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A B S T R A C T  
 

Cardiovascular disease (CVD) continues to be the predominant cause of mortality globally, underscoring 
the critical necessity for prompt and precise diagnostic techniques.  This paper introduces an innovative 
machine learning framework for categorizing heartbeat sounds into four classifications—normal, 
murmur, additional heart sound, and artifact—utilizing audio recordings from the PhysioNet/CinC 
Challenge 2016 dataset.  The methodology employs Mel-Spectrograms and Mel-Frequency Cepstral 
Coefficients (MFCCs) for feature extraction, converting raw heart sound data into comprehensive time-
frequency representations.  A Convolutional Neural Network (CNN) is utilized for classification, with 
its hyperparameters refined by the recently developed Frilled Lizard Optimization (FLO) method, a bio-
inspired metaheuristic that emulates the hunting and climbing behaviors of the frilled lizard.  The 
suggested method illustrates the capability of integrating deep learning with sophisticated optimization 
techniques to improve the diagnostic precision of cardiac auscultation, particularly in non-clinical and 
remote environments.  This can facilitate the development of intelligent, scalable, and proactive 
intervention methods in preventative cardiovascular healthcare. 

1. INTRODUCTION 

Cardiovascular disease is the number one cause of death on the globe, according to the World Health Organization (WHO), 

and approximately 17.9 million lives are claimed by it every year with 20.5 million deaths recorded in 2021[1]. 

Furthermore, about 85% of cardiovascular episodes are to be blamed on exacerbation of coronary cardiac vessels [2].  

Cardiovascular conditions include a wide range of illnesses that affect blood vessels and the heart, such as rheumatic heart 

diseases, cerebrovascular disorders, and coronary heart diseases, among others. Hyperlipidemia, diabetes, hypertension, 

and similar health conditions are the leading causes of the cardiovascular risks in obese patients [3]. A major impact of this 
disorder would be an increased level of dependence on it as we get older. In senior citizens, cardiovascular disease can lead 

to more serious problems than younger subjects given that the recovery rates are also impaired due to age [4]. Therefore, 

precise cardiovascular diseases treat the person in time, that's what we need now [5]. In using information technology to 

improve health, it is suggested that the safe and efficient use of emerging technologies combined with the proper procedures 

should be ensured by the healthcare providers to pave the way to preventive health care empowerment [6]. The clinical 

activities involve many tools for the diagnosis of cardiovascular diseases. As a basic diagnostic method, auscultation 

consists of listening to the sounds of a beating heart through a stethoscope placed on the chest of the patient and it helps in 

the process of diagnosis [7] Although auscultation is still accurate, diagnosing cardiovascular and heart disorders remain a 

puzzle, especially for the nonmedical and the fresh doctors [8]. Auscultation is accurate but is really demanding so, it 

requires ways of thorough experience and prolonged training to diagnose cardiovascular diseases effectively [9]. 

On the area of technology where artificial intelligence (AI) especially machine learning (ML) and deep learning (DL) has 

demonstrated its power and talent is the in the area of scalable systems and high-resolution systems where machine learning 

and deep learning algorithms have been major contributions [10][11]. The categorization of cardiovascular anomalies 

through heart sound waves has garnered considerable attention, particularly with the emergence of machine learning (ML) 

Mesopotamian Journal of Artificial Intelligence in Healthcare 

Vol.2025, pp. 96–104 

DOI: https://doi.org/10.58496/MJAIH/2025/010; ISSN: 3005-365X 

https://mesopotamian.press/journals/index.php/MJAIH  

https://mesopotamian.press
https://orcid.org/0009-0008-1417-186X
https://orcid.org/0009-0002-6486-584X
https://orcid.org/0009-0006-1283-6739
https://orcid.org/0009-0000-7612-0584
https://orcid.org/0000-0003-2755-1497
https://orcid.org/0000-0002-3059-8061
https://creativecommons.org/licenses/by/4.0/
https://mc04.manuscriptcentral.com/mjaih
https://doi.org/10.58496/MJAIH/2025/010
https://mesopotamian.press/journals/index.php/MJAIH


 

 

97 Alhasani et al, Mesopotamian Journal of Artificial Intelligence in Healthcare Vol.2025, 96–104 

and deep learning (DL) technology. Auscultation, the process of listening to heart sounds with a stethoscope, has 

conventionally served as a fundamental diagnostic instrument.  This approach is significantly reliant on clinical competence 

and has diminished reliability among less experienced practitioners [12]. In response to this, numerous scholars have 

investigated digital signal processing methodologies utilized for phonocardiograms (PCG). The PhysioNet/CinC Challenge 

2016 dataset facilitated research by providing a common benchmark for heart sound classification [13].  Researchers 

frequently convert PCG recordings into time-frequency representations, such Mel-Spectrograms and Mel-Frequency 

Cepstral Coefficients (MFCCs), which more accurately correspond to human auditory perception and provide substantial 

features for machine learning algorithms. Various machine learning models have been employed for PCG classification, 
including Support Vector Machines (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN).  Nonetheless, these 

models frequently depend on manually produced characteristics and may encounter difficulties in generalization inside 

noisy or non-clinical environments [16][17]. Deep learning, especially Convolutional Neural Networks (CNNs), has 

emerged as a powerful method for directly learning characteristics from spectrogram images.  Convolutional Neural 

Networks (CNNs) have exhibited superior efficacy in the classification of images and audio signals, encompassing heart 

sound analysis [14].  Their stratified architecture allows for the extraction of both low- and high-level characteristics, 

rendering them especially proficient at detecting murmur patterns and anomalies in cardiac recordings. Optimizing CNN 

parameters is essential for attaining good classification accuracy. Conventional tuning techniques, like grid search and 

manual setting, are laborious and inefficient.  Bio-inspired metaheuristic algorithms have been utilized for hyperparameter 

optimization to address this issue.  Prevalent methodologies encompass Particle Swarm Optimization (PSO), Genetic 

Algorithms (GA), and Grey Wolf Optimizer (GWO).  Falahah et al. developed Frilled Lizard Optimization (FLO), an 

innovative method inspired by the hunting and nesting behaviors of frilled lizards [15].  FLO segments the search process 

into exploration and exploitation stages, efficiently traversing the solution space for optimal model parameters. 

2. METHODOLOGY 

This section is where all the details of the proposed approach and the model architecture will be found. In this work, a new 

and efficient method of classifying Heartbeat Sounds is proposed. The sound of the dataset should be prepared, and feature 

extraction is the first step. The classification type can be formed and the meaning and standard deviation for each feature 

can be calculated after the feature data frame is formed and the features are extracted. The next thing you should do is to 

preprocess the formed frames. The last stage would be to get the best hyper-parameters of the convolutional neural network 

CNN using the Frilled Lizard Optimization FLO. 

A. Dataset 

 The PhysioNet/CinC Challenge 2016 wants to entice innovation in algorithms to categorize heart sound recordings that 

are collected in different settings; exploration of clinical or nonclinical (like home visits). The main objective is to find, 

through a single brief audio recording (10-60s) from a single precordial location, whether the sample of the recording 

should be treated by a specialized doctor. During the heart rhythm or cardiac cycle, it is the heart that first creates electrical 

activity which then causes atrial and ventricular contractions. This blood flows through the heart and around the body as a 

result. It is the heart valves which open and close and are associated with the accelerations-decelerations of blood, and thus 

the vibrations due to the heart sounds and murmurs are the result. These vibrations can be heard in the chest wall and by 

listening to the characteristic sounds of the heart the health of the heart can be assessed. The phonocardiogram (PCG) 

represents a graphical recording of the heart's sounds. Position-icon-figure (1) shows a brief part of the PCG recording. 

Heartbeats sounds are four types normal, Murmur, extra heart sound and artifact.  

 

Fig. 1. Part of the PCG recording 
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B. Preprocessing 

Firstly, the heartbeat dataset in *.wav format is changed until it signals information. Air pressure waves create sounds that 
are then heard by our ears. A digital audio file is produced by discovering the vibrations of these sound waves and 

subsequently converting them into electrical signals via a sound sensor. By means of this, we understand the wave position 

and temporal behavior. 

Figure (2) depicts the sound made by a heartbeat. The horizontal axis of the graph shows the time taken for the heartbeat, 

and the vertical axis shows the movement of air molecules due to the sound. The amplitude of the wave is indicated by the 

magnitude of the displacement of the air molecules from the molecules' center of mass. 

 

Fig. 2. Heartbeat Sound 

Secondly, the heartbeat signal is transformed into a Mel Spectrogram. A Mel Spectrogram makes two important changes 

relative to a regular Spectrogram that plots Frequency vs Time. Use the Mel Scale instead of Frequency on the y-axis and 

use the Decibel Scale instead of Amplitude to indicate colors. 

In a mel-spectrogram there is only 1 channel (magnitude), and two spatial dimensions: n_mels, mel bands, and T time-

frames (depends on length of the audio).  

fig. 3. displays the Mel Spectrogram of a heartbeat audio signal, graphing how its frequency components vary over time. 

The y-axis Mel scale is aligned with human auditory perception, while color intensity represents signal energy in decibels. 

It shows a time-frequency representation that is used to train the CNN model. This graphical representation contains key 

patterns that facilitate the distinction between classes of heartbeats. 

 

 

Fig. 3. Mel Spectrogram of the Heartbeat sound 
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To create a representation more consistent with human perception, we present a Mel Spectrogram. A Mel Spectrogram is 

a visual representation of how a signal's frequency spectrum changes over time. In the context of audio signals, 

spectrograms are also known as ultrasound, sound signatures, or audiograms. 

C. Feature Extraction 

Machine learning is very much dependent on the extraction and selection of features. The axes of audio signals are 

represented by the frequency, amplitude, and time. The spatial and temporal characteristics of an audio signal give you 
understandable information. The subject it indicates, the time-varying nature of an audio signal, can be digitally quantified. 

It is an audio signal consisting of a number of frequency sound waves with different amplitudes. 

After a Fourier transformation, the sine and cosine signals from a sample are arranged into a spectrum. The spectrogram 

of the frequency content is a representation of the frequency content over time. The audio content gets more complex over 

time with the increase of distortions and the appearance of variations. To make it clear, the audio source is segmented into 

different intervals and many fast Fourier transforms (FFTs) are carried out. The amplitude of the corresponding spectrum 

of the windowed signals is obtained using a fast Fourier transform (FFT) with an input string of windowed signals. The 

logarithm of the corresponding slope intensities of the filters is the nonlinear transform. After the transformation of the 

modified intensities to the MFCC, a modified discrete cosine transform (DCT) is also used in the process. 

There are several methods to extract some foremost audio features.  Changing the audio signal into the mel scale filtering 

which is then represented in the form of a spectrogram is known as the  

cspectrogram imaging. The snapshots are kept and transmitted into the algorithm. On the Mel scale filtering, MFCC offers 

a brief view of the spectral envelope. Higher-order coefficients correspond to pitch and tone while the lower coefficients 

highlight the spectral structure. We utilized 13 MFCC features in this study.  

fig. 3. displays the Mel Spectrogram of a heartbeat audio signal, graphing how its frequency components vary over time. 

The y-axis Mel scale is aligned with human auditory perception, while color intensity represents signal energy in decibels. 

It shows a time-frequency representation that is used to train the CNN model. This graphical representation contains key 
patterns that facilitate the distinction between classes of heartbeats  

 

 

Fig. 4. MFCCs of the Heartbeat sound 

D. CNN 

CNN is a deep learning network capable of identifying and classifying image attributes within computer vision. The 

configuration and functioning of the CNN are influenced by the organization of the brain's visual cortex, which aims to 

mimic the neural connections found in the human brain [17]. CNN's perception, in each receptive field, evaluates the input 

pattern. CNN's subsequent layer is thereby aimed at recognizing basic patterns like lines and curves first and then beyond 
that, faces and objects. As a result, it is suggested that a CNN introduction would be able to increase the computing power 
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of hardware. The convolutional layer is the central aspect of the CNN architecture and is responsible for the very function 

of the latter, figure (4) shows the CNN architecture. 

 
Fig. 5. CNN architecture 

E. Frilled Lizard Optimization (FLO) 

Ibraheem Abu Falahah, et al in 2024 proposed a novel nature-inspired metaheuristic algorithm named Frilled Lizard 

Optimization inspired by the behaviors of the frilled lizards in their natural habitat. The algorithm is formulated into two 

phases: an exploration phase and nesting, and exploitation phases. 

the frilled lizards constitute the FLO population, which can be described as a matrix using Eq.(1). The initial population of 

the frilled lizards within the problem-solving space are established randomly by the Eq. (2) 

𝐹𝐿𝑂𝑝𝑜𝑝 =

[
 
 
 
 
𝑋1,1 ⋯ 𝓍1,2 … 𝓍1,𝐷

⋮ ⋮ ⋮ ⋮ ⋮
𝓍2,1 ⋯ 𝓍2,2 … 𝓍2,𝐷

⋮ ⋮ ⋮ ⋮ ⋮
𝓍𝑁1 … 𝓍𝑁,2 … 𝓍𝑁,𝐷]

 
 
 
 

                                                                            (1) 

𝐹𝐿𝑂𝑖,𝑑 = 𝐿𝑑 +  𝑟 ∗ (𝑈𝑑 − 𝐿𝑑)                                                                               (2) 

Where  𝐹𝐿𝑂pop denotes to the initial population matrix,  𝓍N,D denotes to the search space, 𝑟 is a random number between 

[0, 1], 𝑈𝑑  and  𝐿𝑑  upper band also the lower band of the dimension of search space. 

 

• Mathematical Modelling of FLO 

The iterative changes of the location of the frilled lizard in the problem-solving space constitute the first two separate 

phases. At first, the exploration phase is a movement of the frilled lizard going towards its prey during the hunting 

period, looking into the diverse areas of the search space while at the same time, opening the new possible solutions. 

This phase is the opportunity for the algorithm to examine the different sub-topes of a problem to find the more remote 

areas where there exist optimal solutions. 

Secondly, the exploiting step simulates the frilled lizard's movements going up the tree after the feast. Also, the 

algorithm gains knowledge from the exploration phase to utilize promising areas that are regarded as potential optimal 

solutions. During the exploitation phase, the algorithm endeavors to refine these areas and achieve high-quality 

solutions so as to converge towards the global optimum. 
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Phase 1: Hunting Strategy (Exploration) 

One of the most common behaviors found in a frill-necked lizard is its hunting strategy. With FLO, for every frilled 

lizard, the position of the rest of the population who, doing better, is treated as the prey position. In the process of 

hunting, the preys position using Eq. (3) 

𝐶𝑃𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖𝑎𝑛𝑑 𝑘 ≠ 𝑖}, 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2,… ,𝑁 𝑎𝑛𝑑 𝑘 ∈ {1,2,… . , 𝑁}                                 (3) 

Where 𝐶𝑃 is the candidate is prepared for the 𝑡ℎ𝑖 frilled lizard, 𝑋𝑘 population member with the better objective function 

value then the 𝑡ℎ𝑖 frilled lizard and 𝐹𝑘 its objective function value. 

The design of FLO, It is supposed that the frilled lizard randomly selects prey at this time and attacks it. Based on the 

modeling of the lizard's movement towards the prey that is selected, the new positions for all individuals of the 

population have been calculated using Eq. (4). Then if the objective function value is better, the new position takes 

place of the old position of the corresponding individual by Eq. (5): 

𝑋𝑖,𝑑
𝑝1

=  𝑋𝑖,𝑑 + 𝑟. (𝑆𝑃𝑖,𝑑 − 𝐼. 𝑋𝑖,𝑑), 𝑖 = 1,2,… ,𝑁 𝑎𝑛𝑑 𝑑 = 1,2,… , 𝑚                                         (4) 

𝑋𝑖 =  {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

 
𝑋𝑖 ,               𝑒𝑙𝑠𝑒

                                                                             (5) 

Where 𝑋𝑖
𝑃1 refer to the new suggested position of 𝑖𝑡ℎ frilled lizard based on the first phase of FLO, 𝑋𝑖,𝑑

𝑝1
 represent its 

dth dimension, 𝐹𝑖
𝑃1refer to the objective function value, 𝑟 is a random number between [0,1], 𝑆𝑃𝑖,𝑑 denotes the 𝑑𝑡ℎ 

dimension of the selected prey for the 𝑖𝑡ℎ frilled lizard, 𝐼 is a number randomly taken from the set {1,2}, N denotes 

the number of frilled lizards, and m gives the number of decision variables. 

Phase 2: Moving Up the Tree (Exploitation) 

The frilled lizard climbs a tree and returns to its initial position after having its meal. Representing the movement of 

the frilled lizard to the top of the tree will result in a small change in the position of the population individuals in the 

solution space of the problem, but this will enhance the exploitation power of the algorithm for local search. In the 

second phase of FLO, the population numbers of the population individuals in the solution space are changed 

according to the lizard’s strategy by the time the zooplankton is already at the top of the tree. 

Based on the frilled lizard's movement to the nearest treetop, a new position for each individual in the group is 

calculated using Equation (6). Then, if this new position improves the value of the objective function, it replaces the 

previous position of the corresponding individual using Equation (7). 

𝑥𝑖,𝑑
𝑝2

= 𝑥𝑖,𝑑 + (1 − 2𝑟).
(𝑢𝑏𝑑−𝑙𝑏𝑑)

𝑡
, 𝑖 = 1,2,… ,𝑁, 𝑑 = 1,2,… , 𝑇                                              (6) 

𝑋𝑖 =  {
𝑋𝑖

𝑃2, 𝐹𝑖
𝑃2 < 𝐹𝑖

 
𝑋𝑖 ,              𝑒𝑙𝑠𝑒

                                                                                    (7) 

Where 𝑋𝑖
𝑃2 denotes the new suggested position of the ith frilled lizard based on the second phase of FLO, 𝑥𝑖,𝑑

𝑝2
 

represents its dth dimension, 𝐹𝑖
𝑃2 gives its objective function value, t represents the iteration counter of the algorithm, 

and T describes the maximum number of iterations of the algorithm. 

3. RESULTS  

Figure. 6. This bar chart illustrates the classification correctness of the FLO-optimized Convolutional Neural Network (CNN) 

on four heart sound classes: Normal, Murmur, Extra Heart Sound, and Artifact. The highest accuracy in the "Normal" class 

(94%) reveals the model's high ability to distinguish normal heartbeats. The "Artifact" class also reveals high accuracy (91%), 

showing the model's effectiveness in filtering out unwanted or noisy information. The worst accuracy, 87%, is obtained for 

the "Extra Heart Sound" class due to acoustic feature overlap with adjacent classes. The balanced performance across 

categories reflects the strength of the feature extraction and classification pipeline. Optimized accuracy figures were obtained 

upon hyperparameter tuning of the CNN using the Frilled Lizard Optimization algorithm. Bars are annotated with accurate 

accuracy values, providing clear, quantitative data on the strength of model prediction. This visualization can be used to 

evaluate which classes would require better feature representation or additional training samples. 
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Fig. 6. Classification Accuracy per Heartbeat Class 

Figure. 7. Show Confusion matrix is indicating the model's per-class accuracy for all classes of heartbeat by converting 
predicted labels into true ones. The accurate classifications are diagonal values with the "Normal" class receiving 45 out of 
50 accurate predictions. Misclassifications are pointed via off-diagonal values, for instance, 2 Normal samples classified as 
Artifact and 3 Murmurs misclassified as Extra Heart Sound. This visualisation facilitates the detection of specific class 
overlaps and identification of which classes the model is finding hardest to predict. Despite the fact that there are some 
misclassifications, the matrix confirms high precision and recall per class, particularly Normal and Artifact. Utilization of 
the FLO algorithm in CNN optimization facilitates this high accuracy because it effectively modifies model parameters. 
These matrices play an important role in medical diagnosis models where slight mistakes can cause a significant difference 
in outcomes. Overall, the model demonstrates extremely good discrimination between classes, justifying its suitability for 

actual applications of auscultation tasks. 

 

Fig. 7. Confusion Matrix of CNN Model Optimized by FLO 

4. CONCLUSIONS  

Cardiovascular diseases (CVDs) continue to be a significant global health concern, resulting in millions of fatalities each 
year. Timely and precise identification is crucial for averting severe consequences and enhancing patient outcomes. This 
study presents a sophisticated framework for the automated classification of heartbeat sounds utilizing advanced signal 
processing and deep learning methodologies. The framework was designed to improve the precision, rapidity, and scalability 
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of heart sound diagnostics, especially beneficial in non-clinical and resource-limited environments. We employed the 
PhysioNet/CinC Challenge 2016 dataset, a comprehensive collection of authentic heartbeat sound recordings gathered from 
various contexts. The audio signals were transformed into informative representations, including Mel-Spectrograms and 
Mel-Frequency Cepstral Coefficients (MFCCs), which efficiently maintain the time-frequency patterns essential for 
identifying cardiovascular problems. The use of both Mel-Spectrogram and MFCC characteristics guarantees a more precise 
comprehension of the heart's mechanical operation. We utilized a Convolutional Neural Network (CNN) to categorize 
heartbeat sounds into four separate classifications: normal, murmur, additional heart sound, and artifact, using its ability to 
understand intricate patterns in high-dimensional data. To augment the model's efficacy, we incorporated the newly 
introduced Frilled Lizard Optimization (FLO) algorithm. This bio-inspired optimization method emulates the adaptive 
hunting and climbing behaviors of frilled lizards, achieving a balance between exploration and exploitation throughout the 
training process. Through the optimization of the CNN's hyperparameters using FLO, we attained enhanced classification 
accuracy and resilience to overfitting. The suggested system exhibited robust prediction capabilities and provided a scalable 
approach suitable for integration into portable diagnostic instruments or embedded systems. This is especially beneficial for 
early screening in rural and underdeveloped regions where professional cardiologists may be scarce. The amalgamation of 
machine learning and nature-inspired optimization represents a pivotal advancement in precision and personalized treatment. 
This research presents an innovative and efficient method for heartbeat classification through the integration of deep learning 
and metaheuristic optimization. The primary contributions of the study encompass the creation of a FLO-optimized CNN 
architecture, the incorporation of perceptually significant audio elements, and the effective classification of various cardiac 
sound patterns. These contributions facilitate the progression of automated diagnostic systems that assist medical personnel 
and diminish diagnostic errors. We advocate assessing the proposed system on larger and more varied datasets to ensure 
generalizability in future study. Further research could investigate the real-time implementation of the model in wearable 
medical devices or mobile applications. Furthermore, the efficacy of FLO may be juxtaposed with other state-of-the-art 
optimization algorithms, and ensemble methodologies could be explored to enhance classification performance. Expanding 
the approach to encompass multi-class classification of additional cardiac irregularities and including ECG signals may 
provide enhanced insights into cardiovascular disorders. 
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