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A B S T R A C T  
 

The introduction and rapid evolution of generative artificial intelligence (genAI) models necessitates a 
refined understanding for the concept of “intelligence”. The genAI tools are known for its capability to 
produce complex, creative, and contextually relevant output. Nevertheless, the deployment of genAI 
models in healthcare should be accompanied appropriate and rigorous performance evaluation tools. In 
this rapid communication, we emphasizes the urgent need to develop a “Generative AIQ Test” as a novel 
tailored tool for comprehensive benchmarking of genAI models against multiple human-like intelligence 
attributes. A preliminary framework is proposed in this communication. This framework incorporates 
miscellaneous performance metrics including accuracy, diversity, novelty, and consistency. These 
metrics were considered critical in the evaluation of genAI models that might be utilized to generate 
diagnostic recommendations, treatment plans, and patient interaction suggestions. This communication 
also highlights the importance of orchestrated collaboration to construct robust and well-annotated 
benchmarking datasets to capture the complexity of diverse medical scenarios and patient demographics. 
This communication suggests an approach aiming to ensure that genAI models are effective, equitable, 
and transparent. To maximize the potential of genAI models in healthcare, it is important to establish 
rigorous, dynamic standards for its benchmarking. Consequently, this approach can help to improve 
clinical decision-making with enhancement in patient care, which will enhance the reliability of genAI 
applications in healthcare. 

1. INTRODUCTION 

Integrating the generative artificial intelligence (genAI) tools into healthcare practice marks a paradigm shift, with 
enhancement in the technological role to improve the quality of patient care [1][2]. These genAI tools offer possible 
improvements across various aspects of healthcare including the diagnosis, management, and prevention of diseases [1] [3] 
[4]. GenAI tools are characterized by the ability to create diverse range of content (e.g., text, images). Additionally, these 
tools are capable of data predictions. Hence, genAI tools can massively impact several core aspects of healthcare [5-7]. For 
example, genAI tools in the field of radiology can help in analyzing complex radiologic images with precision and speed 
beyond the reach of human radiologists [8-10]. A practical illustration of AI capabilities in radiology has been shown through 
the use of AI algorithms to detect early-stage cancers and to interpret complex scans in neurology [11-13]. Of note, genAI 
tools’ ability gains momentum over time through learning from thousands of previous cases to become more reliable in 
detecting subtle abnormalities that might be overlooked by the human eye [14]. 

GenAI models such as ChatGPT, Bing, and Gemini can revolutionize diagnostics, personalized medicine, and patient 
interactions [15]. However, the recognized limitations of genAI models should be highlighted and addressed particularly in 
the context of healthcare as follows [1][4]. First, the AI-generated content depends on the training data; thus, the quality, 
diversity, and volume of training data would significantly impact genAI models’ performance and reliability [16]. 
Consequently, the use of incomplete or biased datasets to train genAI models can lead to biased predictions and decisions 
[17] [18]. This is of particular concern in healthcare settings [1]. For example, if an AI-based diagnostic tool is trained on 
data retrieved predominantly from certain demographic groups, the AI performance would be less effective for the 
underrepresented groups [19]. 
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Second, the genAI models are described as “black boxes”, which denotes that the content generated by AI algorithms lacks 
transparency [20]. This lack of transparency would represent a significant barrier in healthcare settings, where the rationale 
behind diagnostic or treatment recommendations should be understood for both trust and accountability [21]. Thus, 
physicians and patients may become hesitant to rely on AI recommendations without a clear understanding of how the 
conclusions were derived, especially in critical or life-threatening scenarios [22-24]. 

Third, the integration of genAI models in the routine healthcare mandates complex regulations and rigorous standards in 
order to protect patients’ safety and privacy [5][25]. The compliance of genAI models with the strict healthcare regulations 
(e.g., Health Insurance Portability and Accountability Act on patient data privacy, Food and Drug Administration guidelines 
for medical devices), can be a challenge for these models [26]. Additionally, the rapid evolution of genAI capabilities could 
exceed the pace of development of corresponding regulation frameworks. Subsequently, this would lead to potential gaps in 
genAI oversight in healthcare practice [27] [28]. 

Finally, genAI models must consistently show high reliability in performance in order to be trusted with clinical decisions. 
Variability in genAI models’ performance, which could be related to variable training data or different operational 
conditions, would result in inconsistent clinical outcomes. Subsequently, this would undermine trust in genAI models and 
further complicate the utility of AI in healthcare [29]. 

Based on the aforementioned points suggesting the complex features of genAI models, it is necessary to establish a 
comprehensive and meticulous benchmarking framework to ensure the AI safety, efficacy, and ethical compliance [30]. 
Safety is of particularly important in healthcare, where the risks associated with incorrect or unsafe AI-generated 
recommendations can have ominous consequences [31]. Safety of genAI in healthcare entails validation of AI performance 
across diverse patient demographics and variable disease presentation. The failure to perform rigorous testing for safety of 
genAI in healthcare could lead to patient harm, loss of trust in medical AI applications, and legal consequences for healthcare 
providers [32]. 

Most of all, the reliability of genAI models’ performance in healthcare must be demonstrated in real-world [33]. This requires 
conducting longitudinal research investigations to compare AI-assisted interventions against evidence-based best practices 
in healthcare. Another important aspect that should be taken into consideration in AI integration in healthcare is the ethical 
compliance. The ethical compliance involves genAI operation without bias as well as the performance respecting patients’ 
autonomy and privacy. To ensure the ethical compliance of genAI in healthcare, benchmarking is required to detect and 
prevent biases which might arise from biased training datasets. For example, a genAI model initially developed for genetic 
disorders’ screening requires evaluation to make sure it does not prioritize or disadvantage patients’ groups based on age, 
ethnicity, or socioeconomic status. Additionally, ethical genAI benchmarking must guarantee the privacy standards, which 
involves handling sensitive in a secure manner. Furthermore, genAI benchmarking involves providing transparency to 
patients and healthcare providers regarding how AI recommendations are generated. A notable example for AI benchmarking 
frameworks is illustrated by MedPerf, which was introduced by Alexandros Karargyris et al., which benchmarks medical 
AI models via federated evaluation across different facilities [34]. This approach would help to ensure the privacy and 
efficiency via direct assessment of AI model performance using real-world data under human supervision [34]. 

Despite the absence of a consensus definition, “intelligence” can be defined based on the ability to comprehend complex 
concepts, adapt to varying conditions, learn from experience, employ reasoning, and to handle challenges using cognitive 
processes [35]. Thus, intelligence among humans is recognized as a dynamic, multi-dimensional construct which can be 
viewed as a broad reflection of human cognitive abilities [36]. 

Due to limitations in genAI models’ adaptability compared to the human brain, the measurement and benchmarking of the 
currently available genAI models represent a challenging task. Specifically, the human brain is characterized by the ability 
to process a wide range of sensory data, adapt to new environments, and learn from minimum information [37]. On the other 
hand, genAI models require large training datasets to learn and can struggle to make rational generalizations beyond the 
models’ training conditions [38]. This aspect in particular emphasizes the need for sophisticated benchmarking tools to 
effectively measure the cognitive capabilities of genAI models, and to ensure that these AI models are both robust and 
versatile. 

This brief communication aimed to highlight the urgent need to develop a Generative AI Quotient Test (genAIQ), in order 
to enable the robust evaluation of the cognitive genAI capabilities. The genAIQ aims to provide a standardized approach to 
evaluate how the genAI tools perform tasks typically associated with human intelligence, such as learning, reasoning, and 
problem-solving, under varied and unexpected conditions. For example, a genAI model trained in diagnostic radiology 
should excel in recognizing the conditions it has been explicitly trained on, and also demonstrate adaptability to handle rare, 
ambiguous, or complex cases that differ significantly from those presented in training data. 

The call for establishing a preliminary framework to rigorously evaluate genAI, as discussed in this communication, involves 
the incorporation of diverse concepts of human intelligence. This includes the basic cognitive processes as well as the aspects 
of emotional and social intelligence, which are can challenging for genAI tools to emulate. In particular, the ability to 
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understand and interpret human emotions can be crucial for AI applications in healthcare settings, where empathetic 
communication and sensitivity to the patients’ emotional states are crucial. 

Establishing a comprehensive framework for benchmarking would ensure that genAI tools are technically competent, safe, 
and effective in real-world settings. This involves continuous revision and updates of the benchmarking tools to keep pace 
with advances in AI technology. Ultimately, the development of a genAIQ test and its associated framework represents a 
critical step towards the responsible integration of AI technologies into sectors where human-like cognitive abilities are 
essential, which would ensure that these AI tools augment human capabilities without causing collateral damage. 

 

2. Suggested Metrics for a Benchmarking Framework for GenAI Models 

Given the rapid advances in genAI models, there is an urgent need to develop a framework to benchmark its performance, 
especially in healthcare settings [1][4][39]. This initiative involves the establishment of specific performance metrics to 
evaluate the effectiveness of genAI applications. These metrics are proposed as foundational elements for future 
comprehensive frameworks aiming for rigorous assessment of genAI capabilities, and to ensure that these models are 
effective, equitable, and successfully integrated into clinical practice (Figure 1). 

 

Fig. 1. A proposed framework for benchmarking generative artificial intelligence (genAI). 

The first performance metric is the accuracy metric which would help to assess how AI-generated output aligns with the 
strict standards approved by healthcare experts. This should cover varying aspects such as the diagnostic accuracy and 
reliability of treatment recommendations by genAI models. The second performance metric involves diversity which is 
another crucial metric to be considered, focusing on the genAI’s ability to handle a broad spectrum of clinical scenarios. This 
would reflect the complexity and variety of patient cases in clinical practice, which would help to ensure that genAI models 
are flexible and robust enough to meet the standards in healthcare. 

Third, novelty should also be considered as a performance metric, which involves measurement of genAI ability to produce 
new insights and novel solutions beyond the training data. This metric aims to support the development of genAI models 
that introduce innovative solutions in patient care; thus, enhancing the existing medical practices. Consistency is also a 
critical performance metric, evaluating the reliability of genAI models across various cases and conditions. This metric aims 
to ensure that genAI outputs are consistent and reliable, which would aid in genAI integration into routine clinical practice. 
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Finally, the speed and efficiency of genAI models must be assessed among the performance metrics. This metric is 
particularly important to assess genAI ability to effectively operate in real-time clinical settings. 

The second aspect necessary for genAI benchmarking involves the development of comprehensive, annotated datasets. These 
datasets should accurately represent real-world patients’ demographics and various medical conditions. Additionally, these 
datasets must be updated regularly to incorporate the emerging health conditions and disease trends. 

Third, genAI models must undergo rigorous benchmarking against the current best practices in healthcare and benchmarking 
against prior AI models. Additionally, the benchmarking should include direct comparisons with human performance. This 
process is important to assess whether genAI can meet or even surpass the established gold standards of patient care. 

Forth, the employment of rigorous statistical methods is crucial to determine the significance of performance differences 
among genAI models. This would help to ensure that any observed improvements or failures are not merely due to random 
variations in the data. 

Fifth, evaluating genAI models for potential biases is essential to ensure safe outcomes. It is equally important to maintain 
transparency in genAI decision-making processes and ensure that these AI models can be understood and reviewed with ease 
by clinicians. 

Sixth, implementing a feedback mechanism that utilizes real-world application data to continuously train and benchmark 
genAI models is critical. This ensures that AI remains adaptive to new information and consistently aligns with evolving 
healthcare standards. 

Finally, a significant challenge in benchmarking genAI is the creation and sustaining of high-quality, diverse datasets free 
from biases. The subjective nature of certain medical judgments further complicates the standardization of benchmarks. As 
AI technologies advance, the frameworks used for their evaluation must also evolve, necessitating continuous adaptation of 
benchmarking standards. 

3. Suggestion for the Development of a Generative AIQ Test 

The integration of genAI into cognitive assessment represents both a remarkable opportunity and a complex challenge. A 
suggestion is the exploration of a genAIQ test that would measure genAI models’ cognitive abilities, similar to assessments 
utilized to benchmark human intelligence. This concept would involve evaluating whether genAI can produce correct 
solutions and demonstrate creativity, adaptability, and a deep understanding of varying contexts. The development of such 
a test would require a comprehensive approach that mirrors the complex nature of human intelligence and acknowledges the 
unique capabilities and limitations of genAI. 

Reflecting on the established theories of human intelligence, the development of a genAIQ test requires a comprehensive 
evaluation of AI across various cognitive domains. This includes assessment of problem-solving and reasoning abilities, 
particularly how genAI handle complex, unfamiliar problems and to propose effective solutions. Additionally, the test should 
measure the genAI model learning and adaptability in response to new information, its creativity and innovation in generating 
novel ideas absent from training data, and its capability to comprehend and contextualize instructions within a specific 
framework. 

Methodologically, the creation of a genAIQ test involves important considerations. The design of test items should challenge 
genAI models across a broad range of cognitive abilities, including logic, abstract reasoning, pattern recognition, and creative 
thinking. Unlike static assessments, a genAIQ test should incorporate real-time data to adapt based on the genAI responses, 
to enable a deeper exploration of the AI cognitive processes. Establishing relevant benchmarks and a fair scoring system that 
accounts for the diversity of AI capabilities is also crucial. 

However, the development of such a test is fraught with technical and ethical challenges. Technically, the relevance of the 
test across various AI forms with potentially different architectures must be ensured, adding layers of complexity. Ethically, 
it is important to avoid embedding human biases within the AI, especially biases related to cultural or contextual 
interpretations. 

4. CONCLUSIONS 

As genAI continues to advance with expanding influence, the establishment of a robust and comprehensive benchmarking 
framework becomes imperative. This framework is essential for the evaluation of genAI models across multiple dimensions, 
to mirror the complex and adaptive qualities of human intelligence that these models aim to replicate. Rigorous testing and 
continuous monitoring of these genAI models is required in order to enable healthcare professionals to integrate genAI into 
their practices with confidence, thereby enhancing patient outcomes while upholding the highest standards of care and ethical 
responsibility. 



 

 

73 Sallam et al., Mesopotamian Journal of Artificial Intelligence in Healthcare Vol.2024, 69–75 

This communication has briefly outlined the critical components of a genAI benchmarking framework and advocates for its 
swift development and implementation. The creation of a genAIQ test stands at the forefront of AI and cognitive psychology, 
offering a method to measure the intellectual capabilities of genAI models thoroughly and accurately. This process is 
essential for improving the understanding, utilization, and governance of genAI, to ensure that these models operate reliably, 
safely, and ethically. 

Furthermore, the implementation of a genAIQ test could revolutionize the development, deployment, and trust in genAI 
models across various sectors, particularly in healthcare. It would offer a standardized approach for comparing different 
genAI models, and enhance our comprehension of genAI evolving capabilities and ensuring they meet ethical standards and 
practical demands. 
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