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A B S T R A C T  
 

This study illustrates a data‐driven approach to the segmentation of health insurance policyholders based 
on K-Means clustering of an open insurance dataset. Key demographic and financial features like age, 
body mass index (BMI), dependents, annual medical spending, and premium payment were normalized 
first to ensure comparability. The optimal number of clusters (k = 3) was determined using silhouette 
analysis, and three clusters were formed: (1) young, low‐cost individuals, (2) middle‐aged medium‐cost 
individuals, and (3) old, high‐cost individuals. Cluster centroids provide actionable profiles that can be 
utilized by insurers for target marketing, risk profiling, and development of customized plans. A set of 
visualizations scatter plots, boxplots, histograms, and bar charts illustrate the separation and within‐
distribution nature of these segments. The preprocessing workflow (missing value treatment, encoding 
of categorical features, and feature scaling) was encoded in a flowchart for reproducibility. Results 
demonstrate that straightforward-to-implement unsupervised learning techniques can yield interpretable 
customer segmentations, offering a foundation for more advanced predictive modeling and 
individualized insurance policies.  

1. INTRODUCTION 

Customer segmentation is a fundamental basis for strategic decision-making in the insurance industry, and it enables firms 
to tailor product provision, optimize risk assessment, and enhance customer satisfaction. In life and health insurance, accurate 
identification of homogeneous groups among insured customers enables tailored premium pricing and niche-focused 
marketing campaigns. In recent years, researchers have explored a number of unsupervised learning models to address this 
issue. For instance, Abdul-Rahman et al. used decision trees and K-modes clustering to segment life insurance clients, 
offering higher interpretability in categorical data environments [1]. Similarly, Gan and Valdez provided a comprehensive 
review of actuarial applications using clustering, emphasizing the significance of partition methods for risk stratification [9]. 
Traditional clustering techniques vary from distance-based algorithms such as K-Means and their fuzzy equivalent Fuzzy C-
Means to model-based and spectral ones. The seminal paper by Hartigan put forward a general classification of clustering 
algorithms and laid the ground-level principles of partitioning data into well-separated, tight clusters [14]. Bezdek et al. later 
formalized the Fuzzy C-Means algorithm to enable mixed-membership clustering that can be used in real situations where 
observations might belong to multiple segments [3]. Alternatively, spectral clustering techniques such as Laplacian 
Eigenmaps map high-dimensional data into lower dimensions first before clustering in order to improve the separation of 
complex structures [2]. Hierarchical methods, as studied by Campo and Antonio, offer an alternative perspective using the 
formation of nested clusters that can identify multi-level risk factors in insurance [5]. 
Application-driven research has further advanced clustering methods for insurance analytics. Debener et al. combined 
supervised and unsupervised techniques to identify fraudulent claims, highlighting the pragmatic complementarity of 
classification and clustering in anomaly detection [6]. Hainaut's work on self-organizing maps illustrated how clustering with 
pattern recognition in neural networks can uncover concealed patterns in non-life insurance portfolios [12], while Hsu et al. 
illustrated the applicability of large-scale knowledge discovery based on self-organizing systems [15]. Complementary 
approaches, such as correspondence analysis and global similarity metrics, have also been proposed by Greenacre and 
Gower, respectively, to quantify relationships between mixed data types common in insurance data sets [11], [10]. Burt's 
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original factorial analysis of qualitative data also provided early theoretical grounds for decomposing categorical variables 
into continuous latent factors suitable for clustering [4]. 
Despite the expanse of clustering research, the K-Means algorithm ranks among the most used techniques due to its 
parsimony, scalability, and comprehensibility. By straightforward minimization of within-cluster variance, K-Means 
partitions policyholder data into distinct segments that easily profile and react to them. Dunn's index and the silhouette 
coefficient have been derived as best estimates of the number of clusters [7]. Additionally, K-Means extensions and 
improvements—such as those presented in Hainaut and Thomas's working note are available, each providing its own 
enhancements specific to insurance analytics, like initialization methods and cluster validity measures [13]. Fuzzy extensions 
and combination strategies have also been investigated to overcome the hard-assignment restriction of K-Means [8], [14]. 
In this paper, we apply K-Means clustering on a public health insurance dataset to uncover three major policyholder 
segments. The dataset includes demographic characteristics (age, gender, dependents), health characteristics (body mass 
index), and financial characteristics (annual expenses, premiums). A robust preprocessing pipeline encompassing missing-
value management, categorical encoding, and numerical scaling is constructed to prepare data for clustering. We conduct 
silhouette analysis on identifying the optimal cluster number and examine cluster centroids to characterize each segment. 
Scatter plots, boxplots, and distribution histograms enable an intuitive interpretation of the clusters' properties. Our findings 
corroborate previous findings that simple unsupervised techniques can yield useful insights for focused insurance approaches 
[1], [9]. 

2. RELATED WORK  

Clustering remains a central method for finding latent patterns in insurance data with extensive literature spanning 
categorical, numerical, and mixed-type feature spaces. Huang's early work introduced a fast K-modes algorithm for the 
handling of large categorical datasets by minimizing a simple matching dissimilarity measure, with linear time complexity 
and scalability to millions of cases [16]. In a later work, Huang extended the standard K-Means algorithm to accommodate 
categorical features using a hybrid distance measure and prototype update procedure, opening the door to hybrid clustering 
methods for actuarial analysis [17]. These address non-numeric policyholder descriptors of the kind region codes or plan 
types directly, rather than through ad hoc numeric encoding. Complementing categorical extensions, partitioning algorithms 
have been improved through improved initialization and efficiency techniques. Vassilvitskii and Arthur's K-means++ 
seeding method considerably speeds up convergence time while enhancing cluster quality by probabilistically selecting 
good-spaced initial centroids randomly [27]. Sculley applied a distributed K-Means pipeline to process billions of points 
over enormous compute clusters for web-scale data, which is the proof of concept of applying partitioning methods on 
enormous insurance portfolios [24]. Kaufman and Rousseeuw's comprehensive monograph once more emphasize the 
initialization sensitivity of K-Means and recommend restarts or alternate seeding to avoid local minima that are not optimal 
[18]. Hierarchical approaches offer a multilevel perspective of policyholder segmentation. Divisive methods such as DHCC 
recursively partition categorical data based on impurity measures to create comprehensible hierarchies of risk profiles [32]. 
Hierarchical clustering of categorical risk factors was examined by Campo and Antonio, too, and they showed that nested 
partitions can identify both aggregate and granular issues of underwriting [5]. These approaches are different from 
agglomerative schemes in the sense that they prefer top-down partitioning, which may be more aligned with business or 
regulatory hierarchies of insurance organizations. Spectral clustering has been a dominant paradigm for discovering intricate, 
non-convex groupings. Shi and Malik's normalized cuts method describes clustering as a graph-partitioning problem, 
whereby the edge-weight ratio is optimized to balance cluster size and inter-cluster distance [25]. Meilă and Shi then recast 
spectral segmentation in random-walks terms, describing Laplacian eigenvectors as Markov chain steady-states [20]. Both 
fields shed light on the inherent connection between spectral embeddings and data geometry, as subsequently examined by 
Von Luxburg in a tutorial describing parameter choice and ways of building graphs [28]. Complexity analysis and 
algorithmic insights were provided by Ng et al., making spectral methods more viable for high-dimensional insurance 
features [21]. Mixed-type datasets, being common in life and health insurance, require special similarity measures or hybrid 
transformations. Wei et al. proposed a mutual information-based unsupervised feature transformation to map heterogeneous 
attributes into a continuous latent space and thereby enable conventional K-Means clustering on transformed data [29]. 
Mbuga and Tortora extended spectral clustering to mixed-type variables by employing a mixture of distance kernels for 
numeric and categorical subsets and demonstrated improved segmentation of policyholders with mixed socio-demographic 
and health measures [19]. Yin et al. applied a number of mixed-type clustering methods in a life insurance environment, 
comparing performance between K-Prototypes, Gower distance clustering, and spectral, and found that hybrid approaches 
generate improved homogeneity of segments [33]. Zhuang et al. applied mixed-type clustering to automobile insurance 
portfolios as well, integrating claim history, vehicle type, and driver profile data to develop actionable tiers of customers  
[34]. 
Additional clustering methods draw on neural and fuzzy paradigms. Despite being older than the majority of the spectral 
methods, Fuzzy C-Means' capacity for allowing soft assignments remains attractive for marginal instances in risk 
classification [3]. Self-organizing maps and hot-spot methods—stemming from pioneering works of Williams and Huang—
offer topology-preserving mappings that can identify nonlinear trends in vast insurance data sets [31], [30]. Ohlsson and 
Johansson's application of generalized linear models for non-life insurance pricing demonstrates how regression models 
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augment clustering to further divide premiums according to membership in a cluster [22]. Paccanaro et al. also demonstrated 
the ubiquitous applicability of spectral algorithms by clustering protein sequences and illustrating cross-domain applications 
of these techniques [23]. Current advances bring together embedding methods and deep learning for categorical risk factors. 
Shi and Shi introduced categorical embedding layers in neural networks to generate continuous representations of non-
numeric features, which perform better than one-hot or label encodings for tasks of non-life insurance risk classification [26]. 
Such embedding methods may be used with K-Means or spectral clustering on the obtained feature space, which offers a 
direct combination of partitioning and representation learning. In short, insurance analytics clustering literature is both 
diverse and abundant. From the initial categorical clustering algorithms of Huang [16], [17] through to the robustness 
enhancement of K-means++ [27], to the hierarchical [32] and spectral [20], [25] frameworks, to the modern mixed-type and 
embedding-based approaches [19], [26], [29], the topic has evolved to address the richness of the data in policyholder 
segmentation. 

3. DATA AND METHODOLOGY  

3.1 Data  

The study uses the Health Insurance Dataset released by the IMT Kaggle Team that contains 1 338 policyholder records with 
demographic, biometric, and financial attributes. The records respectively indicate age in years, gender as a binary variable, 
body mass index (BMI) as a continuous health measure, number of children covered, yes/no flag of discount eligibility, and 
home region encoded into four US zones. Two financial measures capture total annual medical expenses billed to the insurer 
and premium paid by the policyholder; premium is proportional to costs in the raw file so that financial interpretation is 
straightforward. An initial audit verified there were no missing values and value ranges were plausible: ages span late teens 
to early retirement age, BMI is right skewed with many overweight observations, and costs vary over an order of magnitude, 
suggesting heterogeneous healthcare utilization. Categorical features were kept in raw string form for reporting but later 
numerically encoded for modeling. Continuous variables were standardized to zero mean and unit variance to remove scale 
effects before clustering. The resultant analytic matrix then comprised five standardized numeric variables age, BMI, 
children, expenses, and premium encapsulating the key demographic and cost drivers required to design meaningful 
segments in the policyholder base. All of these preprocessing steps were scripted in Python for exact reproducibility and so 
that the feature set could be regenerated for future experiments. Figure 1 demonstrates the order of pipeline utilized before 
clustering. The process begins with "Start" and proceeds to "Raw Data," the direct importation of raw insurance records. The 
next block, "Handle Missing Values," is screening for and correcting any null or inconsistent values in support of data 
integrity. "Encode Categorical Variables" refers to the encoding of non-numeric features such as gender, region, and discount 
eligibility into computational numerical codes. "Scale Numerical Features" illustrates Z-score standardization of continuous 
features (age, BMI, children, cost, premium) so that all features contribute proportionally to distance calculations. The output, 
labeled "Preprocessed Data," is clean, encoded, and scaled data matrix ready for K-Means clustering. The pipeline stops at 
"End," which is ready for downstream analysis. 

 
Fig. 1. Data Preprocessing Flowchart. 
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3.2 K-Means clustering 

The 𝐾-Means clustering algorithm is applied to the preprocessed matrix X ∈ 𝑅𝑛×𝑝. Initialization employs the K-Means++ 

algorithm, which selects initial centroids based on probability proportional to squared distance, thereby improving 

convergence properties [35]-[38]. In every iteration, observations are assigned to the nearest centroid by Euclidean distance:  

 

𝐶𝑗 = {𝑥𝑖 : ‖𝑥𝑖 − 𝜇𝑗‖
2

≤ ‖𝑥𝑖 − 𝜇𝑗′‖
2
, ∀𝑗′}, 

 

and centroids are updated as the arithmetic meaning of their members in the cluster: 

 

𝜇𝑗 =
1

|𝐶𝑗|
∑  

𝑥𝑖⊂𝐶𝑗

𝑥𝑖 

 

Iterations are iterated until within-cluster sum of squares 

 

𝐽 = ∑  

𝑘

𝑗=1

∑  
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‖𝑥𝑖 − 𝜇𝑗 ‖
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converges below a specified threshold or a specified limit on the number of iterations is attained. 

In order to determine the suitable number of clusters 𝑘, silhouette analysis is done for 𝑘 ∈ {2, … ,6}. For any observation 𝑖, 
the silhouette coefficient is calculated as 

 

𝑠(𝑖) =
𝑏(𝑖) − 𝑎(𝑖)

max{𝑎(𝑖), 𝑏(𝑖)}
 

 

where 𝑎(𝑖) = intra-cluster mean distance and 𝑏(𝑖) = minimum mean distance to the points in some other cluster. Average 

silhouette value over all cases across the entire data set guides the choice of 𝑘 best achieving cluster coherence and 
discrimination. 

Finally, cluster profiling and validation convert the standardized centroids into the initial scale of data using   

�̃�𝑗 = 𝜎𝜇𝑗 + 𝜇 

with 𝜇 and 𝜎 varying over the vectors of standard deviations. Within-clusters for feature 𝑓 are defined by 

Var𝑗(𝑓) =
1

|𝐶𝑗|
∑  

𝑥𝑖⊂𝐶𝑗

(𝑥𝑖𝑗 − �̃�𝑗𝑓 )
2
 

and visualized through boxplots and histograms to assess homogeneity. Statistical significance of inter cluster differences 

is evaluated with ANOVA for continuous variables and chi-square tests for categorical ones. Bootstrap resampling confirms 

cluster stability, and all steps are implemented with fixed random seeds to ensure full reproducibility. 

4. RESULTS  

All the analyses were carried out in Python using pandas for data manipulation, scikit-learn for data preprocessing and 

clustering, and matplotlib for plotting. After loading the CSV file and the check for the lack of missing values, categorical 

columns were encoded using the label_encoding and numerical features (age, BMI, children, expenses, premium) were 

standardized using scikit-learn's StandardScaler. Figure 2 shows the scatter plot graphically represents each policyholder 

along the x-axis (BMI) and y-axis (annual expense), and there are three color-coded clusters evident. The purple cluster is 

dense in the lower expense and lower BMI range, indicating relatively healthy, affordable individuals. The yellow cluster is 

spread across midlevel BMI and midlevel spending, indicating a middle cohort. The teal cluster reaches greater than the 

upper-right, pairing greater BMI with significantly greater medical costs. Diagonal spreading indicates that costs rise greater 

than BMI alone, hinting at other factors influencing cost. Visual demarcation of colors between clusters confirms that K-

Means has found persistent partitioning within this two-dimensional space. Overlaps along boundaries confirm intrinsic 

heterogeneity and the limitation of hard assignments. Outliers with high costs or BMI are isolated but still drawn in by their 

closest centroid. Generally, the graph shows stark expense stratification in line with health markers. 
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Fig. 2.  K-Means Clusters (k = 3): Expenses vs. BMI 

Figure 3 show Age is spread out on the x-axis and costs seem on the y-axis, revealing life-stage cost profiles picked up by 
the clusters. The cluster of purple is concentrated in the lower left, indicating younger adults with little medical expenditure. 
The yellow cluster populates mid-ages with intermediate spending, as expected with growing healthcare utilization. The teal 
cluster increases with advancing age and much higher costs, as expected with predicted healthcare demand by age. A 
continuous slope for all colors reflects cost usually increasing with age. Vertically spaced clusters imply considerable 
expense differentiation even for ages shared. The dispersion of each color highlights intra-cluster diversity, not each member 
responding similarly. Sparse young high spenders or aged low spenders are exceptions that K-Means cluster by overall 
similarity, not personal traits. This graph validates that age, like BMI, helps to anchor the segmentation economically. 

 

 

Fig. 3. K-Means Clusters: Age vs. Costs. 
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Figure 4 show This panel compares age and BMI to illustrate how body composition evolves over life in each cluster. The 
purple cluster is younger with high variability of BMI, representing early adulthood diversity of weight status. The yellow 
cluster is based on middle age, where BMI is ever so slightly higher and more centralized. The teal group is mostly old with 
moderate to high BMI but with lower spread compared to the young group. Horizontal overlap indicates that BMI alone 
cannot neatly separate ages and warrants multi-feature clustering. Vertical overlap shows that high BMI occurs at many ages, 
implying lifestyle and genetics cross age brackets. The color patterns reveal that clusters are not purely age bands but joint 
age–BMI profiles. Sparse points at extreme BMI levels are absorbed by the nearest centroid, illustrating K-Means’ hard 
boundary nature. The figure underscores BMI’s complementary role to age in defining health-related segments. 

 

Fig. 4. K-Means Clusters: Age vs. BMI. 

Figure 5 shows the bar chart tallies membership, with purple being the largest cluster, teal being close second, and yellow 
smallest. The skewing of the clusters shows that the data genuinely contains two high-scoring segments and a specialty 
group. The larger clusters can be for broader, more general populations that would require sub-segmentation in greater detail 
later on. The smaller cluster most likely encompasses mid-range profiles that are distinctive but not as common. Variances 
in heights help relate operational priorities, i.e., resource allocation among segments. Visual simplicity conceals the statistical 
discipline of determining k, giving precedence to interpretability to the stakeholders. Consistency in width keeps focus on 
height as the only encoded variable, avoiding misinterpretation. The absence of error bars reminds us that these are numbers 
and not estimates. Overall, the chart provides a quick tally of the segments revealed. 

 

 

Fig. 5. Cluster Sizes (k = 3). 
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Boxplots contrast annual premium payments, reporting median, interquartile range, and outliers for every cluster. Cluster 0 
contains most compressed box and smallest median premium, which indicates low payments that are quite consistent. Cluster 
1 contains spread and largest median, which indicates varied premium arrangements associated with alternative risk or plan 
choice. Cluster 2 contains median intermediate to others but whiskers that run out very far, which indicates cost variation in 
the older group. Several outliers in Cluster 1 suggest a subgroup exposed to extremely high premiums, possibly for high 
costs or risk adjustments. Position of medians between clusters captures expense stratification seen in earlier figures. The 
narrow or broad boxes directly relate to within-cluster financial homogeneity or heterogeneity. Vertical layout allows 
comparison across clusters. The figure corroborates the economic tale of the segmentation by establishing premium 
differences. 

 

Fig. 6. Premium Distribution by Cluster. 

These boxplots show the spread in BMI, which measures the difference in weight-related health risk across segments. Cluster 
0 has the lowest median BMI as expected from its youth, low-cost profile. Cluster 1 has the highest median BMI and 
moderate spread, which means the majority of individuals in mid-age are experiencing more body mass. Cluster 2 returns to 
a lower median than Cluster 1 but with long whiskers, which signifies extreme spread among seniors. Outliers are directed 
towards extreme BMI cases maintained in each cluster, demonstrating real-world variability. Relative medians' locations 
verify patterns by scatter plots, supporting cluster interpretability. Thin boxes indicate homogeneity of health profiles, while 
thick boxes reveal subgroups in a cluster. Comparison of length between whiskers determines segments that may be most 
improved by particular wellness campaigns. The bar graph visually links BMI distribution with the overall health and cost 
segmentation story. 

 

 

Fig. 7. BMI distribution by Cluster. 
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The binned bars show the number of dependents policyholders have in each cluster, split by zero to five counts. The highest 
bar for zero children in Cluster 0 reaffirms its dominance by single or younger policyholders. Cluster 2 has a wider bar for 
one and two children, as would be anticipated in older adults with larger families. Cluster 1 contains proportionally fewer 
categories, which corresponds to its smaller size overall. Color legend clearly indicates each child-count category to prevent 
confusion between cluster colors. Equal-interval spacing brings out comparison both within clusters and across child-count 
levels. Discrepancies in bar heights reinforce statistical findings that family size varies widely between segments. The chart 
also reveals socioeconomic dimensions of clustering other than cold cost or health considerations. It completes the rich 
profile of each cluster by adding household structure to the narrative of segmentation. 

 

Fig. 8.  Children Count per Cluster. 

5. DISCUSSION  

The three-cluster solution of K-Means paints a coherent picture of how demographic and financial attributes change in 
tandem in a health insurance portfolio. The youngest age group is marked by low utilization and thus low premiums, which 
means either fewer chronic conditions or later entrants to the healthcare system. This group's relatively low distribution of 
BMI points to a generally healthier profile, but the right tail in the BMI boxplot is a warning that high-weight subgroups 
exist even among the young. The middle cluster occupies a middle ground in both age and cost. Costs rise sharply and 
premiums follow, indicating that preventive care, family-related health care needs, or the first onset of chronic illness may 
be driving utilization. The high-cost elderly cluster encapsulates the anticipated burden of age-associated morbidity. 
However, the BMI distribution is just moderately greater than in the other clusters, with the emphasis being on the fact that 
age, rather than BMI alone, is one of the key predictors of escalating medical spending in this data. 
These patterns, viewed from an actuarial and marketing mindset provide the following strategic levers. For the low-cost 
group, insurers can design retention-focused wellness programs that maintain low utilization while building long-term 
loyalty. Digital health coaching, gym memberships, or nutrition counseling may be low-cost incentives. The mid-cost group 
appears to be at an inflection point; targeted interventions such as chronic disease screening, bundled family benefits, or 
tiered deductibles would contain future cost escalation. For the high-cost group, case management, disease-specific care 
pathways, and telemedicine follow-ups can yield real savings. The reality of more dependents in older age groups means 
family-level policies or caregiver support services would also be relevant product innovations. 
The result overall validates these findings. The BMI–cost and age–cost scatterplots exhibit good separation, validating the 
silhouette-based choice of k = 3. Premiums and BMI boxplots reveal distributional features within each cluster that are 
relevant to setting thresholds in underwriting rules or to identifying outliers deserving individual review. The children-count 
bar chart, which would not be considered in purely financial analyses, reveals lifestyle and responsibility factors that can 
guide product bundling and communications strategies. Taken together, these visualizations not only corroborate statistical 
findings but also translate them into actionable stories for non-technical stakeholders. 
Methodologically, the success of a straightforward partitioning algorithm highlights the strength of careful preprocessing. 
Standardization of features kept costs and premiums from dominating distance calculations, and encoding categorical 
variables kept information from being lost. Yet, K-Means assumes spherical clusters of equal variance and employs 
Euclidean distance, which may be suboptimal for the complex geometry of insurance data. Spectral clustering or density-
based methods like DBSCAN may be more effective at uncovering non-convex clusters or detecting high-cost outliers. 
Fuzzy clustering would also handle boundary cases straddling two segments more elegantly, with probabilistic memberships 
that reflect real-world uncertainty. 
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Another important dimension is temporal dynamics. The dataset captures a cross-sectional moment; policyholder behavior, 
health, and household dynamics change over time. Longitudinal clustering or trajectory clustering would illustrate how 
individuals transition between segments, enabling early intervention before expenses intensify. Similarly, incorporating 
external variables—socioeconomic status, comorbidities, lifestyle, claim frequency—would sharpen cluster descriptions and 
enhance their predictive value. K-Means's good performance here does not preclude deeper modeling, but rather provides a 
baseline segmentation upon which other, more intricate layers may be built. 
Cluster stability and generalizability are worth doubting. Although we used fixed random seeds and silhouette validation, 
replication across samples or insurers would provide increased confidence. Subsampling and bootstrapping would assess 
segment robustness. Additionally, because premiums in this data are cost-proportional, they partially duplicate information; 
including distinct pricing attributes (deductibles, co-pays, plan tiers) would allow for a more granular financial dimension. 
Finally, ethical and regulatory requirements must be included in any segmentation strategy. Clusters that follow protected 
attributes can be replicating bias unintentionally, so fairness metrics must accompany technical validation. 

6. CONCLUSION  

This article demonstrates that a straightforward data mining process—centered on K-Means clustering—is able to craft 
informative, actionable segments from a health insurance dataset. After meticulous preprocessing for categorical attribute 
encoding and numerical feature scaling, silhouette analysis indicated three well-separated clusters corresponding to natural 
cost and life-stage gradients. Young, low-cost individuals populate one end of the portfolio; middle-aged, moderate-cost 
policyholders fill an intermediate band; and older, high-cost members populate the other end. Visual and quantifiable 
information confirms these distinctions, drawing conclusions about dramatic differences in age, expense, premiums, BMI 
distributions, and number of dependents among clusters. Practical implications are all about today. Insurers can tailor 
products, outreach, and care management programs to each segment, improving customer satisfaction and cost-efficiency. 
Cluster membership can be introduced as a feature to supervised churn prediction, high-cost episode prediction, or discount 
eligibility models, thereby merging unsupervised insight with predictive modeling. But limits exist. Geometric assumptions 
of K-Means, the absence of time and behavior variables, and the proportionality of the relationship between costs and 
premiums constrain the richness of the uncovered structure. Future research needs to explore hybrid clustering architectures, 
similar functions of different types, categorical representations based on embeddings, and dynamically changing 
segmentation as new information is obtained. 
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