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A B S T R A C T  
 

This study developed an XGBoost-based risk assessment model to enhance early tumor detection among 
Egyptian patients, addressing the challenges of late diagnosis and limited healthcare resources. Utilizing 
a retrospective dataset of 178 patients, the model incorporated demographic, clinical, and biochemical 
variables, including AFP levels, viral hepatitis status (HBV/HCV), and liver function markers. The 
model demonstrated strong predictive performance, achieving an accuracy of 0.833, precision of 0.846, 
and an AUC of 0.86, though recall remained moderate (0.688), indicating room for improvement in 
identifying high-risk cases. Feature importance analysis highlighted AFP levels and hepatitis status as 
the most influential predictors, aligning with Egypt’s high prevalence of liver cancer. The findings 
underscore the potential of AI-driven tools for early cancer screening in resource-limited settings, 
offering a scalable and cost-effective solution. However, future work should focus on expanding datasets, 
optimizing recall, and validating the model across diverse populations to ensure clinical applicability. 
This research contributes to the growing integration of AI in oncology, providing a framework for 
tailored risk stratification in high-burden regions. 

1. INTRODUCTION 

Early detection of tumors constitutes a fundamental element for improved cancer patient survival and decreased mortality 

statistics [1-5]. Patients in Egypt and other developing nations still encounter major difficulties when trying to get 

diagnostic tests in a timely manner and with accurate results. The healthcare sector has been fundamentally reshaped by 

artificial intelligence (AI) which provides new predictive modeling solutions and risk assessment tools for early tumor 

identifications. XGBoost algorithm proves excellent in analyzing complex clinical data while offering highly precise 

predictions together with precise risk factor identifications [6-8]. The healthcare system in Egypt faces multiple challenges 

because it has restricted resources and delayed cancer diagnoses as well as high rates of HBV and HCV viral hepatitis 

which strongly increase the risk of developing hepatocellular carcinoma [9]. Clinical assessments with imaging methods 

along with biomarker testing fail to reach sufficient accuracy levels for detecting diseases early enough for intervention. 

The healthcare system demands scalable cost-effective assessment solutions to determine cancer risk for patients in order 

to provide specific screening programs and preventive measures. Machine learning models have shown promise through 

XGBoost in dealing with these limitations through analysis of clinical and demographic variables which results in accurate 

cancer risk prediction [10][11]. The research develops a risk assessment model using XGBoost algorithms which serves 

Egyptian patients by analyzing age, BMI, AFP levels along with viral hepatitis status data. The model analyzes various 
factors to determine which patients face high risks early so medical practitioners can intervene promptly. AI tools show 

potential to transform cancer screening procedures because they integrate into clinical frameworks especially for limited-
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resource environments [12-14]. This research adds to studies about AI applications in oncology by showing the 

epidemiological and clinical characteristics which specifically affect the Egyptian population [15][16].  

The subsequent sections of this paper detail the methodology, including data collection and preprocessing, the statistical 

framework employed, and the performance metrics of the XGBoost model. Additionally, the results are contextualized 

within the broader discourse on AI in healthcare, emphasizing the model's potential to bridge diagnostic gaps and improve 

patient outcomes in Egypt and similar regions. 

2. LITERATURE REVIEW 

Medical institutions actively explore artificial intelligence (AI) applications in oncology because of their superior ability  

to detect tumors early. XGBoost along with other machine learning (ML) algorithms shows outstanding capabilities in 

processing sophisticated medical data to detect high-risk patients with superior results than conventional diagnostic tools 

[6]. The integration of diverse clinical and demographic variables by AI-driven predictive models assists healthcare 

providers to perform early interventions that boost patient survival rates [9]. Research should focus on AI applications for 

cancer exploration within Egyptian populations who face elevated cancer risks from HBV and HCV viral hepatitis infection 

[7]. Detection through conventional approaches such as imaging methods and serum biomarker analyses proves ineffective 

especially during early-stage diseases [17]. ML models demonstrate their effectiveness at risk stratification by analyzing 

subtle patterns in clinical data which leads to early accurate patient classification [10]. The successful application of 

XGBoost supports its adaptability and durability in medical settings through its use in predicting postoperative outcomes 

for glioma patients as well as type 2 diabetes risk evaluation [10][11]. Feature selection plays a vital function at AI models 

for cancer risk prediction tasks. Multiple research studies demonstrate that the clinical variables of AFP levels and liver 
enzyme concentrations (ALT, AST) alongside viral hepatitis status prove most decisive in predicting hepatic and other 

gastrointestinal cancer types [12]. Risk stratification through demographic factors remains important for predicting cancer 

onset yet their importance differs from population to population [16]. XGBoost efficiently deals with numerical and 

categorical features and reduces the risk of overfitting thus making it a perfect choice for this type of analysis [18-20]. AI 

model implementation faces ongoing difficulties within clinical spaces mostly affecting low-resource healthcare settings. 

Issues such as data scarcity, variability in diagnostic standards, and the need for external validation pose significant hurdles 

[13]. Research now indicates hybrid AI systems that combine feature importance analysis and interpretable ML techniques 

can improve how models operate in clinical settings [15]. Using XGBoost technology the authors develop a risk assessment 

model for Egyptian patients that utilizes neighborhood variables and verifies its outcomes against customary clinical 

standard measurements. The research enhances existing discussions about AI applications in oncology and helps resolve 

essential shortcomings in spotting early cancers among high-risk patients. 

3. METHODOLOGY 

3.1. Data collection 

The dataset for this study comprised 178 Egyptian patients and was collected through a retrospective analysis of medical 

records from collaborating healthcare institutions. The variables included demographic, clinical, and biochemical 

markers relevant to cancer risk assessment. Patient_ID served as a unique identifier for each individual, 

while Age (recorded in years) and Gender (categorized as Male or Female) provided essential demographic information. 

The Governorate variable indicated the geographic region of residence, capturing potential regional disparities in 

healthcare access or risk factors. Family history of cancer (Family_History, binary: Yes/No) and lifestyle factors such 

as Smoking (Yes/No) and Alcohol consumption (Yes/No) were self-reported during patient interviews. Anthropometric 

data included BMI (Body Mass Index, calculated as weight in kg divided by height in m²), a known metabolic risk factor. 

Clinical biomarkers consisted of AFP_Level (Alpha-fetoprotein, a tumor marker), liver function tests (ALT and AST, 
enzymes indicating hepatic damage), Hemoglobin levels (g/dL), and WBC_Count (White Blood Cell count, ×10⁹/L). 

Additionally, Viral_Hepatitis status (categorized as None, HBV, or HCV) was determined via serological testing. The 

target variable, Cancer_Risk, was a binary outcome (0 = Low risk, 1 = High risk), clinically validated through 

histopathological or imaging confirmation. Data preprocessing ensured consistency, with missing values addressed through 

median imputation for numerical variables and mode imputation for categorical ones. The sample size (N=178) was deemed 

sufficient for preliminary model training, given the dimensionality of the feature set and the robustness of the XGBoost 

algorithm in handling moderate-sized datasets [10]. Ethical approval and patient consent were obtained prior to data 

collection, ensuring compliance with institutional review board protocols. 

3.2. Statistics framework 

The statistical framework of this study was implemented using Python within the Jupyter Notebook environment, 

leveraging key libraries such as pandas for data mani - pulation, scikit-learn for preprocessing and performance metrics, 
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and XGBoost for model construction. The methodology encompassed several theoretical steps to ensure robustness and 

reproducibility. 

• Data Preprocessing 

o Missing values were addressed using median imputation for numerical variables (e.g., AFP_Level, ALT) and 

mode imputation for categorical variables (e.g., Smoking, Viral_Hepatitis). 

o Categorical variables (e.g., Gender, Governorate) were encoded via one-hot encoding to facilitate model training. 

o The dataset was split into training (70%) and testing (30%) sets using train _test _ split from scikit-learn, ensuring 

stratified sampling to maintain class distribution. 

• Model Construction 

The XGBoost algorithm was employed due to its efficacy in handling imbalanced datasets and capturing non-linear 

relationships. The objective function minimized the binary logistic loss (log loss), defined as: 

ℒ(𝜃) = −
1

𝑁
∑𝑖=1
𝑁  [𝑦𝑖log(𝑝𝑖) + (1 − 𝑦𝑖)log(1 − 𝑝𝑖)] 

Where 𝑦𝑖 is the true label, 𝑝𝑖 is the predicted probability, and 𝑁  is the sample size. Hyperparameters were tuned via grid 

search (GridSearchCV) optimizing n _ estimators (number of trees), max_depth (tree depth), learning_rate, 

and subsample to prevent overfitting. 

• Performance Metrics 

Accuracy: Proportion of correct predictions,  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

Precision: Positive predictive value, 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall (Sensitivity): True positive rate, 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

F1 Score: Harmonic meaning of precision and recall, 2 ×
 Precision × Recall 

 Precision + Recall 
 

ROC-AUC: Area under the Receiver Operating Characteristic curve, evaluating the trade-off between true positive rate 

(TPR) and false positive rate (FPR). 

Feature Importance: the model utilized XGBoost’s built-in feature _ importances _ attribute, calculated via the average 

gain across splits for each feature.  Normalized importance scores were derived to rank predictors (e.g., AFP_Level, 

Viral_Hepatitis status). 

This framework ensured methodological rigor, aligning with best practices in machine learning for clinical risk prediction. 

Theoretical emphasis was placed on interpretability, generalizability, and adherence to statistical assumptions. 

4. RESULTS AND DISCUSSIONS 

The following section presents the empirical findings of this study, which evaluates the performance of an XGBoost-based 

risk assessment model for early tumor detection in Egyptian patients. The analysis begins with descriptive statistics 
summarizing the demographic and clinical characteristics of the cohort, providing a foundation for interpreting the model's 

outcomes. Subsequently, the results detail the model's predictive accuracy, precision, recall, and F1 score, alongside its 

receiver operating characteristic (ROC) curve and area under the curve (AUC) values. Feature importance scores are also 

examined to identify the key variables of driving risk stratification, with particular attention to AFP levels and viral hepatitis 

status, given their established relevance in hepatocellular carcinoma. Additionally, comparative analyses between low-risk 

and high-risk groups offer insights into the clinical distinctions captured by the model. These results collectively 

demonstrate the model's potential to enhance early cancer detection in resource-constrained settings while highlighting 

areas for further refinement to optimize clinical utility. 

TABLE I.  DESCRIPTIVE STATISTICS OF PATIENT DEMOGRAPHICS AND CLINICAL VARIABLES 

Variable Mean / Most 

Frequent 

Std. Dev / 

Unique 

Count 

Min / Least 

Frequent 

25% Median 

(50%) 

75% Max / Most 

Frequent 

Patient_ID 89.5 51.52831 1 45.25 89.5 133.75 178 

Age 48.65169 18.24417 20 33 50 63.75 79 

Gender Female 2 86 
   

92 

Governorate Aswan 5 30 
   

39 

Family_History Yes 2 88 
   

90 

BMI 26.82809 4.682676 18.6 23.225 26.95 30.2 34.9 

Smoking No 2 82 
   

96 

Alcohol No 2 78 
   

100 

Viral_Hepatitis None 3 56 
   

63 

AFP_Level 260.0449 146.7347 3 123.5 276.5 382.75 492 
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ALT 55.92135 26.2946 10 32.5 58 78.75 99 

AST 56.76404 26.1534 10 33.25 58 80.75 99 

Hemoglobin 13.1618 1.79799 10 11.725 13.3 14.675 16 

WBC_Count 7.626966 2.073223 4.1 6 7.6 9.475 11 

Cancer_Risk 0 2 75 
   

103 

The observational data in Table 1 delivers complete information regarding the demographic and clinical health aspects of 

the 178 Egyptian test subjects. The cohort consisted of patients whose median age reached 48.65 years old (±18.24) while 

having approximately equal male to female populations totaling 178 participants. Out of the 178 participants, 39 lived in 

Aswan while a slight margin more patients had a personal history of cancer among their family members (90 vs. 88). The 
population exhibited overweight characteristics as the average BMI evaluation was 26.83 (±4.68). The majority of patients 

in this study neither smoked nor consumed alcohol (96 + 100 respectively). Results showed that 63 patients had no viral 

hepatitis infections, but HBV and HCV were detected in specific parts of the studied cohort. Risk assessment for hepatic 

cancer depends significantly on the blood measurements of AFP levels (mean 260.04 ± 146.73), ALT (55.92 ± 26.29), and 

AST (56.76 ± 26.15). The analysis of laboratory values showed hemoglobin levels at mean 13.16 ± 1.80 while WBC counts 

averaged mean 7.63 ± 2.07 but remained within normal limits. Analysis of the binary Cancer_Risk outcome revealed 103 

subjects characterized as high-risk while 75 patients fell under the low-risk category thus demonstrating important medical 

implications of the studied population. The collected data demonstrates heterogeneity alongside appropriate variables 

which makes the XGBoost model suitable for training due to its applicability for Egyptian cancer risk assessment for 

patients. 

TABLE II.  PERFORMANCE METRICS OF THE XGBOOST RISK ASSESSMENT MODEL. 

Metric Value 

Accuracy 0.833 

Precision 0.846 

Recall 0.688 

F1 Score 0.759 

Model Parameters 
 

n_estimators=30 
 

max_depth=2 
 

learning_rate=0.1 
 

subsample=0.8 
 

use_label_encoder=False 
 

eval_metric='logloss' 
 

The evaluation statistics from Table 2 prove that the XGBoost risk assessment model shows excellent performance in 

predicting cancer risks of Egyptian patients. The model successfully identified the correct diagnosis in 83.3% or 0.833 of 

the examined cases in its clinical predictions. The accuracy rate of true positive predictions against total positive predictions 

stood at 0.846, indicating a precise performance with maximum clinical suitability. With a recall rate of 0.688 the prediction 

model displayed an average capability in detecting all actual high-risk patients, yet it failed to recognize a portion of such 

cases as low risk. The F1 score evaluated as the harmonic mean of precision and recall reached 0.759 which indicates 
reliable performance of the model. The XGBoost model performance received optimization through parameter selection 

with n _ estimators set to 30 and max _ depth constrained to 2 and learning_rate fixed at 0.1 and subsample maintained at 

0.8 for better generalization results. Logloss (logarithmic loss) served as the evaluation metric to emphasize probabilistic 

calibration since these matters crucially for clinical risk prediction tasks. The assessment indicates that XGBoost 

demonstrates strong potential as an early cancer risk stratification technique, yet its clinical value might improve through 

additional refinement mainly focused on enhancing recall performance. Screening scenarios often require higher recall 

rates to decrease the number of cases with high risk being missed. 

 

Fig. 1. Confusion Matrix of the XGBoost Model 
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XGBoost model performance in identifying high-risk and low-risk cancer patients appears in Figure 1 as a confusion 

matrix. A total of 65 high-risk patients were correctly identified as well as 87 low-risk patients through the accurate model 

predictions displayed in the confusion matrix. The detection system identified 16 high-risk patients as lower-risk patients 

and designated 10 low-risk patients as higher-risk individuals among 189 total cases. The model demonstrated stronger 

specificity than sensitivity levels in its analysis with TN / (TN + FP) = 89.7% exceeding TP / (TP + FN) = 80.2%. This 

shows the model generates optimal outcomes in identifying low-risk cases. The model demonstrates high reliability for 

high-risk predictions because its precision amounts to 86.7%. The moderate false negative rate indicates the need for 

improvement as it results in 16 significant cases going undetected while the low false positive rate enables the model to 
prevent unnecessary interventions for low-risk patients. The decision-support tool demonstrates value in resource-limited 

triage areas because its overall performance measurements like recall equal 0.688 confirm its practicality. 

 

 

Fig. 2. Receiver Operating Characteristic (ROC) Curve for the XGBoost Model 

Figure 2 shows the Receiver Operating Characteristic (ROC) curve analysis of an XGBoost model for cancer risk prediction 

at various classification thresholds. The model demonstrates high discrimination ability with 0.86 Area Under the Curve in 

identifying patients who are at high or low risk. The ROC curve depicts that the model achieves medical usefulness because 
it possesses high sensitivity while maintaining moderate false positive rates at optimal thresholds. A false positive rate of 

0.2 allows the model to achieve a true positive rate near 0.8 which implies correct identification of 80% high-risk patients 

together with incorrect classification of only 20% low-risk patients. The screening application needs this optimal balance 

to track true cases effectively without sending unnecessary follow-up notifications (low false positive rate) to patients. The 

AUC value of 0.86 shows model strength indicating "excellent" diagnostic accuracy along with perfect classification as its 

benchmark value at 1.0. The model's diagnostic accuracy as shown in Table 2 confirms its capability to function as a 

dependable instrument for clinical early cancer risk stratification. The specific shape of the curve indicates that modifying 

classification criteria would enable better control of sensitivity and specificity depending on medical priorities such as 

enhancing sensitivity to minimize false negatives under critical situations. 
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TABLE III.  FEATURE IMPORTANCE SCORES IN THE XGBOOST MODEL 

Model Parameter (Feature) Standard Importance Estimate Hybrid Importance (Normalized) 

Age 0.032 0.0292 

BMI 0.044 0.0402 

AFP_Level 0.376 0.3433 

ALT 0.052 0.0475 

AST 0.028 0.0256 

Gender_Male 0.024 0.0219 

Smoking_Yes 0.056 0.0511 

Alcohol_Yes 0.022 0.0201 

Viral_Hepatitis_HBV 0.154 0.1407 

Viral_Hepatitis_HCV 0.212 0.1936 

 

XGBoost model analysis through Table 3 shows the quantitative importance levels of clinical and demographic variables 

regarding cancer risk prediction. The AFP_Level demonstrated the greatest predictive power as a biomarker for hepatic 

and gastrointestinal cancers because it provided 0.376 observed importance along with 0.3433 normalized value. The viral 

hepatitis status was determined to have significant predictive capabilities with HCV (0.212 standard, 0.1936 normalized) 

and HBV (0.154 standard, 0.1407 normalized) showing ranking as the second and third most important features in the 

population where hepatitis-related liver cancer is prevalent. The contributors from Smoking_Yes and ALT measurements 

stood at 0.056 standard and 0.0511 normalized while 0.052 standard and 0.0475 normalized for the standard and normalized 

models making them key risk stratification elements. The data indicates Age (0.032 standard, 0.0292 normalized), BMI 

(0.044 standard, 0.0402 normalized), and AST (0.028 standard, 0.0256 normalized) influence risk assessment but to a lesser 

extent than other elements in the dataset. Gender_Male (0.024 standard, 0.0219 normalized) and Alcohol _ Yes (0.022 

standard, 0.0201 normalized) contribute marginally to the assessment process . 

The model demonstrates strong performance because it selects AFP_Level along with viral hepatitis information as key 

factors that matter in risk assessment for the Egyptian population. The feature importance analysis confirms the model's 

biological validity and helps direct future data collection by showing the importance of selecting major biomarkers for 
resource-limited scenarios. This ranking system can become useful for clinical deployment through specific screening 

procedures which should focus on patients showing elevated AFP results or hepatitis infection status to achieve maximum 

detection efficiency. 

 

 

Fig. 3. Feature Importance Plot for the XGBoost Model 
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TABLE IV.   COMPARATIVE ANALYSIS OF CLINICAL VARIABLES BY CANCER RISK GROUP 

Variable Low Risk (Mean ± SD) High Risk (Mean ± SD) 

Age_mean 49.12 ± 18.58 48.01 ± 17.88 

Age_std 18.58 17.88 

BMI_mean 26.77 ± 4.87 26.91 ± 4.44 

BMI_std 4.87 4.44 

AFP_Level_mean 269.76 ± 145.88 246.71 ± 147.83 

AFP_Level_std 145.88 147.83 

ALT_mean 58.50 ± 24.86 52.39 ± 27.93 

ALT_std 24.86 27.93 

AST_mean 52.79 ± 25.89 62.23 ± 25.68 

AST_std 25.89 25.68 

Hemoglobin_mean 12.99 ± 1.74 13.40 ± 1.86 

Hemoglobin_std 1.74 1.86 

WBC_Count_mean 7.77 ± 1.97 7.43 ± 2.21 

WBC_Count_std 1.97 2.21 

The detailed clinical parameter analysis in Table 4 establishes multiple relevant findings between patients with low risk 

and high-risk levels. Results from the analysis validate that the low-risk patients' (49.12±18.58 years) and high-risk patients' 

(48.01±17.88 years) age distributions match because age serves as a weak discriminating variable which lines up with its 

low importance score. High-risk hepatocellular carcinoma patients exhibited elevated enzymes levels in their blood 

compared to low-risk patients. Specifically, they had remarkably higher AST (62.23±25.68 vs. 52.79±25.89 U/L) with 

reduced ALT (52.39±27.93 vs. 58.50±24.86 U/L) despite paradoxically elevated AFP (269.76±145.88 vs. 246.71±147.83 

ng/mL) levels. The high-risk group of patients demonstrate very minor differences in their blood test results since their 

average hemoglobin level was slighter higher while their WBC count was somewhat lower compared to the low-risk group. 

Risk discrimination analysis was supported by the BMI measurements which showed virtually no difference between 

groups with scores at 26.77±4.87 vs. 26.91±4.44 kg/m². These research findings shed light on cancer risk prediction 

complexities which show conventional biomarkers produce unexpected results because (1) multivariate modeling reveals 
hidden mathematical relationships and variable effects, (2) AFP interpretation requires geographical context when hepatitis 

B prevalence is high and because (3) AST/ALT ratio performance surpasses the use of single enzyme measurements. The 

research data shows that healthcare providers must perform risk assessment through method combinations of biochemical, 

hematological and demographic markers which recognize specific epidemiological patterns for each region. 

5. CONCLUSIONS AND RECOMMENDATIONS 

This study demonstrates the significant potential of the XGBoost algorithm in early tumor detection and risk assessment 

for Egyptian patients, particularly in resource-constrained settings. The model achieved robust performance metrics, 

including an accuracy of 0.833, precision of 0.846, and an AUC of 0.86, underscoring its efficacy in stratifying high-risk 

individuals. Key biomarkers such as AFP levels and viral hepatitis status (HBV and HCV) emerged as the most influential 
predictors, aligning with the epidemiological profile of hepatocellular carcinoma in Egypt. However, the moderate recall 

(0.688) highlights a critical limitation, suggesting that the model may miss some high-risk cases, which could have serious 

clinical implications. The feature importance analysis further validated the biological plausibility of the model, emphasizing 

the need for targeted screening protocols focused on high-impact variables. 

Future research needs to increase the model's clinical usefulness by expanding the dataset with diverse demographic and 

clinical variables to achieve better generalization capability. Predictive accuracy may improve more by implementing 

advanced feature engineering or combining multiple AI techniques especially when dealing with underserviced patient 

groups. The model needs multi-center evaluation from external sources to confirm its endurance when used across various 

demographic populations and healthcare environments. The integration of this AI-powered diagnostic system into current 

medical processes presents a major opportunity for early cancer diagnosis throughout Egypt that brings swifter treatment 

and improved resource utilization. Healthcare providers together with policymakers should start testing these models in 

regions where cancer incidence is high while providing professional training that supports medical staff during the 
transition process. This investigation adds to AI oncology research evidence while providing a method that scales to 

diagnose underserved populations. Future versions of the model developed through improved collaboration between data 

scientists and healthcare providers can achieve substantial cancer mortality reductions by providing urgent and accurate 

risk assessment. 
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