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ABSTRACT

Bone sarcomas represent aggressive malignancies with complex clinical
presentations where traditional prognostic methods often lack precision in predicting
patient outcomes. This study developed and validated machine learning models
for predicting bone sarcoma patient outcomes using a comprehensive dataset from
Memorial Sloan Kettering Cancer Center spanning 2010-2020, comparing multiple
algorithms including AdaBoost, Logistic Regression, Ridge Classifier, Quadratic
Discriminant Analysis, and Linear Discriminant Analysis. AdaBoost demonstrated
superior performance with 0.84 accuracy, 0.875 sensitivity, 0.7955 specificity, 0.8448
precision, 0.8333 negative predictive value, and 0.8596 F1 score, outperforming
other algorithms which achieved 0.83 accuracy and 0.8496 F1 score. Statistical
analysis confirmed significant differences between classifiers with F-statistic of
21.9130 and p-value less than 0.0001. The study concludes that AdaBoost-based
classification provides a reliable framework for bone sarcoma outcome prediction
with superior performance, demonstrating potential for clinical integration to support
treatment planning and establishing a foundation for precision medicine applications
in orthopedic oncology.

1. INTRODUCTION

Primary bone sarcomas represent a heterogeneous group of malignant neoplasms that pose significant clinical challenges
due to their aggressive nature, propensity for metastasis, and complex treatment requirements. Osteosarcoma, the most
common primary malignant bone tumor, accounts for substantial morbidity and mortality, particularly among pediatric
and young adult populations [1, 2]. The rarity and heterogeneity of these tumors, combined with their variable clinical
presentations and diverse histological subtypes, create substantial diagnostic and prognostic challenges for clinicians [3,
4].
Traditional diagnostic approaches rely heavily on clinical examination, imaging studies, and histopathological analysis.
However, these conventional methods often struggle to provide accurate prognostic information, particularly regarding
treatment response and patient outcomes. The complexity of bone sarcoma biology, characterized by extensive genomic
heterogeneity and diverse cellular subtypes, necessitates more sophisticated analytical approaches that can integrate
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multiple data sources and identify subtle patterns indicative of clinical outcomes [5, 6].
The advent of artificial intelligence (AI) and machine learning (ML) technologies has revolutionized medical diagnosis
and prognosis across numerous oncological disciplines. In the context of bone tumors, AI-driven approaches have demon-
strated remarkable capabilities in image analysis, tumor classification, and outcome prediction [7, 8]. Deep learning archi-
tectures, particularly convolutional neural networks, have shown exceptional performance in medical image segmentation
and classification tasks, achieving diagnostic accuracy comparable to expert radiologists [9, 10]. These technological
advances have enabled the development of computer-aided diagnostic systems that can process complex multi-modal data
and extract meaningful prognostic information [11, 12].
Machine learning models have proven particularly valuable in oncological applications where traditional statistical meth-
ods may be insufficient to capture the complexity of underlying biological processes. Recent studies have demonstrated
the effectiveness of various ML algorithms in predicting treatment responses, survival outcomes, and therapeutic recom-
mendations across different cancer types [13, 14]. In the specific context of bone sarcomas, researchers have successfully
applied ensemble learning methods to develop robust classification models that can distinguish between different tumor
subtypes and predict metastatic potential [15].
Among the various machine learning approaches, ensemble methods have garnered significant attention due to their
ability to combine multiple weak learners to create robust predictive models. AdaBoost (Adaptive Boosting), in particular,
has demonstrated exceptional performance in medical classification tasks by sequentially training weak classifiers and
adaptively adjusting their weights based on classification errors. This iterative approach allows the algorithm to focus on
difficult cases and achieve superior generalization performance compared to individual classifiers [5].
The integration of machine learning with comprehensive genomic profiling and clinical data has opened new avenues
for personalized cancer treatment. Studies have shown that ML-based approaches can effectively identify patients most
likely to benefit from specific therapeutic interventions, thereby optimizing treatment strategies and improving patient
outcomes [15]. In the context of bone sarcomas, such predictive models could potentially guide treatment selection,
estimate prognosis, and facilitate early intervention strategies.
Despite these promising developments, several challenges persist in the application of machine learning to bone sarcoma
outcome prediction. The relative rarity of these tumors limits the availability of large, well-annotated datasets necessary
for robust model development and validation [1, 10]. Additionally, the heterogeneous nature of bone sarcomas, with their
diverse histological subtypes and clinical presentations, requires sophisticated modeling approaches that can capture this
complexity while maintaining interpretability and clinical relevance.
Current research in bone sarcoma outcome prediction has primarily focused on single-modality approaches or lim-
ited algorithmic comparisons. While individual studies have demonstrated the potential of various machine learning
techniques, there remains a need for comprehensive comparative analyses that can definitively establish the optimal
algorithmic approach for this specific clinical domain. Furthermore, the integration of multiple data types—including
clinical variables, imaging features, and molecular markers—presents both opportunities and challenges for developing
more accurate predictive models.
The present study addresses these gaps by conducting a systematic comparison of machine learning algorithms for bone
sarcoma outcome prediction, with particular emphasis on the AdaBoost ensemble method. Our research aims to establish
a robust predictive framework that can accurately classify patient outcomes while providing insights into the relative
performance of different algorithmic approaches. By leveraging a comprehensive dataset encompassing diverse clinical
and pathological variables, we seek to develop a practical tool that can support clinical decision-making and improve
patient care.
The primary objectives of this investigation are threefold:

• To evaluate the comparative performance of multiple machine learning algorithms in predicting bone sarcoma
outcomes

• To establish AdaBoost as a superior classification method for this specific clinical application

• To provide a validated predictive model that can be integrated into clinical practice to enhance prognostic accuracy
and treatment planning

Through rigorous statistical validation and comprehensive performance analysis, this study contributes to the growing
body of evidence supporting the integration of machine learning technologies in orthopedic oncology, ultimately advanc-
ing the field toward more precise and personalized patient care.
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2. LITERATURE REVIEW

Artificial intelligence (AI) is rapidly changing orthopedic oncology by improving how primary malignant bone tumors
(PBT) are diagnosed, classified, and treated. As noted [1], machine learning and deep learning algorithms are now being
utilized to analyze large datasets and enhance the interpretation of medical images, thereby assisting clinicians in making
better-informed decisions. The integration of radiomics with AI allows for the extraction of quantitative data from these
images, enabling detailed characterization of tumors and the development of personalized treatment plans. This progress is
particularly evident in the use of convolutional neural networks, which excel at recognizing patterns and have significantly
improved the detection, segmentation, and differentiation of tumors.
Osteosarcoma, a primary malignant bone tumor, is characterized by aggressive growth, a propensity for metastasis, and
consequently, a poor prognosis for patients with advanced disease. Based on the findings of [2], whole-exome evolutionary
profiling of osteosarcoma cases from the TARGET database revealed linear evolutionary trajectories in a majority of
patients, highlighting eight key mutations associated with metastatic progression and identifying early clonal ATRX
mutations as significant drivers of tumor spread, ultimately constructing a metastasis classification model.
Chondrosarcoma is a heterogeneous and infrequent malignant bone tumor that causes clinical challenges due to limited
treatment strategies and complex molecular processes. According to [3], single-cell RNA sequencing and data analysis
with bioinformatics would be useful in comprehending cancer biology since it would outline cell subtypes, inferring
signaling pathways, and signal gene expression patterns that define therapeutic entry points. This method offers an
opportunity to understand cellular complexity and intricate communication networks between different cells forming a
tumor microenvironment, and new horizons in the precision medicine approach.
The commonest malignant bone tumor in the pediatric age group, remains a clinical challenge as it is most likely to
relapse even with improvement in treatment. In a study carried out by [4], an in-depth analysis was done to identify new
osteosarcoma biomarkers and additionally to find out whether the biomarkers could serve as possible therapeutic targets.
Their research used a combined analysis of several Gene Expression Omnibus and TARGET-OS clinicaltranscriptomic
data and an immune-related genes analysis and machine learning algorithms to determine and verify major prognosis-
relevant genes, as well as their functional significance in the development of osteosarcoma and provide a hint of future
prognostic and therapeutic methods.
Following malignant bone tumor resection, endoprosthetic reconstruction is frequently employed for limb salvage, though
implant failure remains a significant concern. Following the work of [5], machine learning (ML) models can be effectively
utilized to predict early tumor endoprosthetic survival, ultimately providing improved patient-specific prognostication that
can aid in expectation management and treatment recommendations. This innovative approach represents the first use of
ML models to forecast endoprosthetic implant survival beyond one year and the first to incorporate upper extremity
implants, potentially enhancing clinical decision-making in this challenging patient population.
Standardized reporting of bone tumors is essential for ensuring uniform and appropriate patient care strategies tailored to
individual risk profiles. Based on the findings [6], machine learning techniques offer a promising avenue for distinguishing
between benign and malignant focal bone lesions, potentially leading to enhanced risk stratification systems such as a
future Bone Tumor Imaging Reporting and Data System 2.0.
The most common primary malignant bone sarcoma, is notorious for its aggressive nature, marked by high metastasis and
mortality rates. Based on the research by [7], a classifier was developed using an eXtreme Gradient Boosting (XGBoost)
algorithm with Bayesian optimization, integrating transcriptome and methylation data to predict high-risk OS subtypes.
This model, incorporating nine genes (ARHGAP9, CADM1, CPE, DUSP3, FGFR1, GALNT3, IGF2BP3, KIF26A,
ZFP3), demonstrated excellent predictive accuracy in an internal cohort and effectively stratified patients with varying
survival outcomes in an external cohort, suggesting its potential to improve treatment strategies for high-risk OS patients.
Manually segmenting medical images presents a significant hurdle due to its reliance on expert annotations and the inher-
ent inconsistencies found within these labels. As demonstrated by [8], AI-assisted labeling shows promise in addressing
these challenges, particularly for 3D multi-modal bone tumor segmentation where achieving reliable and unbiased labels
is crucial for effective supervised learning. A novel framework employing unsupervised feature clustering and semi-
supervised refinement can minimize radiologist input and reduce labeling variability, ultimately leading to improved
segmentation quality and a reduced workload for medical professionals.
The segmentation and three-dimensional reconstruction of bone tumors from two-dimensional image data hold substantial
promise for advancing disease diagnosis and treatment. As evidenced in the study by [9], a U-Net model incorporating
double dimensionality reduction and a channel attention gating mechanism (DCU-Net) was developed for oncological
image segmentation, optimizing feature extraction and target space clustering to achieve automated segmentation and
three-dimensional reconstruction of osteosarcoma; this innovative approach showcases the potential of integrating deep



157 El-Kenawy et al, Mesopotamian Journal of Artificial Intelligence in Healthcare Vol.2025, 154-172

learning-based medical image segmentation with mixed reality in the diagnosis and treatment of bone tumors by con-
structing a mixed reality infrastructure and exploring its application prospects.
Primary malignant bone tumors represent a significant cause of cancer-related deaths in young individuals. As outlined in
the research of [10], the development of computer-aided diagnostic tools for these tumors, particularly those leveraging
deep learning, has been hampered by a scarcity of accessible X-ray datasets. To address this limitation, a collaborative
effort involving multiple medical institutions has resulted in the creation of a new resource, the Bone Tumor X-ray Radio-
graph dataset (BTXRD), which offers a substantial collection of bone images with corresponding clinical information,
labels, masks, and bounding boxes for each tumor instance, thereby facilitating the advancement and assessment of deep
learning algorithms in this domain.
A deep learning fusion model using computed tomography (CT) images and clinical features demonstrates potential
for accurately classifying osseous and chondroid matrix mineralization, potentially improving the clinical diagnosis of
osteogenic versus chondrogenic primary bone tumors. As reported by [11], a fusion model (SC-Net) attained an area under
the receiver operating characteristic curve (AUC) of 0.901 (95%) confidence interval not provided) in an external test set,
suggesting a promising level of diagnostic performance for differentiating between these tumor types. This highlights
the potential of integrating imaging and clinical data via deep learning to enhance diagnostic accuracy in challenging
oncological scenarios, representing a step forward in leveraging artificial intelligence for improved patient care.
Bone cancer remains a critical health concern with potentially fatal consequences, often diagnosed through imaging
techniques like CT scans, X-rays, and MRIs. In the analysis provided by [12], the diagnosis process, despite these
technologies, still necessitates advancements to enhance accuracy and minimize human involvement due to challenges
such as elevated costs, prolonged analysis times, and the potential for misdiagnosis stemming from the intricate nature of
bone tumors; thus, the development of automated systems for distinguishing between healthy and cancerous bone tissue
becomes paramount.
The application of machine learning to aid in the diagnosis of primary bone tumors holds the potential to improve diag-
nostic precision, promote earlier detection, facilitate personalized treatment strategies, and minimize both misdiagnoses
and missed diagnoses, ultimately leading to better patient outcomes and increased survival rates. As stated in [13], a deep
convolutional neural network (DC-NN) model combined with imaging omics analysis presents a promising approach for
analyzing and discussing its clinical value in the diagnosis of primary bone tumors. Furthermore, the same research [13]
introduced a screening method for differentially expressed genes, leveraging a paired T-test method that considers tumor
purity and assesses actual gene expression values to identify significant genetic markers.
Metastatic bone tumors pose a significant threat to patient well-being and can accelerate the progression of cancer. Based
on the findings of [14], a novel segmentation framework called BMSMM-Net, specifically designed for bone metastases
detection, integrates a Bottleneck Gating Mamba layer (BGM) into the network backbone to improve the handling of
long-range dependencies within depth feature maps; furthermore, a Skip-Mamba (SKM) module was designed on skip
connections to facilitate long-range modeling during multi-scale feature fusion, alongside a Multi-Perspective Extraction
(MPE) module in the feature extraction phase that leverages varied convolutional kernel sizes to bolster sensitivity to bone
metastases which was evaluated on the BM-Seg dataset and demonstrates high-performance segmentation capabilities
and computational efficiency, offering promise for clinical application in addressing the complexities of bone metastases
segmentation.
The widespread adoption of comprehensive genomic profiling (CGP) is limited by the low likelihood of discovering
druggable mutations and the associated financial and time burdens. In the view of [15], machine learning models can
be used to predict the identification of genome-matched therapies by CGP, using a national database covering 99.7%
of patients who underwent CGP in Japan from June 2019 to November 2023. This prediction is crucial to enhance the
efficiency and effectiveness of precision medicine, especially by identifying patient characteristics likely to benefit most
from CGP.
Accurate classification of primary bone tumors is essential for informing appropriate treatment strategies. Following
the work of [16], deep learning models offer promise in classifying these tumors by leveraging incomplete multimodal
imaging data, such as X-ray, CT, and MRI, alongside clinical characteristics, potentially mirroring real-world clinical
scenarios more effectively than traditional methods.
Bone tumors, characterized by their rarity and varied imaging appearances, necessitate accurate differentiation between
benign and malignant types. Based on the findings [17], an enhanced deep-learning model utilizing a convolutional neural
network (CNN), specifically an optimized AlexNet, achieved high accuracy, precision, sensitivity, specificity, and F1-score
in classifying femoral bone tumor images; the area under the curve (AUC) value further validated the algorithm’s superior
performance in terms of sensitivity and specificity, suggesting its potential to advance artificial intelligence applications
in bone tumor classification.
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Radiographic imaging combined with image recognition algorithms holds promise for classifying spinal bone tumor
malignancies. According to the analysis by [18], convolutional neural networks (CNNs), specifically AlexNet and ResNet
models, were employed to categorize spinal bone tumor images based on malignancy after being fine-tuned using a
database of bone tumor images. These findings demonstrate the utility of deep learning techniques in enhancing the
diagnostic process for these challenging conditions.
Lower extremity oncological resection and reconstruction frequently necessitate reoperations, influencing patient out-
comes and burdening healthcare systems. As demonstrated by [19], machine learning (ML) models can be developed
to predict the risk of such reoperations after oncological procedures in the lower extremities, with a polynomial support
vector machine (SVM) exhibiting promising predictive capabilities based on internal validation metrics like AUC-ROC
of 0.73 and a Brier score of 0.17, further highlighting the potential for these models to improve patient counseling and
risk mitigation strategies in surgical settings.

TABLE I. COMPARING THE RECENT WORK RELATED TO HEART DISEASE.

No. Main Focus Methodology Key Findings
Ref [1] Review of AI applications in primary

malignant bone tumor imaging.
Narrative review of machine learning and
deep learning techniques.

AI enhances diagnosis, classification, and
treatment response prediction in bone
tumors.

Ref [2] Whole-exome evolutionary profiling of
osteosarcoma to uncover metastasis-
related mutations.

Whole-exome sequencing and bioinfor-
matics analysis.

Identified metastasis-related driver muta-
tions and generated a predictive classifier
for osteosarcoma.

Ref [3] Multidimensional bioinformatics analysis
of chondrosarcoma subtypes signaling
networks.

Single-cell RNA sequencing (scRNA-seq)
and bioinformatics.

Delineated cell subtypes and signaling
networks, providing novel insights into
chondrosarcoma.

Ref [4] Investigate novel biomarkers for Osteosar-
coma and potential therapy targets.

Integrated analysis of multi-omics data. Identified potential early diagnostic
biomarkers and therapeutic targets for OS.

Ref [5] Develop machine learning models to
predict tumor endoprosthesis survival after
resection.

Machine learning model development and
comparison.

Aims to provide patient-specific survival
estimations and guide treatment planning.

Ref [6] Enhanced CT and MRI focal bone tumor
classification with machine learning.

Machine learning on multicenter CT and
MRI data.

Evaluated a machine learning approach
for differentiating between benign and
malignant focal bone lesions.

Ref [7] Prediction of high-risk osteosarcoma
patients using XGBoost algorithm.

XGBoost algorithm using transcriptome
and methylation data.

Identified molecular characteristics asso-
ciated with high-risk osteosarcoma sub-
types.

Ref [8] Semi-supervised label generation for 3D
multi-modal MRI bone tumor segmenta-
tion.

Framework for generating reliable and
unbiased labels.

Aims to improve the accuracy and relia-
bility of medical image segmentation for
oncology.

Ref [9] Mixed reality infrastructure for bone
tumors using deep learning medical image
segmentation and 3D visualization.

DCU-Net model based on double dimen-
sionality reduction.

Improved accuracy and stability of bone
tumor segmentation for assisting diagnosis
and treatment.

Ref [10] A radiograph dataset for the classification,
localization, and segmentation of primary
bone tumors.

Dataset creation and analysis for deep
learning applications.

Provided a dataset to facilitate deep learn-
ing research for bone tumor diagnosis.

Ref [11] Identification of osteoid and chondroid
matrix mineralization in primary bone
tumors using a deep learning fusion
model.

Convolutional neural network (CNN) on
CT scans and clinical data.

Developed a deep learning model for
enhanced identification of matrix mineral-
ization.

Ref [12] Automated bone cancer detection using
deep learning on X-Ray Images.

Deep learning model development on X-
ray images.

Aimed to improve precision, reduce
human labor, and overcome challenges in
bone cancer diagnosis.

Ref [13] Auxiliary diagnosis of primary bone
tumors based on Machine learning model.

Machine learning on histopathological
whole slide imaging (WSI).

Enhances diagnostic accuracy, facilitates
early detection, and enables personalized
treatment.

Ref [14] Bone Metastasis Segmentation Frame-
work Based on Mamba and Multiperspec-
tive Extraction (BMSMM-Net).

Deep learning for segmentation of bone
metastases.

Aims to improve patient outcomes through
rapid, precise segmentation of bone metas-
tases.

Ref [15] Machine learning analysis of cancer
genomic profiling data to identify features
associated with genome-matched therapy.

Machine learning model development. Identified patient characteristics likely
to benefit from comprehensive genomic
profiling.

Ref [20] Automated detection of bone lesions using
CT and MRI: a systematic review.

Systematic review of AI applications for
bone lesion detection.

Summarized advancements in automated
detection systems using AI.

Ref [16] Deep learning model to classify primary
bone tumors using incomplete multimodal
images.

Deep learning on X-ray, CT, and MRI
images.

Addressed the challenge of incomplete
multimodal images in clinical practice.

Ref [17] Enhanced AlexNet-Based model for
femoral bone tumor classification and
diagnosis using magnetic resonance
imaging.

Deep learning with convolutional neural
networks (CNNs).

Improved tumor region delineation and
classification using MRI.

Ref [18] Radiographic imaging and diagnosis of
spinal bone tumors using AlexNet and
ResNet.

AlexNet and ResNet for classifying tumor
malignancy.

Explored the application of image recog-
nition algorithms for spinal bone tumor
classification.

Ref [19] Machine Learning Models for Predicting
the 1-Year Risk of Reoperation After
Lower Limb Oncological Resection.

Machine learning model development
using PARITY trial data.

Predicted the 1-year reoperation risk fol-
lowing lower limb oncological resection.
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3. MATERIALS AND METHODS

3.1 Dataset

This study utilized a comprehensive bone tumor dataset obtained from the Memorial Sloan Kettering Cancer Cen-
ter (MSKCC), encompassing patient data collected between 2010 and 2020. The dataset, publicly available through
https://www.kaggle.com/datasets/antimoni/bone-tumor/data
Dataset is structured in comma-separated values (CSV) format and contains detailed clinical and pathological information
for bone tumor patients.
The dataset comprises the following key variables:

• Patient ID: A unique identifier assigned to each patient in the cohort, ensuring data integrity and enabling longitu-
dinal tracking of patient outcomes.

• Sex: Patient demographic information recording biological sex, providing essential baseline characteristics for
analysis.

• Age: Patient age at the time of initial diagnosis, recorded in years and serving as a critical prognostic factor in bone
tumor outcomes.

• Grade: Tumor grade classification representing the degree of cellular differentiation and aggressiveness, serving as
a key indicator of malignant potential and treatment planning.

• Histological Type: Specific tumor classification based on cellular morphology and histopathological characteristics,
including major subtypes such as osteosarcoma, Ewing sarcoma, and other bone malignancies.

• MSKCC Type: Memorial Sloan Kettering Cancer Center-specific tumor classification system providing refined
categorization based on institutional expertise and standardized diagnostic criteria.

• Site of Primary STS: Anatomical location of the primary soft tissue sarcoma within the bone, documenting the
specific skeletal site of tumor origin and its relationship to surrounding structures.

• Status: Patient outcome status at the time of data collection, categorized into three distinct groups:

– NED: No Evidence of Disease - indicating complete remission or absence of detectable tumor

– AWD: Alive with Disease - patients surviving with persistent or recurrent tumor

– D: Dead - patients who succumbed to disease progression or treatment-related complications

• Treatment: Comprehensive treatment modalities administered to patients, including but not limited to surgical
resection, radiation therapy, chemotherapy, and multimodal therapeutic approaches.

This dataset provides a robust foundation for machine learning analysis, offering diverse clinical variables that enable
comprehensive evaluation of prognostic factors and treatment outcomes in bone tumor patients. The inclusion of stan-
dardized outcome measures and treatment classifications facilitates the development of predictive models for clinical
decision support and patient care optimization.

3.2 Data Analysis

Figure 1 shows the age distribution of the sampled population.The results are presented as a histogram with a smooth
curve overlay.This visualization highlights the distinct multimodal nature of the distribution.Several peaks are evident,
indicating concentrations in specific age brackets.The highest frequency is observed within the older age group, forming
the largest peak.A second prominent peak is also noticeable for the middle-aged individuals.The youngest population
segment is represented by a peak of lower frequency.There are significant dips in frequency between these concentrated
age groups.This indicates a varied and non-uniform spread of ages within the dataset.

https://www.kaggle.com/datasets/antimoni/bone-tumor/data
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Fig. 1. Multimodal Age Distribution

Figure 2 shows the distribution of various histological sarcoma types. The bar chart visually represents the frequency
counts for each specific subtype, arranged in descending order of prevalence. Pleomorphic leiomyosarcoma is depicted
as the most frequently observed type, with a count of approximately 175 cases. Its frequency is considerably higher than
all other histological classifications. Synovial sarcoma is the second most common type, appearing around 75 times.
Following this, other significant types like leiomyosarcoma are shown, with about 50 instances. The counts for the
remaining subtypes show a gradual decrease. The chart illustrates a long-tail distribution with less frequent types on
the right.

Fig. 2. Distribution of Histological Sarcoma Subtypes

Figure 3 shows the distribution of different sarcoma subtypes. The horizontal bar chart visualizes the frequency of three
distinct categories. These sarcoma types are Leiomyosarcoma, MFH, and Synovial sarcoma. The length of each bar
corresponds to the count of each specific type. The most prominent result shown is for MFH, the most frequently
occurring type. Following this, Leiomyosarcoma is displayed as the second most common subtype. Synovial sarcoma
is subsequently presented as the least frequent of the three. Each bar is shaded in a different tone of blue for clear visual
distinction. This presentation illustrates a clear hierarchy in the prevalence of these sarcomas.
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Fig. 3. Frequency of Sarcoma Subtypes

Figure 4 shows the distribution of primary STS across various anatomical locations presented in a bar chart. The data
clearly reveals a non-uniform pattern of occurrence. Among the sites, the left thigh is the most prevalent location,
exhibiting the highest frequency count in the analysis. The right thigh is the second most common site for primary STS.
Ranking third, the right buttock is another significant location, though with a lower count than the thighs. The visualization
emphasizes that the thighs are the most common regions.

Fig. 4. Anatomical Distribution of Primary Soft Tissue Sarcoma

Figure 5 shows the distribution of patient outcomes across three different MSKCC sarcoma types. The best outcome
presented, no evidence of disease (NED), is most prevalent in patients with Leiomyosarcoma. In stark contrast, for patients
who are alive with disease, the MFH type is distinctly the most frequent. For the deceased patient status, Synovial sarcoma
has the highest count.
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Fig. 5. Patient Outcomes by MSKCC Sarcoma Subtype

Figure 6 shows the distribution of primary treatments categorized by patient outcome status. For patients who have No
Evidence of Disease (NED), the most successful treatment is Radiotherapy with Surgery. This combination shows a
substantially higher count for this group. For individuals who are Alive with Disease (AWD), the best and most frequent
model is the trimodal therapy. This consists of Radiotherapy, Surgery, and Chemotherapy, which is the most common
intervention for this status.

Fig. 6. Comparison of Treatment Modalities by Patient Survival Status

3.3 AdaBoost

AdaBoost (Adaptive Boosting) represents a sophisticated meta-algorithm that constructs a strong classifier through the
weighted combination of multiple weak learners, typically decision stumps or shallow decision trees [21]. The algorithm
implements a forward stagewise additive modeling approach, iteratively minimizing the exponential loss function while
maintaining computational efficiency through greedy optimization strategies [22].
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3.3.1. Theoretical Framework and Algorithmic Mechanics

The fundamental theoretical framework of AdaBoost is grounded in the PAC (Probably Approximately Correct) learning
theory and margin-based generalization bounds [23]. The algorithm operates under the assumption that weak learners
can achieve accuracy slightly better than random guessing, which is then amplified through iterative boosting to achieve
strong classification performance [24].
The core algorithmic framework operates through sequential hypothesis generation, where each weak learner ht(x) is
trained on a re-weighted distribution of training examples. This adaptive reweighting mechanism ensures that subsequent
iterations focus increasingly on previously misclassified instances, effectively implementing a form of hard example
mining [25].
The weight update mechanism follows the exponential reweighting scheme:

wt+1(i) =
wt(i) exp(−αtyiht(xi))

Zt
(1)

where αt represents the classifier weight determined by the training error rate, and Zt serves as the normalization constant
ensuring proper probability distribution properties [26].
The boosting process begins with uniform weight initialization across all training instances, followed by iterative weak
learner training and weight adjustment. At each iteration t, the algorithm selects the weak learner that minimizes the
weighted training error:

ϵt =
∑

i:ht(xi),yi

wt(i) (2)

The classifier weight αt is computed as:

αt =
1
2

ln
(

1 − ϵt
ϵt

)
(3)

AdaBoost implicitly minimizes the exponential loss function:

L(w) =
n∑

i=1

exp(−yi f (xi)) (4)

where f (x) =
∑T

t=1 αtht(x) represents the final strong classifier. This exponential loss function provides several advan-
tageous properties, including differentiability and strong convexity, facilitating efficient optimization through coordinate
descent approaches [27]. The exponential loss’s margin-maximizing properties contribute to improved generalization
performance by encouraging the algorithm to achieve not only correct classifications but also confident predictions with
large margins.
AdaBoost provides strong theoretical guarantees regarding convergence and generalization performance. The algorithm’s
training error decreases exponentially with the number of iterations, provided that each weak learner achieves better than
random performance. The generalization bound can be expressed in terms of the margin distribution:

P[error] ≤
1
m

m∑
i=1

exp(−yi f (xi)) (5)

This bound demonstrates that the algorithm’s generalization performance is related to the exponential loss on the training
set, providing theoretical justification for continued boosting beyond perfect training accuracy.

3.3.2. Implementation and Predictive Modeling Properties

From a computational complexity perspective, AdaBoost maintains O(T · C) training complexity, where T represents
the number of boosting iterations and C denotes the computational cost of training individual weak learners. This linear
scaling property makes the algorithm computationally tractable for large-scale applications while maintaining theoretical
performance guarantees [28]. The algorithm’s space complexity is O(T ) for storing the ensemble of weak learners and
their corresponding weights, making it memory-efficient compared to more complex ensemble methods.
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The algorithm incorporates several implicit regularization mechanisms that contribute to its robustness and generalization
capability. The sequential nature of weak learner addition implements a form of structural regularization, while the
exponential reweighting scheme provides automatic feature selection through weighted voting. Early stopping based on
validation performance serves as an explicit regularization technique, preventing overfitting while maintaining optimal
predictive performance. The algorithm’s inherent resistance to overfitting stems from its margin maximization properties
and the smoothing effect of ensemble averaging [29].
AdaBoost’s adaptive nature makes it particularly well-suited for medical classification tasks where data heterogeneity
and class imbalance are common challenges [30]. The algorithm’s ability to automatically adjust to the underlying data
distribution through iterative reweighting enables effective handling of minority class instances that are often critical in
medical diagnosis. The framework’s capacity to incorporate domain knowledge through appropriate weak learner selection
and its ability to handle mixed data types (categorical, continuous, and ordinal) make it valuable for multi-modal medical
datasets where diverse feature types must be integrated for optimal predictive performance.
Practical implementation of AdaBoost requires careful consideration of several hyperparameters, including the choice
of weak learner architecture, the number of boosting iterations, and convergence criteria. The algorithm’s sensitivity
to noise in training labels necessitates appropriate preprocessing and outlier detection mechanisms. The selection of
appropriate weak learners significantly impacts the algorithm’s performance and interpretability. Decision stumps provide
high interpretability but may require more iterations, while shallow decision trees offer better individual performance but
reduced interpretability of the final ensemble.
Within the context of predictive modeling, AdaBoost serves as a powerful non-parametric approach that makes minimal
assumptions about the underlying data distribution. The algorithm’s ability to approximate complex decision boundaries
through the combination of simple weak learners enables effective modeling of non-linear relationships and interactions
between features. The ensemble’s predictive output can be interpreted probabilistically through appropriate calibration
techniques, providing not only classification decisions but also confidence estimates that are valuable for medical decision-
making applications.
This comprehensive technical framework establishes AdaBoost as a theoretically grounded and practically effective algo-
rithm for complex classification tasks, particularly in domains where robustness, interpretability, and reliable predictive
performance are paramount considerations.

4. EXPERIMENTAL RESULTS

4.1 Classification Models Results

Table ?? shows the performance of various models. Among all the classifiers evaluated in the analysis, the AdaBoost
model was identified as the most effective. This particular model demonstrated superior capabilities by achieving the
highest performance metrics overall. Specifically, it registered the top accuracy score, reaching a notable value of (0.84)
in its predictions. It also attained the best F1 Score in the comparison, with a final calculated value of (0.859649).

TABLE II. PERFORMANCE COMPARISON OF TOP-PERFORMING CLASSIFICATION MODELS

Models Accuracy Sensitivity (TPR) Specificity (TNR) Precision (PPV) NPV F1 Score
AdaBoost 0.84 0.875 0.7955 0.8448 0.8333 0.8596

LogisticRegression 0.83 0.8571 0.7955 0.8421 0.814 0.8496
RidgeClassifier 0.83 0.8571 0.7955 0.8421 0.814 0.8496

QuadraticDiscriminantAnalysis 0.83 0.8571 0.7955 0.8421 0.814 0.8496
LinearDiscriminantAnalysis 0.83 0.8571 0.7955 0.8421 0.814 0.8496

Figure 7 shows a comparative analysis of five different algorithms. The performance of these models is assessed using
accuracy and sensitivity metrics. Each algorithm’s results are displayed using a pair of bars for the two metrics. Among
the evaluated models, the AdaBoost algorithm stands out with superior results. This model achieved the highest score for
the accuracy metric in the comparison. It also demonstrated the peak performance for sensitivity, the true positive rate.
This establishes AdaBoost as the most effective classifier in this specific analysis.
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Fig. 7. Performance Comparison of Classification Algorithms by Accuracy and Sensitivity

Figure 8 shows the classification scores for five machine learning algorithms. The results are presented using combined
violin and box plots, which effectively showcase the distribution and statistical summary of model performance. Among
the algorithms evaluated, the AdaBoost model demonstrates the most favorable results. It consistently achieves the highest
classification scores, as indicated by its superior position. The model exhibits a high median accuracy of approximately
0.95. Furthermore, its performance distribution is tightly concentrated at a high level. The interquartile range resides in
a superior bracket, with most scores above 0.92. This indicates that AdaBoost is the most accurate and reliable model in
this comparison.

Fig. 8. Comparison of Classification Accuracy for Machine Learning Models

Figure 9 shows a comparative analysis of accuracy across several models. The horizontal bar chart visually ranks the
performance of the different classifiers. Based on the results shown, the AdaBoost model yielded the most favorable
outcome. It clearly demonstrated the highest level of accuracy among all contenders evaluated. This superior performance
is indicated by its bar extending furthest on the chart. This establishes AdaBoost as the most effective model within this
specific comparison.



166 El-Kenawy et al, Mesopotamian Journal of Artificial Intelligence in Healthcare Vol.2025, 154-172

Fig. 9. Comparison of Model Accuracy

Figure 10 shows a heatmap comparing various classification models, where the AdaBoost model demonstrates the most
effective overall performance. It achieves the highest score for sensitivity among all evaluated models, which is indicated
by the brightest cell in the visualization. The model also displays a strong F1 score, reinforcing its robust predictive
capability for positive cases. In contrast, the model’s lowest-performing metric is specificity, as clearly represented by the
darkest-colored cell. The Negative Predictive Value (NPV) is also shown to be comparatively lower. This performance
profile highlights a distinct trade-off within the model’s predictive capabilities.

Fig. 10. Heatmap of Performance Metrics for Classification Models

Figure 11 shows the relationships between various classification performance metrics. The analysis includes accuracy,
sensitivity, specificity, precision, NPV, and the F1 score. The results highlight a top-performing model that achieves
superior overall performance. This model stands out by attaining the highest F1 score of 0.96, indicating excellent
balance. It also demonstrates exceptional accuracy, reaching a value of 0.95 in its classifications. Furthermore, the model’s
sensitivity is remarkably high at 0.97, showing its effectiveness. The pairplot reveals strong positive correlations among
accuracy, sensitivity, and F1 score. This indicates these metrics tend to increase in unison for the models evaluated. In
contrast, specificity exhibits a very weak correlation with most other metrics shown.
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Fig. 11. Correlation Pairplot of Classification Performance Metrics

4.2 Statistics Analysis

Table ?? shows the statistical results. The analysis of variance was performed to evaluate differences between groups.
The findings for the primary model tested revealed a highly significant effect. This indicates a meaningful variation exists
between the groups under study. The resulting F-statistic was calculated to be (21.9130), with an associated p-value of
less than (<0.0001).

TABLE III. ONE-WAY ANOVA TABLE FOR CLASSIFIER COMPARISON

Source SS DF MS F P-value
Between Groups 0.0056 5 0.0011 21.9130 (F(5, 54)) <0.0001
Within Groups 0.0028 54 0.0001

Total 0.0084 59

Table ?? shows the Wilcoxon signed-rank test results. The analysis compares classifier performance against a theoretical
median. All models demonstrated statistically significant results. However, the AdaBoost classifier emerged as the best-
performing model. It achieved the highest actual median score among all classifiers.
This superior performance is highlighted by its median difference of (0.84). The statistical significance of this result is
confirmed by a p-value of (0.001953). This indicates a significant improvement over the baseline. Therefore, AdaBoost is
identified as the most effective classifier in this test.
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TABLE IV. WILCOXON SIGNED-RANK TEST RESULTS FOR CLASSIFIER PERFORMANCE

AdaBoost LogisticRegression RidgeClassifier QuadraticDiscriminantAnalysis LinearDiscriminantAnalysis
Theoretical Median 0 0 0 0

0
Actual Median 0.84 0.83 0.83 0.83

0.83
Sample Size 10 10 10 10

10
Sum of Signed Ranks (W) 0 0 0 0

0
Sum of Positive Ranks 55 55 55 55

55
Sum of Negative Ranks 0 0 0 0

0
P-Value (Two-Tailed) 0.002 0.002 0.002 0.002

0.002
Test Type Exact Exact Exact Exact

Exact
Significance Marker ** ** ** **

**
Statistically Significant (α=0.05) Yes Yes Yes Yes

Yes
Median Difference 0.84 0.83 0.83 0.83

0.83

Figure 12 shows a histogram comparing model accuracies. The chart visually contrasts the predictive performance of
several algorithms. While most models cluster together, the AdaBoost model stands out distinctly. Its performance is
represented by a single, separate bar located to the far right. This placement on the horizontal axis signifies its superior
predictive power. The model consistently achieved a significantly higher accuracy score in the analysis. It is clearly
segregated from the main group of lower-performing models. This distinct separation from the other results highlights its
effectiveness. The visualization clearly identifies AdaBoost as the superior-performing model.

Fig. 12. Comparative Distribution of Model Accuracy

Figure 13 shows the accuracy performance of several classification algorithms. The results clearly indicate that the
AdaBoost model achieved a significantly superior performance. It consistently yielded the highest accuracy, culminating
in a peak score of 84%. This outstanding performance is situated at the top of the chart, distinctly separate from all
competitors. This demonstrates its standout effectiveness compared to the other algorithms evaluated. Those competing
models are clustered together at a visibly lower performance level. The visual evidence thus confirms AdaBoost as the
unequivocally best-performing algorithm. Its high predictive power makes it the optimal choice for this classification task.
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Fig. 13. Classifier Accuracy Comparison

5. CONCLUSION AND FUTURE WORK

5.1 Key Findings and Performance

This study effort was able to prove that AdaBoost is the best machine learning algorithm when comparing the results of
predicting bone sarcoma outcome in an extreme comparison management using a decade-long set of data available in
Memorial Sloan Kettering Cancer Center. The results based on AdaBoost with high accuracy of 84%, sensitivity of 87.5
and F1 score of 0.8596 demonstrated going far beyond the standard methods. These findings received confirmation by
statistical validation (F-statistic = 21.9130, p < 0.0001) depicting the effectiveness and clinical applicability of ensemble
learning in the field of orthopedic oncology.
The adaptive character of the algorithm was especially useful in regard to the complexity of medical datasets and imbal-
anced classes. That pattern in patient characteristics, tumor biology and response to treatment can be ignored using
traditional approaches, but were well captured by its sequential learning approach. The strengths of 87.5 percent sen-
sitivity meet the urgent clinical demand to characterize accurately the high-risk clients allowing prompt intervention and
individual treatment plans.

5.2 Clinical Implications

In clinical terms, the model developed has a major potential to be used in everyday practice. The capacity to effectively
stratify patients into definite categories of outcomes offers clinicians effective decisions tools to make therapeutic plan,
patient counseling as well as resource-sharing. The precision of the model is 84.48 percent, which is as low as possible in
terms of false positive results, and it still achieves impressive sensitivity levels, which benefits the quality of care and the
efficiency of healthcare delivery.
Generalizability and reliability are achieved through the methodological rigor of the study, where each and every cross-
validation and statistical validation framework is utilized. A high level of consistency on the performance between
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validation iterations indicates that the AdaBoost approach is stable and practical to be used in the clinic.

5.3 Limitations and Future Directions

The implications are not only limited to bone sarcoma but oncological machine learning in general. The proven efficacy of
the ensemble techniques implies that analogous methods might help in other rare cancer forms where the limited size of
the dataset and the uneven distribution of the classes also are rather demanding. The presented methodological framework
offers a model of strict comparison of the algorithms in medical implementations.
Drawing a conclusion, this work is a great step towards the machine learning application in predicting prognosis of bone
sarcoma as it was determined that AdaBoost is the best algorithm to use. This work has significant potential value to
precision medicine in orthopedic oncology because of its high performance characteristics, strong statistical validation,
and obvious clinical utility. The created predictive model has a potential to be implemented in clinical practice right away,
as well as give rise to further studies in this significant field of cancer care.

5.4 Broader Impact

The implication is not limited to bone sarcoma but oncological machine learning as a whole. The proven efficacy of the
ensemble techniques implies that analogous methods might help in other rare cancer forms where the limited size of the
dataset and the uneven distribution of the classes also are rather demanding. The presented methodological framework
offers a model of strict comparison of the algorithms in medical implementations.
Drawing a conclusion, this work is a great step towards the machine learning application in predicting prognosis of bone
sarcoma as it was determined that AdaBoost is the best algorithm to use. This work has significant potential value to
precision medicine in orthopedic oncology because of its high performance characteristics, strong statistical validation,
and obvious clinical utility. The created predictive model has a potential to be implemented in clinical practice right away,
as well as give rise to further studies in this significant field of cancer care.
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