comput. Biol. Med., vol. 179, p. 108917, 2024, doi: https://doi.org/10.1016/j.compbiomed.2024.108917.

[77] M. Bekbolatova, J. Mayer, C. W. Ong, and M. Toma, “Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives,” Healthcare, vol. 12, no. 2, 2024, doi: 10.3390/healthcare12020125.

[78] P. Weber, K. V. Carl, and O. Hinz, “Applications of Explainable Artificial Intelligence in Finance—a systematic review of Finance, Information Systems, and Computer Science literature,” Manag. Rev. Q., vol. 74, no. 2, pp. 867–907, 2024, doi: 10.1007/s11301-023-00320-0.

[79] S. Bahoo, M. Cucculelli, X. Goga, and J. Mondolo, “Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis,” SN Bus. Econ., vol. 4, no. 2, p. 23, 2024, doi: 10.1007/s43546-023-00618-x.

[80] K. Zhang and A. B. Aslan, “AI technologies for education: Recent research & future directions,” Comput. Educ. Artif. Intell., vol. 2, p. 100025, 2021, doi: 10.1016/j.caeai.2021.100025.

[81] X. Zhai et al., “A Review of Artificial Intelligence (AI) in Education from 2010 to 2020,” Complexity, vol. 2021, no. 1, p. 8812542, 2021, doi: 10.1155/2021/8812542.

[82] R. Espinel, G. Herrera-Franco, J. L. Rivadeneira García, and P. Escandón-Panchana, “Artificial Intelligence in Agricultural Mapping: A Review,” Agriculture, vol. 14, no. 7, 2024, doi: 10.3390/agriculture14071071.

[83] A. A. Mana, A. Allouhi, A. Hamrani, S. Rehman, I. el Jamaoui, and K. Jayachandran, “Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices,” Smart Agric. Technol., vol. 7, p. 100416, 2024, doi: https://doi.org/10.1016/j.atech.2024.100416.

[84] F. N. A. Fadya A Habeeb, Mustafa Abdulfattah Habeeb, Yahya Layth Khaleel, “Global Analysis and Prediction of CO2 and Greenhouse Gas Emissions across Continents,” Applied Data Science and Analysis, vol. 2024 SE-. pp. 173–188. doi: 10.58496/ADSA/2024/014.

[85] A. Konya and P. Nematzadeh, “Recent applications of AI to environmental disciplines: A review,” Sci. Total Environ., vol. 906, p. 167705, 2024, doi: https://doi.org/10.1016/j.scitotenv.2023.167705.

[86] S. E. Dilsizian and E. L. Siegel, “Artificial Intelligence in Medicine and Cardiac Imaging: Harnessing Big Data and Advanced Computing to Provide Personalized Medical Diagnosis and Treatment,” Curr. Cardiol. Rep., vol. 16, no. 1, p. 441, 2013, doi: 10.1007/s11886-013-0441-8.

[87] M. Khalifa and M. Albadawy, “AI in diagnostic imaging: Revolutionising accuracy and efficiency,” Comput. Methods Programs Biomed. Updat., vol. 5, p. 100146, 2024, doi: https://doi.org/10.1016/j.cmpbup.2024.100146.

[88] I. H. Sarker, “AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems,” SN Comput. Sci., vol. 3, no. 2, p. 158, 2022, doi: 10.1007/s42979-022-01043-x.

[89] M. Javaid, A. Haleem, I. H. Khan, and R. Suman, “Understanding the potential applications of Artificial Intelligence in Agriculture Sector,” Adv. Agrochem, vol. 2, no. 1, pp. 15–30, 2023, doi: https://doi.org/10.1016/j.aac.2022.10.001.

[90] W. Leal Filho et al., “Deploying artificial intelligence for climate change adaptation,” Technol. Forecast. Soc. Change, vol. 180, p. 121662, 2022, doi: https://doi.org/10.1016/j.techfore.2022.121662.

[91] S. O’Sullivan et al., “Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery,” Int. J. Med. Robot. Comput. Assist. Surg., vol. 15, no. 1, p. e1968, 2019, doi: https://doi.org/10.1002/rcs.1968.

[92] Y. L. Khaleel, M. A. Habeeb, and T. O. C. EDOH, “Limitations of Deep Learning vs. Human Intelligence: Training Data, Interpretability, Bias, and Ethics,” Appl. Data Sci. Anal., vol. 2025, pp. 3–6, 2025, doi: 10.58496/ADSA/2025/002.

[93] F. K. H. M. H. A. S. L. A. E. A.-S. H. A. A.-T. M. A. H. Y. L. K. D. A. Mohammed, “Bridging Law and Machine Learning: A Cybersecure Model for Classifying Digital Real Estate Contracts in the Metaverse,” Mesopotamian J. Big Data, vol. 2025, pp. 35–49, 2025, doi: 10.58496/MJBD/2025/003.

[94] A. S. Albahri, Y. L. Khaleel, and M. A. Habeeb, “The Considerations of Trustworthy AI Components in Generative AI; A Letter to Editor,” Appl. Data Sci. Anal., vol. 2023, pp. 108–109, 2023, doi: 10.58496/adsa/2023/009.

[95] S. Dargan and M. Kumar, “A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities,” Expert Syst. Appl., vol. 143, p. 113114, 2020, doi: https://doi.org/10.1016/j.eswa.2019.113114.

[96] U. B. Ghosh, R. Sharma, and A. Kesharwani, “Symptoms-Based Biometric Pattern Detection and Recognition,” in Augmented Intelligence in Healthcare: A Pragmatic and Integrated Analysis, S. Mishra, H. K. Tripathy, P. Mallick, and K. Shaalan, Eds., Singapore: Springer Nature Singapore, 2022, pp. 371–399. doi: 10.1007/978-981-19-1076-0_19.

[97] Y. Moolla, A. De Kock, G. Mabuza-Hocquet, C. S. Ntshangase, N. Nelufule, and P. Khanyile, “Biometric Recognition of Infants using Fingerprint, Iris, and Ear Biometrics,” IEEE Access, vol. 9, pp. 38269–38286, 2021, doi: 10.1109/ACCESS.2021.3062282.

[98] K. Krishna Prakasha and U. Sumalatha, “Privacy-Preserving Techniques in Biometric Systems: Approaches and Challenges,” IEEE Access, vol. 13, pp. 32584–32616, 2025, doi: 10.1109/ACCESS.2025.3541649.

[99] A. I. Awad, A. Babu, E. Barka, and K. Shuaib, “AI-powered biometrics for Internet of Things security: A review and future vision,” J. Inf. Secur. Appl., vol. 82, p. 103748, 2024, doi: https://doi.org/10.1016/j.jisa.2024.103748.

[100] S. B. Abdullahi et al., “Biometric Information Recognition Using Artificial Intelligence Algorithms: A Performance Comparison,” IEEE Access, vol. 10, pp. 49167–49183, 2022, doi: 10.1109/ACCESS.2022.3171850.

[101] M. Ghilom and S. Latifi, “The Role of Machine Learning in Advanced Biometric Systems,” Electronics, vol. 13, no. 13, 2024, doi: 10.3390/electronics13132667.

[102] E. Kruger, G. Porter, P. Birch, L. Bizo, and M. Kennedy, “The dimensions of ‘forensic biosecurity’ in genetic and facial contexts,” Secur. J., vol. 37, no. 4, pp. 1746–1768, 2024, doi: 10.1057/s41284-024-00445-1.

[103] S. G. L. Persiani, B. Kobas, S. C. Koth, and T. Auer, “Biometric Data as Real-Time Measure of Physiological Reactions to Environmental Stimuli in the Built Environment,” Energies, vol. 14, no. 1, 2021, doi: 10.3390/en14010232.

[104] M. Smith and S. Miller, Biometric identification, law and ethics. Springer Nature, 2021.

[105] G. V. Cervi, “Why and How Does the EU Rule Global Digital Policy: an Empirical Analysis of EU Regulatory Influence in Data Protection Laws,” Digit. Soc., vol. 1, no. 2, p. 18, 2022, doi: 10.1007/s44206-022-00005-3.

[106] V. Stepenko, L. Dreval, S. Chernov, and V. Shestak, “EU Personal Data Protection Standards and Regulatory Framework,” J. Appl. Secur. Res., vol. 17, no. 2, pp. 190–207, 2022, doi: 10.1080/19361610.2020.1868928.

[107] C. Labadie and C. Legner, “Building data management capabilities to address data protection regulations: Learnings from EU-GDPR,” J. Inf. Technol., vol. 38, no. 1, pp. 16–44, 2023, doi: 10.1177/02683962221141456.

[108] N. T. Nikolinakos, EU policy and legal framework for Artificial intelligence, Robotics and related Technologies-the AI Act. Springer, 2023.

[109] Y. L. Khaleel, M. A. Habeeb, A. S. Albahri, T. Al-Quraishi, O. S. Albahri, and A. H. Alamoodi, “Network and cybersecurity applications of defense in adversarial attacks: A state-of-the-art using machine learning and deep learning methods,” J. Intell. Syst., vol. 33, no. 1, 2024, doi: 10.1515/jisys-2024-0153.

[110] H. M. Abdulfattah, K. Y. Layth, and A. A. Raheem, “Enhancing Security and Performance in Vehicular Adhoc Networks: A Machine Learning Approach to Combat Adversarial Attacks,” Mesopotamian J. Comput. Sci., vol. 2024, pp. 122–133, 2024, doi: 10.58496/MJCSC/2024/010.

[111] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D. Mukhopadhyay, “A survey on adversarial attacks and defences,” CAAI Trans. Intell. Technol., vol. 6, no. 1, pp. 25–45, 2021, doi: 10.1049/cit2.12028.

[112] A. Makrushin, A. Uhl, and J. Dittmann, “A Survey on Synthetic Biometrics: Fingerprint, Face, Iris and Vascular Patterns,” IEEE Access, vol. 11, pp. 33887–33899, 2023, doi: 10.1109/ACCESS.2023.3250852.

[113] A. K. Jain, D. Deb, and J. J. Engelsma, “Biometrics: Trust, But Verify,” IEEE Trans. Biometrics, Behav. Identity Sci., vol. 4, no. 3, pp. 303–323, 2022, doi: 10.1109/TBIOM.2021.3115465.

[114] S. Marrone and C. Sansone, “On the transferability of adversarial perturbation attacks against fingerprint based authentication systems,” Pattern Recognit. Lett., vol. 152, pp. 253–259, 2021, doi: https://doi.org/10.1016/j.patrec.2021.10.015.

[115] M. Abdul-Al, G. Kumi Kyeremeh, R. Qahwaji, N. T. Ali, and R. A. Abd-Alhameed, “The Evolution of Biometric Authentication: A Deep Dive Into Multi-Modal Facial Recognition: A Review Case Study,” IEEE Access, vol. 12, pp. 179010–179038, 2024, doi: 10.1109/ACCESS.2024.3486552.

[116] T. DoCarmo, S. Rea, E. Conaway, J. Emery, and N. Raval, “The law in computation: What machine learning, artificial intelligence, and big data mean for law and society scholarship,” Law & Policy, vol. 43, no. 2, pp. 170–199, 2021, doi: https://doi.org/10.1111/lapo.12164.

[117] A. Zafar, “Balancing the scale: navigating ethical and practical challenges of artificial intelligence (AI) integration in legal practices,” Discov. Artif. Intell., vol. 4, no. 1, p. 27, 2024, doi: 10.1007/s44163-024-00121-8.

[118] C. Cancela-Outeda, “The EU’s AI act: A framework for collaborative governance,” Internet of Things, vol. 27, p. 101291, 2024, doi: https://doi.org/10.1016/j.iot.2024.101291.

[119] “Cataract classification - wikidoc.” https://www.wikidoc.org/index.php/Cataract_classification (accessed May 01, 2025).

[120] L. A. E. Al-saeedi et al., “Artificial Intelligence and Cybersecurity in Face Sale Contracts: Legal Issues and Frameworks ,” Mesopotamian J. CyberSecurity, vol. 4, no. 2 SE-Articles, pp. 129–142, Aug. 2024, doi: 10.58496/MJCS/2024/0012.

[121] Y. L. Khaleel, M. A. Habeeb, and M. A. Ahmed, “Refrigerator optimization: Leveraging RESnet method for enhanced storage efficiency,” AIP Conf. Proc., vol. 3264, no. 1, p. 40009, Mar. 2025, doi: 10.1063/5.0258460.

[122] B. Koonce, “ResNet 50,” in Convolutional Neural Networks with Swift for Tensorflow, Berkeley, CA: Apress, 2021, pp. 63–72. doi: 10.1007/978-1-4842-6168-2_6.

[123] Y. L. Khaleel, M. A. Habeeb, and G. G. Shayea, “Integrating Image Data Fusion and ResNet Method for Accurate Fish Freshness Classification,” Iraqi J. Comput. Sci. Math., vol. 5, no. 4, p. 21, 2024.

[124] M. Heydarian, T. E. Doyle, and R. Samavi, “MLCM: Multi-Label Confusion Matrix,” IEEE Access, vol. 10, pp. 19083–19095, 2022, doi: 10.1109/ACCESS.2022.3151048.

[125] G. Naidu, T. Zuva, and E. M. Sibanda, “A Review of Evaluation Metrics in Machine Learning Algorithms,” in Artificial Intelligence Application in Networks and Systems, R. Silhavy and P. Silhavy, Eds., Cham: Springer International Publishing, 2023, pp. 15–25.

[126] R. Susmaga, “Confusion Matrix Visualization,” in Intelligent Information Processing and Web Mining, M. A. Kłopotek, S. T. Wierzchoń, and K. Trojanowski, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 107–116.

[127] M. Muntean and F.-D. Militaru, “Metrics for Evaluating Classification Algorithms,” in Education, Research and Business Technologies, C. Ciurea, P. Pocatilu, and F. G. Filip, Eds., Singapore: Springer Nature Singapore, 2023, pp. 307–317.

[128] M. Grandini, E. Bagli, and G. Visani, “Metrics for multi-class classification: an overview,” arXiv Prepr. arXiv2008.05756, 2020.

[129] H. R. Sofaer, J. A. Hoeting, and C. S. Jarnevich, “The area under the precision-recall curve as a performance metric for rare binary events,” Methods Ecol. Evol., vol. 10, no. 4, pp. 565–577, 2019, doi: https://doi.org/10.1111/2041-210X.13140.

[130] D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, p. 6, 2020, doi: 10.1186/s12864-019-6413-7.

[131] G. G. Shayea, M. H. M. Zabil, M. A. Habeeb, Y. L. Khaleel, and A. S. Albahri, “Strategies for protection against adversarial attacks in AI models: An in-depth review,” J. Intell. Syst., vol. 34, no. 1, p. 20240277, 2025, doi: 10.1515/jisys-2024-0277.

[132] Y. L. Khaleel, H. M. Abdulfattah, and H. Alnabulsi, “Adversarial Attacks in Machine Learning: Key Insights and Defense Approaches,” Appl. Data Sci. Anal., vol. 2024, pp. 121–147, 2024, doi: 10.58496/ADSA/2024/011.

[133] S. F. M. Al-Najjar, “Criminal responsibilities arising from artificial intelligence crimes,” Imam Ja'afar Al-Sadiq University Journal of Legal Studies, vol. 4, no. 1, Art. 5, 2024. [Online]. Available: https://ijsu.researchcommons.org/ijsu/vol4/iss1/5

[134] F. Yohanna and S. I. Suleiman, “The impact of artificial intelligence on creativity, innovation and intellectual property rights in Nigeria,” Imam Ja'afar Al-Sadiq University Journal of Legal Studies, vol. 4, no. 2, Art. 6, 2024. [Online]. Available: https://ijsu.researchcommons.org/ijsu/vol4/iss2/6

Similar Articles

You may also start an advanced similarity search for this article.