A Novel of Bounded Zeghdoudi Distribution: Estimations, Simulation and Applications

Main Article Content

Mohammed Elgarhy
Hanene Hamdani
Laxmi Prasad Sapkota
Ahmed M. Gemeay

Abstract

 In this article, we introduce a new unit Zeghoudi distribution, which is called the bounded Zeghoudi distribution (BZD), an innovative modification of the Zeghoudi distribution (ZD). This new suggested distribution retains the original ZD’s simplicity while improving modeling flexibility and accuracy for data constrained to the unit interval. The BZD displays numerous significant characteristics, including decreased, left-skewed, right-skewed, and unimodal probability density functions, but the hazard rate function can be J-shaped, U-shaped, and bathtub-shaped. Some important statistical features of the BZD, such as moments, mean, variance, moment generating function, lower and upper incomplete moments, mean residual life, mean inactivity time, some inequality measures, and order statistics, are computed. We demonstrate the effectiveness and reliability of the BZD using sixteen standard techniques for parameter estimation, supported by an extensive simulation analysis. Beyond its general statistical usefulness, the BZD is particularly relevant for cybersecurity analytics, where many key indicators such as intrusion detection rates, anomaly scores, attack probabilities, packet loss ratios, and vulnerability exploitability. The implementation of the BZD on four actual proportional datasets concerning failure rate, engineering, and medical data illustrates its efficacy and superiority compared to many well-known statistical models, such as ZD, unit Lindley distribution, the unit Teissier distribution, the reduced Kies distribution, exponentiated reduced Kies distribution, the Kumaraswamy distribution, beta distribution, and the unit Burr-III distribution.
  

Article Details

Section

Articles

How to Cite

Elgarhy, M. ., Hamdani, H. ., Sapkota, L. P. ., & Gemeay, A. M. . (2025). A Novel of Bounded Zeghdoudi Distribution: Estimations, Simulation and Applications. Mesopotamian Journal of CyberSecurity, 5(3), 1292-1323. https://doi.org/10.58496/MJCS/2025/067

References

[1] Sarra Chouia and Halim Zeghdoudi. “The xlindley distribution: Properties and application”. In: Journal of Statistical Theory and Applications

20.2 (2021. https://doi.org/10.2991/jsta.d.210607.001), pages 318–327.

[2] Abdelfateh Beghriche, Yusra A Tashkandy, Mahmoud E Bakr, Halim Zeghdoudi, Ahmed M Gemeay, Md Moyazzem Hossain, and Abdisalam

Hassan Muse. “The inverse XLindley distribution: Properties and application”. In: IEEE Access 11 (2023. https://doi.org/10.1109/ACCESS.2023.3271604),

pages 47272–47281.

[3] Mohamed Cherif Belili, Arwa M Alshangiti, Ahmed M Gemeay, Halim Zeghdoudi, Kadir Karakaya, ME Bakr, Oluwafemi Samson Balogun,

Mintodê Nicodème Atchadé, and Eslam Hussam. “Two-parameter family of distributions: Properties, estimation, and applications”. In: AIP

Advances 13.10 (2023. https://doi.org/10.1063/5.0173532).

[4] Abdelfateh Beghriche, Halim Zeghdoudi, Vinoth Raman, and Sarra Chouia. “New polynomial exponential distribution: properties and applications”. In: Statistics in Transition new series 23.3 (2022), pages 95–112.

[5] Ahmed M Gemeay, Abdelfateh Beghriche, Laxmi Prasad Sapkota, Halim Zeghdoudi, Nicholas Makumi, ME Bakr, and Oluwafemi Samson Balogun. “Modified XLindley distribution: Properties, estimation, and applications”. In: AIP Advances 13.9 (2023. https://doi.org/10.1063/5.0172056).

[6] Ali Algarni, Abdullah M. Almarashi, I Elbatal, Amal S. Hassan, Ehab M Almetwally, Abdulkader M. Daghistani, and Mohammed Elgarhy.

“Type I Half Logistic Burr X-G Family: Properties, Bayesian, and Non-Bayesian Estimation under Censored Samples and Applications to

COVID-19 Data”. In: Mathematical Problems in Engineering 2021.1 (2021. https://doi.org/10.1155/2021/5461130), page 5461130.

[7] Mohammed Elgarhy, Najwan Alsadat, Amal S Hassan, Christophe Chesneau, and Alaa H Abdel-Hamid. “A new asymmetric modified Topp–

Leone distribution: Classical and Bayesian estimations under progressive type-II censored data with applications”. In: Symmetry 15.7 (2023.

https://doi.org/10.3390/sym15071396), page 1396.

[8] SidAhmed Benchiha, Laxmi Prasad Sapkota, Aned Al Mutairi, Vijay Kumar, Rana H Khashab, Ahmed M Gemeay, Mohammed Elgarhy, and

Said G Nassr. “A new sine family of generalized distributions: Statistical inference with applications”. In: Mathematical and Computational

Applications 28.4 (2023. https://doi.org/10.3390/mca28040083), page 83.

[9] Hanita Daud, Ahmad Abubakar Suleiman, Aliyu Ismail Ishaq, Najwan Alsadat, Mohammed Elgarhy, Abubakar Usman, Pitchaya Wiratchotisatian, Usman Abdullahi Ubale, and Yu Liping. “A new extension of the Gumbel distribution with biomedical data analysis”. In: Journal of

Radiation Research and Applied Sciences 17.4 (2024. https://doi.org/10.1016/j.jrras.2024.101055), page 101055.

[10] Ibrahim E Ragab, Hanita Daud, Ahmad Abubakar Suleiman, Najwan Alsadat, Vasili BV Nagarjuna, and Mohammed Elgarhy. “Type II ToppLeone exponentiated gamma distribution with application to breaking stress data”. In: Journal of Radiation Research and Applied Sciences 17.3

(2024. https://doi.org/10.1016/j.jrras.2024.101045), page 101045.

[11] Ahmad Abubakar Suleiman, Hanita Daud, Aliyu Ismail Ishaq, Mohamed Kayid, Rajalingam Sokkalingam, Yaman Hamed, Mahmod Othman,

Vasili BV Nagarjuna, and Mohammed Elgarhy. “A new Weibull distribution for modeling complex biomedical data”. In: Journal of Radiation

Research and Applied Sciences 17.4 (2024. https://doi.org/10.1016/j.jrras.2024.101190), page 101190.

[12] Mintodê Nicodème Atchadé, Melchior AG N’bouké, Aliou Moussa Djibril, Aned Al Mutairi, Manahil SidAhmed Mustafa, Eslam Hussam,

Hassan Alsuhabi, and Said G Nassr. “A new Topp-Leone Kumaraswamy Marshall-Olkin generated family of distributions with applications”.

In: Heliyon 10.2 (2024. https://doi.org/10.1016/j.heliyon.2024.e24001).

[13] Sajid Mehboob Zaidi, Zafar Mahmood, Mintodê Nicodème Atchadé, Yusra A Tashkandy, ME Bakr, Ehab M Almetwally, Eslam Hussam,

Ahmed M Gemeay, and Anoop Kumar. “Lomax tangent generalized family of distributions: characteristics, simulations, and applications on

hydrological-strength data”. In: Heliyon (2024. https://doi.org/10.1016/j.heliyon.2024.e32011).

[14] Mintodê Nicodème Atchadé, Melchior N’bouké, Aliou Moussa Djibril, Shabnam Shahzadi, Eslam Hussam, Ramy Aldallal, Huda M Alshanbari,

Ahmed M Gemeay, and Abdal-Aziz H El-Bagoury. “A New Power Topp–Leone distribution with applications to engineering and industry data”.

In: PLoS one 18.1 (2023. https://doi.org/10.1371/journal.pone.0278225), e0278225.

[15] Mintodê Nicodème Atchadé, Mahoulé Jude Bogninou, Aliou Moussa Djibril, and Melchior N’bouké. “Topp-leone cauchy family of distributions

with applications in industrial engineering”. In: Journal of Statistical Theory and Applications 22.4 (2023. https://doi.org/10.1007/s44199-023-

00069-1), pages 339–365.

[16] Mustapha Muhammad, Badamasi Abba, Jinsen Xiao, Najwan Alsadat, Farrukh Jamal, and Mohammed Elgarhy. “A new three-parameter flexible

unit distribution and its quantile regression model”. In: IEEE Access (2024. https://doi.org/10.1109/ACCESS.2024.3485219).

[17] Hanan Haj Ahmad, Ehab M Almetwally, Mohammed Elgarhy, and Dina A Ramadan. “On unit exponential pareto distribution for modeling the

recovery rate of COVID-19”. In: Processes 11.1 (2023. https://doi.org/10.3390/pr11010232), page 232.

[18] Najwan Alsadat, Mohammed Elgarhy, Kadir Karakaya, Ahmed M Gemeay, Christophe Chesneau, and Mahmoud M Abd El-Raouf. “Inverse

unit Teissier distribution: Theory and practical examples”. In: Axioms 12.5 (2023. https://doi.org/10.3390/axioms12050502), page 502.

[19] Ahmed M Gemeay, Najwan Alsadat, Christophe Chesneau, and Mohammed Elgarhy. “Power unit inverse Lindley distribution with different

measures of uncertainty, estimation and applications”. In: AIMS Mathematics 9.8 (2024. https://doi.org/10.3934/math.20241021), pages 20976–

21024.

[20] Mustafa Ç Korkmaz and Christophe Chesneau. “On the unit Burr-XII distribution with the quantile regression modeling and applications”. In:

Computational and Applied Mathematics 40.1 (2021. https://doi.org/10.1080/03610926.2019.1664586), page 29.

[21] Mustafa Ç Korkmaz and Zehra Sedef Korkmaz. “The unit log–log distribution: A new unit distribution with alternative quantile regression modeling and educational measurements applications”. In: Journal of Applied Statistics 50.4 (2023. https://doi.org/10.1080/02664763.2021.2001442),

pages 889–908.1323

[22] Huayang Cai, Yajun Wang, Tongtiegang Zhao, and Haosu Zhang. “A general unit hydrograph distribution and its application on the marginal

distribution of global wind speed”. In: Sustainable Horizons 6 (2023. https://doi.org/10.1016/j.horiz.2023.100056), page 100056.

[23] H. Messaadia and H. Zeghdoudi. “Zeghdoudi distribution and its applications”. In: International Journal of Computing Science and Mathematics

9.1 (2018. https://doi.org/10.1504/IJCSM.2018.090722), pages 58–65.

[24] Sule Omeiza Bashiru, Mohamed Kayid, R Mahmoud, Oluwafemi Samson Balogun, MM Abd El-Raouf, and Ahmed M Gemeay. “Introducing

the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data”. In: Journal of Radiation Research and Applied

Sciences 18.1 (2025. https://doi.org/10.1016/j.jrras.2024.101204), page 101204.

[25] Anuwoje Abonongo and John Abonongo. “Exponentiated Generalized Weibull Exponential Distribution: Properties, Estimation and Applications”. In: Computational Journal of Mathematical and Statistical Sciences 3.1 (2024. 10.21608/cjmss.2023.243845.1023), pages 57–84.

issn: 2974-3435. doi: 10 . 21608 / cjmss . 2023 . 243845 . 1023. eprint: https : / / cjmss . journals . ekb . eg / article _ 328917 _

a37c870c5e622889dc7d441aafa3c7cd.pdf. url: https://cjmss.journals.ekb.eg/article_328917.html.

[26] Laxmi Prasad Sapkota, Vijay Kumar, Getachew Tekle, Hleil Alrweili, Manahil SidAhmed Mustafa, and M. Yusuf. “Fitting Real Data Sets by a

New Version of Gompertz Distribution”. In: Modern Journal of Statistics 1.1 (July 2025. https://doi.org/10.64389/mjs.2025.01109), pages 25–48.

[27] Ahlam. Tolba. “Bayesian and Non-Bayesian Estimation Methods for Simulating the Parameter of the Akshaya Distribution”. In: Computational

Journal of Mathematical and Statistical Sciences 1.1 (2022. https://doi.org/10.21608/cjmss.2022.270897), pages 13–25. issn: 2974-3435. doi:

10.21608/cjmss.2022.270897. eprint: https://cjmss.journals.ekb.eg/article_270897_ef26ccc8998b03d917589e77797f4665.

pdf. url: https://cjmss.journals.ekb.eg/article_270897.html.

[28] Ahmed M. Gemeay, Thatayaone Moakofi, Oluwafemi Samson Balogun, Egemen Ozkan, and Md. Moyazzem Hossain. “Analyzing Real Data

by a New Heavy-Tailed Statistical Model”. In: Modern Journal of Statistics 1.1 (2025. https://doi.org/10.64389/mjs.2025.01108), pages 1–24.

[29] Nooruldeen A. Noori, Mundher A. Khaleel, Sara A. Khalaf, and Subhankar Dutta. “Analytical Modeling of Expansion for Odd Lomax Generalized Exponential Distribution in Framework of Neutrosophic Logic: a Theoretical and Applied on Neutrosophic Data”. In: Innovation in

Statistics and Probability 1.1 (June 2025. https://doi.org/10.64389/isp.2025.01104), pages 47–59. doi: 10.64389/isp.2025.01104. url:

https://sphinxsp.org/journal/index.php/isp/article/view/4.

[30] Qasim Nasir Husain, Asmaa S. Qaddoori, Nooruldeen A. Noori, Kamal Najim Abdullah, Ahmad Abubakar Suleiman, and Oluwafemi Samson

Balogun. “New Expansion of Chen Distribution According to the Nitrosophic Logic Using the Gompertz Family”. In: Innovation in Statistics

and Probability 1.1 (June 2025. https://doi.org/10.64389/isp.2025.01105), pages 60–75. doi: 10 . 64389 / isp . 2025 . 01105. url: https :

//sphinxsp.org/journal/index.php/isp/article/view/5.

[31] A. Krishna, R. Maya, C. Chesneau, and M. R. Irshad. “The unit Teissier distribution and its applications”. In: Mathematical and Computational

Applications 27.1 (2022. https://doi.org/10.3390/mca27010012), page 12.

[32] Charles P Quesenberry and Craige Hales. “Concentration bands for uniformity plots”. In: Journal of Statistical Computation and Simulation

11.1 (1980. https://doi.org/10.1080/00949658008810388), pages 41–53.

[33] Josmar Mazucheli, André Felipe Menezes, and Sanku Dey. “Unit-Gompertz distribution with applications”. In: Statistica 79.1 (2019), pages 25–

43. doi: 10.6092/issn.1973-2201/8497.

[34] P Jodrá. “A bounded distribution derived from the shifted Gompertz law”. In: Journal of King Saud University-Science 32.1 (2020), pages 523–

536. doi: 10.1016/j.jksus.2018.08.001.

[35] D R Wingo. “Maximum likelihood methods for fitting the Burr type XII distribution to life test data”. In: Biometrical journal 25.1 (1983.

https://doi.org/10.1002/bimj.19830250109), pages 77–84.

[36] Josmar Mazucheli, André Felipe Berdusco Menezes, and Subrata Chakraborty. “On the one parameter unit-Lindley distribution and its associated

regression model for proportion data”. In: Journal of Applied Statistics 46.4 (2019. https://doi.org/10.1080/02664763.2018.1511774), pages 700–

714.

[37] CS Kumar and SHS Dharmaja. “On reduced Kies distribution”. In: Collection of recent statistical methods and applications (2013), pages 111–

123.

[38] C Satheesh Kumar and SHS Dharmaja. “The exponentiated reduced Kies distribution: Properties and applications”. In: Communications in

Statistics-Theory and Methods 46.17 (2017. https://doi.org/10.1080/03610926.2016.1193199), pages 8778–8790.

[39] MC Jones. “Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages”. In: Statistical methodology 6.1 (2009.

https://doi.org/10.1016/j.stamet.2008.04.001), pages 70–81.

[40] Kanak Modi and Vinod Gill. “Unit Burr-III distribution with application”. In: Journal of Statistics and Management Systems 23.3 (2020.

https://doi.org/10.1080/09720510.2019.1646503), pages 579–592.

[41] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, 2023. url:

https://www.R-project.org/.

Similar Articles

You may also start an advanced similarity search for this article.