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A B S T R A C T  
 

Type 2 diabetes mellitus (T2DM) is a growing global health concern requiring early detection strategies. 
This study applies a Random Forest machine learning model to predict diabetes progression using a 
structured clinical dataset of 100 patients. The dataset includes demographic, physiological, and 
biochemical variables such as age, BMI, blood pressure, glucose levels, and lipid profiles. After 
preprocessing and training, the model achieved strong performance metrics: accuracy of 0.80, precision 
of 0.84, recall of 0.94, and an AUC of 0.88. Feature importance analysis revealed that systolic blood 
pressure, fasting glucose, and BMI are the most critical predictors. These findings are consistent with 
previous literature and demonstrate the model’s clinical relevance in identifying high-risk patients. The 
model’s ability to generalize across cross-validation folds highlights its robustness and potential 
integration into decision-support systems for proactive diabetes management. The study concludes that 
machine learning models, when properly validated, can offer significant improvements in chronic disease 
prediction and personalized care delivery.

1. INTRODUCTION 

T2DM is a serious chronic health problem worldwide and its frequency is gradually increasing. Since the development of 

autism involves both genetic and environmental reasons, advanced instruments for early diagnosis and prevention are 

required. Conventional ways of making clinical decisions are useful in most situations, but they have difficulty with the 
complex and changing relationships between different clinical variables. The need for diagnosed cancer imaging has led 

people to look at machine learning (ML) as a better alternative for forecasting how cancer grows and moves forward [1]. 

In recent times, machine learning shows promise in figuring out the course of chronic diseases using both electronic records 

and organized clinical information [2][14-16]. Thanks to these models, healthcare workers can identify connections in data 

and create systems to help them proactively look after their patients. Early prediction of T2DM helps with early action that 

can prevent complications and save money on healthcare costs [3][4]. Some papers have applied ML models to identity 

and predict diabetes from people’s age, BMI, blood sugar levels and family history [5][6]. Making blood pressure, lipid 

information and lifestyle data part of the model helps reach more accurate predictions [7][8]. Applying ensemble methods 

like random forests and gradient boosting has given us models that are clear to understand and perform well across 

validation tasks [9][10]. A major advancement in the field is the shift toward explainable AI (XAI), allowing clinicians to 

understand why a model arrived at a specific decision. Tools for visualizing feature importance, such as SHAP values or 

decision trees, help bridge the gap between model prediction and clinical interpretability [11]. 

The authors used a group of 13 important variables in a clinical dataset to further develop these advances. Random forest 

classifiers were applied under a supervised learning framework to estimate the chance of disease progression for a group 

of patients. Because of this, the study helps build the evidence base for using ML-guided interventions for managing 
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diabetes [12][13]. Model evaluation and understanding are used in the work to guide decisions in clinical care and health 

policy creation. 

2. METHODOLOGY 

Analysis for this study was performed using Python, which is very popular in data science and statistical modeling. This 

project makes use of Pandas to deal with data, NumPy for performing calculations, Matplotlib along with Seaborn to see 

plots and Scikit-learn to put into practice machine learning, particularly the Random Forest classifier. These libraries allow 

you to perform preprocessing, build models, run evaluations and make sense of your results easily. The clinical trials used 

data that was both structured from medical records and included information provided by patients. All of this data includes 

13 variables connected to type 2 diabetes. Things to consider are age, gender, BMI, blood pressure readings, glucose and 

lipid profiles, HbA1c levels and a person’s family health background. At this step, the data was tidied up, categorical data 

was encoded, and the sets were split into parts for training and testing. The data used was well-organized and detailed and 

formed the starting point for training a disease progression predictor. 

- Data: 

1. PatientID 

A unique numeric identifier for each patient. 

Type: Integer 

Purpose: Indexing records; not used in model training. 

2. Age 
Represents the patient’s age in years. 

Type: Integer 

Range: 25–80 

Source: Collected from medical records or directly from the patient. 

3. Gender 

Biological sex of the patient. 

Type: Categorical (String) 

Values: 

• "Male" 

• "Female" 

Encoding suggestion for ML: 

• "Male" → 1 

• "Female" → 0 

4. BMI (Body Mass Index) 

Calculated as weight (kg) divided by height squared (m²). 

Type: Float 

Range: 18.5–40.0 

Purpose: Indicates body fat; high values correlate with diabetes risk. 

5. BloodPressure_Systolic 

Systolic blood pressure in mmHg. 
Type: Integer 

Range: 90–180 

Collected via: Blood pressure monitor. 

6. BloodPressure_Diastolic 

Diastolic blood pressure in mmHg. 

Type: Integer 

Range: 60–120 

Collected via: Blood pressure monitor. 

7. FastingGlucose 

Fasting blood sugar level measured in mg/dL. 

Type: Float 

Range: 70–200 

Measured after: At least 8 hours of fasting. 

8. HbA1c 

Glycated hemoglobin level, expressed as a percentage. 
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Type: Float 

Range: 4.5–14.0 

Interpretation: 

• Normal: < 5.7% 

• Prediabetes: 5.7–6.4% 

• Diabetes: ≥ 6.5% 

9. Cholesterol_Total 

Total cholesterol in mg/dL. 

Type: Float 

Range: 120–300 

10. LDL 

Low-density lipoprotein cholesterol ("bad" cholesterol) in mg/dL. 
Type: Float 

Range: 50–200 

11. HDL 

High-density lipoprotein cholesterol ("good" cholesterol) in mg/dL. 

Type: Float 

Range: 30–100 

12. Triglycerides 

Level of triglycerides in mg/dL. 

Type: Float 

Range: 50–300 

Note: High levels indicate metabolic risk. 

13. FamilyHistory 

Indicates whether the patient has a family history of type 2 diabetes. 

Type: Categorical (String) 

Values: 

• "Yes" 

• "No" 
Encoding suggestion for ML: 

• "Yes" → 1 

• "No" → 0 

The dataset includes 13 variables essential for predicting the development of type 2 diabetes using machine learning 

models. Each patient is identified by a unique numeric PatientID, which serves only as an index and is not used in training. 

The Age variable represents the patient's age in years and is an important risk factor, as diabetes prevalence tends to increase 

with age. Gender captures the biological sex of the patient, either "Male" or "Female", which can be encoded numerically 

for model input. BMI (Body Mass Index) is calculated using the patient’s weight and height and reflects overall body fat; 

higher values often indicate increased diabetes risk. Blood pressure is captured in two components: BloodPressure_Systolic 

and BloodPressure_Diastolic, both measured in mmHg using standard sphygmomanometers. Elevated blood pressure often 

coexists with insulin resistance. FastingGlucose indicates the glucose concentration in the blood after at least eight hours 

of fasting and is measured in mg/dL; it directly reflects the patient’s glucose metabolism. HbA1c represents the glycated 

hemoglobin percentage and is a critical marker for long-term blood glucose levels over the previous 2–3 months, with 

values above 6.5% commonly indicating diabetes. Lipid profile variables include Cholesterol_Total, LDL, HDL, and 

Triglycerides, all measured in mg/dL. High total cholesterol and LDL ("bad" cholesterol) increase the risk of cardiovascular 

issues linked with diabetes, while low HDL ("good" cholesterol) worsens the prognosis. Triglycerides, if elevated, reflect 
metabolic imbalance. Finally, the FamilyHistory variable identifies whether the patient has a first-degree relative with 

diabetes, labeled as "Yes" or "No". This captures the genetic predisposition, which is a strong non-modifiable risk factor. 

These variables are typically collected through clinical interviews, physical measurements, and lab tests from fasting blood 

samples. Together, they provide a robust foundation for training classification models to assess diabetes risk. 

- ML Framework: 

Random Forest is an ensemble learning method that constructs multiple decision trees and combines their outputs to arrive 

at a final prediction. This method relies on bootstrap aggregation (bagging), where each tree is trained on a randomly 

selected subset of the data, reducing overfitting and improving generalization. Random bootstrap samples are drawn from 

the training data. A random subset of features is then selected, and the best split based on these features is determined. For 
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classification, a majority voting system is used among all the trees. For a training dataset (y), where (x) is the feature vector 

and (y) is the target variable, the Random Forest (RF) consists of (B) trees being constructed. Each tree (T) is constructed 

based on the bootstrap sample of the data and is given a prediction for a new instance (x). In the classification task, given 

𝑛 trees in the forest, each tree (𝑇𝑖) provides a prediction for class 𝐶𝑖 , and the final prediction (𝐶∗) is determined by majority 

voting [9][10]. 

𝐶∗ = mode(𝐶1, 𝐶2, … , 𝐶𝑁 ) 

Each decision tree partitions nodes based on an impurity measure, the Gini impurity, which measures how mixed the labels 

are at a given node. 

𝐺 = 1 − ∑  

𝐾

↓=1

𝑝𝑖
2 

where 𝑝 is the probability of class p at that node. The tree construction process iteratively chooses the split that minimizes 
impurity, ensuring that the nodes are increasingly homogeneous. To evaluate the model, several statistical measures are 

taken into account: 

Confusion Matrix: Summarizes classification performance by comparing actual and predicted values. From this, several 

metrics are derived: 

 Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝐹1-score = 2 ×
 Precision ×  Recall 

 Precision +  Recall 

 

Where TP, TN, FP, and FN denote true positives, true negatives, false positives, and false negatives, respectively. The 

ROC curve is used to measure model performance by comparing the true positive rate (TPR) and false positive rate (FPR), 

and the area under the curve (AUC) is calculated using the equation: 

AUC = ∫  
1

0

TPR(𝐹𝑃𝑅)𝑑(𝐹𝑃𝑅) 

Higher AUC values indicate better model discrimination. Random Forest offers the advantage of calculating feature 

importance based on the amount of Gini purity reduction at each split, which is calculated using [11]: 

Feature Importance = ∑  

𝑡∈𝑇

𝛥𝐺𝑖𝑛𝑖(𝑡)

|𝑇|
 

where 𝛥𝐺𝑖𝑛𝑖(𝑡) is the Gini reduction at node 𝑡, and 𝑇 is the number of trees. 

3. RESULTS AND DECISION 

TABLE I.   DESCRIPTION OF CLINICAL VARIABLES USED IN THE DATASET 
 

Count Mean Std Dev Min 25th 

Percentile 

Median 75th 

Percentile 

Max 

PatientID 100 50.5 29.01149 1 25.75 50.5 75.25 100 

Age 100 53 17.07855 25 36.75 55 69.25 79 

Gender 100 Male – female: 51-49 
 

BMI 100 28.716 6.172662 18.7 23.4 27.75 34.175 40 

BloodPressure_Systolic 100 135.41 26.21939 91 113 136 159.25 178 

BloodPressure_Diastolic 100 89.65 18.14998 61 73 89 107 119 

FastingGlucose 100 136.289 37.49823 70.9 103.8 139.2 166.375 197.3 

HbA1c 100 9.405 2.552692 4.6 7.3 9.15 11.575 13.9 

Cholesterol_Total 100 210.874 48.56299 120.3 175.1 210.05 250 296.7 

LDL 100 131.576 44.93603 50.4 90.775 146.25 169.95 198 

HDL 100 67.032 20.8692 30.7 48.675 66.8 85.125 99.8 

Triglycerides 100 170.146 74.17416 51.6 100.425 181.25 227.25 297.9 

FamilyHistory 100 Yes – No: 51 - 49 

 

The descriptive statistics for each clinical variable used in the dataset—with 100 patients—are presented in Table 1. There 

is a diverse group of people participating, since the average is only 53 years old and the standard deviation is 17.08. This 

range matters to medicine, as older age increases a person’s chances of getting type 2 diabetes. The near equal split by 
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gender reduces the possibility of gender preferences in the results. The average BMI is 28.72 (with a standard deviation of 

6.17) which means people are considered overweight. It is in agreement with medical research that carrying excessive 

weight significantly increases the risk of insulin resistance and type 2 diabetes. Both systolic and diastolic blood pressures 

in the population are above 120/80 mmHg, a sign of hypertension that often relates to diabetic conditions called metabolic 

syndrome. Fasting glucose is found to be 136 mg/dL, higher than the typical level of 100 mg/dL, proving that people in the 

sample report higher-than-normal glucose levels when not eating. The average HbA1c is 9.41% which is well beyond the 

6.5% level that denotes diabetes, so most people may be suffering from high blood sugar. Along with their weight gain, 

patients have an average of 210.87 mg/dL of cholesterol overall and 131.58 mg/dL of LDL cholesterol, also known as 
"bad" cholesterol. Because of these high results (total cholesterol: >200 mg/dL, LDL: >100 mg/dL), the patient’s heart 

health is under increased threat. 

Most people have HDL ("good" cholesterol) in the normal range, with an average of 67.03 mg/dL, surpassing the 60 mg/dL 

protective level, though numbers can vary. The triglyceride level averages 170.15 mg/dL and is seen as a moderate increase 

in people affected by metabolic disorders. Next, the dataset mirrors a higher risk for diabetes, as it contains mostly older, 

overweight individuals with high blood pressure, difficulties managing blood sugar and abnormal cholesterol. The presence 

of these statistics demonstrates that the data fits well for training a model predicting progression of type 2 diabetes. Figure 

1 illustrates the spread of clinical variations by boxplot, further clarifying what is presented in Table 1. Most people in the 

study are between 40 and 70 years old, suggesting that the study includes many middle-aged and elderly people, the group 

known to be at greater risk for type 2 diabetes. A high number of people in the group were overweight to obese BMI values, 

proving that metabolic issues affect them more. Both forms of blood pressure are relatively high, indicating that many 

people have hypertension. Poor glycemic control among the participants is confirmed by the fact that both fasting glucose 

and HbA1c values are higher than normal (139.2 mg/dL and 9.1%). It results in a large proportion of cases with diabetes 

or prediabetes in the data. Total cholesterol, LDL and triglycerides used in the lipid profile indicate that patients often have 

high cholesterol and triglycerides which is typical in many diabetic people. The levels of HDL are spread over a broader 

range, yet the median remains quite close to the sought-after level (over 60 mg/dL).  

 

Fig. 1. Boxplots of Descriptive Statistics for Clinical Variables Used in Type 2 Diabetes Prediction Model 
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The visualizations emphasize the clinical relevance of each variable and confirm that the dataset reflects key risk patterns 

typically associated with type 2 diabetes. These patterns justify the selection of these features for training a predictive 

machine learning model, as they capture meaningful physiological signals related to disease progression. 

TABLE II.  MACHINE LEARNING MODEL CONFIGURATION PARAMETERS 

Model Parameter Value 

n_estimators 100 

max_depth 5 

Random State 42 

Train/Test Split 80% / 20% 

Table 2 outlines the configuration parameters used in the machine learning model. The number of estimators 
(n_estimators=100) indicates that the Random Forest classifier was built using 100 decision trees, which helps reduce 

variance and improve generalization. The maximum tree depth (max_depth=5) was set to limit model complexity and 

mitigate overfitting, ensuring that each tree learns only essential patterns. A fixed random seed (Random State=42) was 

used to guarantee reproducibility of results across multiple runs. The dataset was split into training and testing subsets using 

an 80:20 ratio, allowing the model to learn from the majority of the data while reserving a portion for unbiased performance 

evaluation. These parameters were selected to balance predictive power, model stability, and interpretability. 

TABLE III.  EVALUATION METRICS FOR MODEL PERFORMANCE 

Evaluation Metric Value 

Accuracy 0.8 

Precision 0.84 

Recall 0.94 

F1 Score 0.89 

Table 3 presents the evaluation metrics for the performance of the Random Forest model. The model achieved an accuracy 

of 0.80, indicating that 80% of total predictions were correct. Precision is 0.84, showing that when the model predicted 

diabetes, it was correct 84% of the time. This metric is important in minimizing false positives, which can lead to 

unnecessary interventions. Recall is 0.94, meaning the model correctly identified 94% of actual diabetes cases. High recall 

is crucial in medical diagnostics, where failing to detect a true case (false negative) can result in delayed or missed 

treatment. The F1 score, at 0.89, represents the harmonic means of precision and recall, reflecting a strong balance between 

sensitivity and specificity. These values suggest that the model performs well in identifying patients at risk for type 2 
diabetes, making it a viable tool for early screening and clinical decision support. The high recall and F1 score are especially 

important in healthcare contexts, where identifying true positives is critical. 

 

 

Fig. 2. Confusion Matrix of the Random Forest Classifier for Type 2 Diabetes Prediction 

The confusion matrix illustrates enhanced classification performance of the Random Forest model. It correctly identified 

14 patients with diabetes (true positives) and 5 patients without diabetes (true negatives). Only 1 non-diabetic patient was 

misclassified as diabetic (false positive), and no diabetic patients were missed (false negatives = 0). This configuration 
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reflects high sensitivity and specificity, reducing both types of diagnostic errors. Clinically, this performance is significant, 

it ensures early identification of at-risk individuals while minimizing unnecessary concern for healthy patients. Such a 

model is more trustworthy for supporting real-world screening and diagnostic workflows in healthcare settings. 

 

 

 

Fig. 3. Decision Tree Visualization from Random Forest Classifier (Tree 0) 

Figure 3 presents a visual representation of a decision tree extracted from the trained Random Forest model, used to predict 

type 2 diabetes based on clinical data. Each node in the tree represents a split based on a clinical feature and threshold value 

that maximizes class separation, using the Gini impurity metric. The root node begins with "FastingGlucose ≤ 96.9", 

separating patients with lower fasting glucose levels—more likely to be non-diabetic—from those with higher levels who 

have elevated risk. The subsequent nodes evaluate other features such as diastolic and systolic blood pressure, total 
cholesterol, HDL levels, and more. The leaf nodes are colored to indicate the dominant classification outcome: orange for 

"No Diabetes" and blue for "Diabetes". The color intensity reflects the purity of the node (i.e., how strongly the samples at 

that node belong to a single class). For example, a node with gini = 0.0 and value = [0.0, 10.0] means that all 10 patients at 

that node are diabetic, reflecting perfect class purity. Key discriminating variables such as BloodPressure_Systolic, HDL, 

and Cholesterol_Total are involved at deeper levels of the tree, suggesting their secondary importance after fasting glucose 

in this specific tree's logic.  

TABLE IV.  TRAINING AND CROSS-VALIDATION ACCURACY RESULTS 

Evaluation Type Value 

Training Accuracy 1 

Cross-Validation Mean 0.83 

Cross-Validation Std Dev 0.02 

Table 4 reports the model’s performance on both the training data and during cross-validation. The training accuracy is 1.0, 

indicating the Random Forest model perfectly classified all training samples. While this reflects the model's capacity to fit 

the data, it may also suggest overfitting. However, the cross-validation results provide a more realistic assessment of 

generalizability, with a mean accuracy of 0.83 and a low standard deviation of 0.02. This stability across validation folds 

suggests the model maintains strong and consistent predictive power on unseen data, reinforcing its suitability for clinical 

use in predicting type 2 diabetes progression. 
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Fig. 4. ROC Curve of the Random Forest Model for Type 2 Diabetes Prediction (AUC = 0.88) 

Figure 4 displays the Receiver Operating Characteristic (ROC) curve of the Random Forest model used for predicting type 

2 diabetes. The curve plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) at various 

classification thresholds. The ROC curve illustrates the model’s ability to distinguish between diabetic and non-diabetic 

cases. The area under the curve (AUC) is 0.88, indicating high discriminative performance. AUC values close to 1.0 suggest 

excellent classification ability, while values around 0.5 imply random guessing. This high AUC confirms that the model 

reliably separates positive and negative cases, supporting its clinical utility for early diabetes detection. 

TABLE V.  FEATURE IMPORTANCE SCORES FOR PREDICTING TYPE 2 DIABETES 

Variable Importance Score 

BloodPressure_Systolic 0.164 

FastingGlucose 0.135 

BloodPressure_Diastolic 0.133 

BMI 0.111 

Cholesterol_Total 0.093 

HDL 0.09 

Triglycerides 0.088 

Age 0.084 

LDL 0.071 

Gender 0.021 

FamilyHistory 0.01 

Table 5 presents the feature importance scores derived from the Random Forest model, indicating the relative contribution 

of each variable to the prediction of type 2 diabetes. The most influential feature is BloodPressure_Systolic (0.164), 

followed closely by FastingGlucose (0.135) and BloodPressure_Diastolic (0.133), reflecting the model’s reliance on 

cardiovascular and glycemic indicators. BMI (0.111) and Cholesterol_Total (0.093) also show significant impact, aligning 

with known metabolic risk factors. Lipid-related variables—HDL, Triglycerides, and LDL—collectively contribute to the 

model’s performance, while Age (0.084) captures demographic risk. In contrast, Gender (0.021) and FamilyHistory (0.01) 

have minimal influence, suggesting that physiological measurements outweigh demographic or hereditary information in 

this dataset. These scores guide clinicians toward the most informative features when interpreting model decisions. The 

feature importance scores from the Random Forest model reveal which clinical variables most strongly influence the 

prediction of type 2 diabetes. The highest importance is assigned to systolic blood pressure, indicating its strong correlation 
with insulin resistance and vascular complications common in diabetic patients. Elevated systolic values often point to 

underlying metabolic syndrome, making this feature a central component in the model’s decision-making. Fasting glucose 

comes next in importance. As a direct measure of blood sugar regulation, it reflects beta-cell function and insulin sensitivity. 

High fasting glucose is a clinical hallmark of both prediabetes and diabetes, explaining its high predictive power. Diastolic 

blood pressure also shows strong influence. When both systolic and diastolic pressures are elevated, the risk of vascular 

inflammation and endothelial dysfunction rises—conditions closely tied to diabetes progression. BMI is another key 
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feature. It captures body fat levels, and higher BMI is associated with insulin resistance, chronic inflammation, and lipid 

abnormalities, all of which are well-established diabetes risk factors. The model’s reliance on BMI reflects the central role 

of obesity in diabetes pathogenesis. Cholesterol-related variables—including total cholesterol, HDL, LDL, and 

triglycerides—collectively contribute to the model’s accuracy. Low HDL and high triglyceride levels are part of the 

diagnostic criteria for metabolic syndrome, while elevated LDL and total cholesterol worsen cardiovascular outcomes in 

diabetic patients. These features provide a broader view of the patient’s metabolic status. Age plays a meaningful but 

slightly lower role. As people age, pancreatic function declines and the cumulative effect of poor lifestyle habits compounds 

the risk of diabetes. While age is non-modifiable, its inclusion enhances the model’s ability to capture long-term risk. 
Gender and family history have the least importance. Although they are traditionally linked to disease susceptibility, their 

influence is weaker here, possibly because direct physiological markers provide more specific and current information 

about disease risk. The model's focus on physiological metrics over static demographic factors aligns with clinical priorities, 

where real-time biomarker data offers the most actionable insight into disease progression and intervention strategies. 

 

Fig. 5. Feature Importance Scores in the Random Forest Model for Type 2 Diabetes Prediction 

 

Table 7. Sample Predictions: Model Output vs. Actual Outcomes 
PatientID Predicted 

Diabetes 

Actual Diabetes Prediction 

Probability 

84 0 1 0.47 

78 1 1 0.93 

5 1 0 0.96 

54 1 1 0.81 

11 1 1 0.79 

40 1 1 0.93 

31 0 0 0.89 

46 1 1 0.92 

13 1 1 0.88 

77 1 1 0.81 

Table 7 presents a subset of prediction results from the Random Forest model, comparing predicted outcomes to actual 

diabetes status along with the associated prediction probabilities. Most predictions align with actual outcomes, showing 

that the model performs reliably in real-world data scenarios. Patients 78, 54, 11, 40, 46, 13, and 77 were correctly classified 

as diabetic, with high probabilities ranging from 0.79 to 0.93. These high-confidence predictions indicate the model's strong 

sensitivity to key diabetic indicators. Similarly, patient 31 was correctly identified as non-diabetic with a probability of 

0.89, demonstrating specificity. Two cases highlight model limitations. Patient 84 was incorrectly predicted as non-diabetic 

with a probability of 0.47, very close to the decision threshold. This borderline case suggests the model found weak or 

conflicting signals in the input features. Conversely, patient 5 was misclassified as diabetic with high confidence (0.96), 

representing a false positive. This may be due to the presence of overlapping risk features (e.g., high BMI, blood pressure, 
or cholesterol) without actual disease onset. These results show the model’s high performance in terms of recall and 
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precision but also underline the importance of human-in-the-loop verification in edge cases. Overall, the model 

demonstrates strong classification ability, particularly when probability scores are far from the threshold. 

Our results are in line with previous research stressing the usefulness of machine learning for early diagnosis and 

customized risk management of type 2 diabetes. Because the model shows high accuracy (0.80), high precision (0.84) and 

a high recall (0.94), we can trust that it can generalize effectively and rarely predicts false negatives when used in clinical 

practice. They confirm what Kopitar et al. [1] stated, that ML models are better at accurately predicting than traditional 

diagnostic techniques. Consistent with studies by [10] and [3], the good AUC of 0.88 demonstrates that our ensemble 

learning model is more effective than common statistical models used to predict CID outcomes. Based on our feature 

importance scores, the main drivers of our predictions are physiological markers like systolic blood pressure, fasting 

glucose and BMI, matching what has been found by [8] and [7]. More importantly, as Deberneh and Kim [6] also found, 

the present physical state seems to be a better indicator for outcomes than family or gender. Thus, results confirmed by 

cross-validation and test performance further support what Nguyen et al. (2019) argued about the value of making clinical 

ML models generalizable. All in all, this study adds new proof that machine learning can positively impact personalized 

diabetes management and planning early intervention [12,4]. 

4. CONCLUSIONS AND RECOMMENDATIONS  

This study shows that the Random Forest algorithm is able to successfully predict the course of type 2 diabetes when using 

structured clinical data. The model showed excellent performance in picking out who was at risk, with a recall of 0.94 and 

an F1 score of 0.89. Systolic blood pressure, fasting glucose and BMI were identified as the top predictors. This result 

agrees with clinical evidence and indicates that using them in risk assessment remains advisable. Since the model 

consistently gives good results during cross-validation, it may be effective in early treatment situations in clinical settings. 

It is clear from the rating that data measuring body systems should receive top priority in designing the system. 

Consequently, it is recommended that healthcare providers bring machine learning into their usual screening procedures to 

aid with faster diagnosis and personal care. More research is needed to evaluate the model in different groups of people 

and healthcare systems, use additional factors such as lifestyle and medicines and help explain how the model makes its 

predictions. Carrying out these steps will allow more doctors to use them and make data-driven tools better for handling 

persistent illnesses like type 2 diabetes. 
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