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A B S T R A C T  
 

This study addresses the challenge of nowcasting Gross Domestic Product (GDP) in data-scarce 
environments, with a focus on Syria, a country facing significant economic and political instability. 
Utilizing a dataset from 2010 to 2022, three machine learning algorithms Elastic Net, Ridge, and Lasso 
were applied to model GDP dynamics based on macroeconomic indicators, commodity prices, and high-
frequency internet search data from Google Trends. Among these, the Lasso regression model, noted for 
its variable selection and sparsity promotion, proved most effective in capturing Syria's complex 
economic realities, achieving the lowest Root Mean Squared Error (RMSE) and Mean Absolute 
Percentage Error (MAPE). This accuracy highlights the Lasso model's capability to identify robust 
economic relationships despite limited data, thereby reducing overfitting and improving forecast 
generalizability. The study underscores the significant impact of non-traditional indicators, such as 
Google Trends Agriculture (GTA) and Google Trends Consumption (GTC), on GDP growth, offering 
valuable insights for policymakers and analysts in data-scarce environments. The findings support the 
use of machine learning techniques, particularly Lasso regression, as powerful tools for economic 
forecasting, enhancing informed decision-making in challenging settings. 

 

1. INTRODUCTION 

Nowcasting, the process of estimating the current state of an economic variable, such as Gross Domestic Product (GDP), 

is crucial for policy-makers, analysts, and investors to make informed decisions in a timely manner [1]. Traditional methods 

of GDP nowcasting rely on historical data and econometric models, which often face limitations due to data availability, 

model assumptions, and the rapidly changing nature of the global economy. 

Predicting the short-term dynamics of the economy is a crucial input into various economic agents’ decision-making 

processes. However, accurately nowcasting key macroeconomic indicators can be challenging for various reasons. For 

instance, official estimates are released with a substantial delay, and the uncertainty in the data and estimates can lead to 

multiple revisions, sometimes years after their first release. Additionally, various data series are required for accurately 

nowcasting of macroeconomic indicators — further complicating the process 
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In recent years, machine learning techniques have gained traction in various fields, including economics, due to their ability 

to capture complex patterns and handle large-scale datasets.  

Machine learning (ML) has revolutionized decision-making in a variety of fields by providing new tools for forecasting. 

At its core, ML involves formulating a loss or cost function for forecasting rules. A forecasting rule, denoted as𝒇(𝒙𝒕), 

predicts the value of a target variable,𝒚𝒕 + 𝒉 at a future horizon,𝒉 based on information available at time𝒕. The loss 

function,𝓵(𝒚𝒕 + 𝒉, 𝒇(𝒙𝒕)) quantifies the error incurred by the forecasted value compared to the actual outcome. The central 

goal is to approximate the optimal decision rule,𝒇 ∗ which minimizes the expected loss,𝑬[𝓵(𝒚𝒕 + 𝒉, 𝒇(𝒙𝒕))]. This approach 

has its roots in decision theory [2], and is adopted in statistical learning and economic forecasting [3]. For example, when 

using a cubic loss function,𝓵(𝒚𝒕 + 𝒉, 𝒇(𝒙𝒕))  =  (𝒚𝒕 + 𝒉 −  𝒇(𝒙𝒕))𝟑 the optimal decision rule corresponds to the (non-

linear) regression, 𝒇 ∗ (𝒙𝒕)  =  𝑬[𝒚𝒕 + 𝒉|𝒙𝒕] with respect to𝒇(𝒙𝒕). Specifically, this means that the optimal forecasting rule 

is the one that minimizes the squared difference between the forecasted value and the actual outcome. 

Decision rules used for forecasting are based on the available data. However, there is a trade-off between bias and variance 

in forecasting performance. Overfitting may result from flexible nonparametric approaches that decrease bias at the expense 

of increased variation. In order to lessen variance, regularization and dimensionality reduction also introduce bias. A variety 

of high-dimensional, nonparametric tools are made possible by machine learning, which can be used to improve forecasting 

performance, adjust to the bias-variance trade-off, and provide flexible and accurate approximations of optimal decision 

rules. This means that machine learning can help us develop better decision rules for forecasting by appropriately balancing 

bias and variance. 

Many widely used machine learning tools are based on statistical methods that are well-known and well-established. For 

example, deep learning can be understood as a regression model with non-linearity that is created by a multilayer neural 

network [4]. As a new generation of regression and classification trees, random forests and gradient boosting make sense 

[5]. Penalized regression has its roots in the concept of shrinkage [6], which is the process of adding bias to a model in 

order to reduce its variance. 

Nowcasting GDP using machine learning methods has shown promising results in various studies. Researchers have 

explored different machine learning algorithms, such as ridge regression, boosting, and elastic net, and random forest, to 

estimate GDP growth in different countries [7] [8] [9] These studies have compared the performance of machine learning 

models with traditional time series models like Vector Autoregression (VAR) and found that machine learning models 

outperform VAR in terms of predictive accuracy [10]. Additionally, incorporating high-frequency macroeconomic 

indicators, financial market data, and economic uncertainty indices in the nowcasting models has further improved their 

performance. The use of machine learning methods has also enabled timely predictions of economic growth, addressing 

the issue of lag in official GDP figures. Overall, machine learning techniques have proven to be effective in nowcasting 

GDP and providing accurate and timely insights into economic trends. 

Examine the issue of Nowcasting the US GDP growth for each quarter through the use of more frequent macroeconomic 

and financial data, it is discovered that the machine learning forecasts are either better than or comparable to those released 

by the Federal Reserve Bank of New York [11]. Further benefits can be obtained by utilizing the information derived from 

the textual analysis of business news [12],  

This research aims to explore the application of machine learning algorithms for nowcasting GDP in Syria, a country facing 

significant economic challenges and political instability. For Syria, there have been some studies that have attempted to 

real GDP nowcasting using available data. among which we mention [13] research that uses the MIDAS Almon Polynomial 

Weighting model to Nowcasting Syria's annual GDP based on the monthly inflation rate data and [14] In which the 

Bayesian shrinkage function of the mixed VAR model was used for real-time forecasting of real GDP in Syria based on 

five high-frequency macroeconomic variables. 

Syria's economic landscape has been greatly impacted by the ongoing war, which has resulted in severe disruptions to 

economic activities, infrastructure, and data collection systems. As a result, traditional GDP estimation methods may not 

accurately reflect the current economic situation. By leveraging machine learning techniques, this study seeks to provide a 

more accurate and timely estimation of Syria's GDP. The research will utilize a diverse range of data sources, including 

macroeconomic indicators, And financial market indicators textual data from Google Trend. These non-traditional data 

sources offer valuable insights into economic activities, even in the absence of official statistics, and can help overcome 

data limitations in war-affected regions. The machine learning models will be trained on historical data from Syria, the 

models will be designed to capture both linear and non-linear relationships between the predictors and GDP, allowing for 

a more comprehensive understanding of the economic dynamics. 

 

2. RELATED WORK  

[15] he researches analyses the use of sparse methods to forecast the actual (in the chain-linked volume meaning) 

expenditure components of the US and EU GDP in the short-run sooner than national statistics authorities officially release 
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the data. Use LASSO in conjunction with its most recent improvements for variable selection and forecast estimate. In 

order to enhance the forecasting performance, suggest a modification that combines main components analysis with 

LASSO scenarios. Using benchmark ARMA and factor models as a comparison, conducted pseudo-real-time experiments 

for gross fixed capital formation, private consumption, imports, and exports across a sample period from 2005 to 2019 in 

order to assess the predicting performance. The major findings imply that sparse approaches are capable of identifying 

suitable subsets of explanatory variables and outperforming the benchmarks. 

[11] Structured machine learning regressions for high-dimensional time series data that may be collected at various 

frequencies are introduced in this article. provide oracle inequalities for the sparse-group LASSO estimator in a framework 

that takes mixing processes into account and acknowledges the possibility of heavier than exponential tails in the 

macroeconomic and financial data. The estimator outperforms other options in an empirical application to nowcasting US 

GDP growth, and text data can be a helpful supplement to more conventional numerical data. 

[16] test the nowcast performance of popular algorithms in a full "real-time" setting, that is, with real-time vintages of New 

Zealand GDP growth (our target variable) and real-time vintages of approximately 600 predictors, in order to contribute to 

the growing body of literature on forecasting macroeconomic variables using machine-learning algorithms. The outcomes 

demonstrate that machine-learning algorithms can outperform a dynamic factor model and a basic autoregressive 

benchmark by a large margin. additionally demonstrate the potential for machine-learning algorithms to enhance, and in 

one instance even surpass, the official Reserve Bank of New Zealand estimates. 

[17] this paper reviews it the required steps for Nowcasting, taking Luxembourg as a considered both standard and 

alternative indicators, used as inputs in several nowcasting methods, including various factor and machine learning models. 

Overall, mixed frequency dynamic factor models and neural networks perform well, both in absolute terms and in relative 

terms with respect to a benchmark autoregressive model. The gains are larger during problematic times, such as the 

financial crisis and the recent Covid period. 

[18] this paper proposed bridge models to nowcast French gross domestic product (GDP) quarterly growth rate. The bridge 

models, allowing economic interpretations, are specified by using a machine learning approach via Lasso-based regressions 

and by an econometric approach based on an automatic general-to-specific procedure. These approaches allow to select 

explanatory variables among a large data set of soft data. A recursive forecast study is carried out to assess the forecasting 

performance. It turns out that the bridge models constructed using the both variable-selection approaches outperform 

benchmark models and give similar performance in the out-of-sample forecasting exercise. 

[19] The text data is derived from fifteen well-known European newspapers. Daily sentiment metrics are created from these 

news articles and assessed their value for nowcasting; by comparing to competitive and rigorous benchmarks, it is found 

that newspaper text is helpful in nowcasting GDP growth, especially in the first half of the quarter when other lower-

frequency soft indicators are not available. A non-linear machine learning model can help capture extreme movements in 

growth. The choice of sentiment measure matters when tracking economic shocks such as the Great Recession and the 

Great Lockdown. 

[20] This research aims to use alternate, faster-to-available data to improve the accuracy of GDP nowcasting models. 

Specifically, created nowcasting models that integrate sparse estimation using Elastic Net employing weekly retail sales 

data and hundreds of daily Internet search traffic data, in addition to typical monthly economic data. Using the forecast 

combination approach, which combines various forecasting models, a large number of candidate models were generated 

for the model formulation and data selection. The "Best models" were chosen based on their ability to minimize forecast 

error, incorporating data collected after the COVID-19 pandemic. The investigation demonstrates that using alternate data 

considerably raises the model's forecasting accuracy. 

[21] In this paper, projection models for Peru's monthly GDP rate growth are presented. These models combine high-

frequency unstructured sentiment variables with structured macroeconomic data. The window sample, which spans 91 

variables in all, runs from January 2007 to May 2023. The most accurate predictions for each model were found by 

evaluating six ML algorithms. In comparison to traditional time series models, the results show that each machine learning 

model with unstructured data has a high capacity to produce more accurate and anticipated predictions. The models that 

performed best were Gradient Boosting Machine, LASSO, and Elastic Net, which were able to reduce prediction errors by 

20% to 25% when compared to the AR and Dynamic Factor Models (DFM) models. 

 

3. METHODOLOGY 

The research methodology consists of using three machine learning algorithms (Lasso, Ridge, Elastic Net) to predict the 

real-time Gross Domestic Product (GDP) in Syria and obtain information about economic growth in the last two years in 

the absence of the ability to collect new information about this most important variable in the economy. We use these 

algorithms because of their ability to deal with the large number of variables with limited temporal availability. These 

techniques are a popular remedy for the overfitting issue, which occurs when a model fits training data well but struggles 
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to generalize to fresh test data. Some or all of the coefficients are kept, and their magnitude is shrunk, contingent on the 

particular parameters selected for our model. to calculate the special cases of the Lasso and Ridge models, as well as the 

elastic net regression net. We explore the network over several lambda penalty parameters and estimate one lambda penalty 

parameter at a time. In order to select the parameter with the lowest error rate, we additionally employ cross validation 

methods. Following estimation, we display further validation statistics and diagnostics, graphs of coefficient evolution with 

respect to the penalty parameter, and customized views of coefficient tables and other summary data [22] [23]. 

Even though the ordinary least squares estimator has many good qualities, like unbiasedness, it can have significant 

volatility in some situations. The least squares estimates are highly susceptible to random errors and may have a high 

variance, for instance, if the data have many correlated regressors or more regressors than the length of the dataset (often 

referred to as the large, small problem). While the Ordinary Least Squares (OLS) estimator, which minimizes the residual 

sum of squares (RSS), is widely used, it encounters significant challenges when dealing with multicollinearity and limited 

data—characteristics inherent to the Syrian context. The OLS estimator seeks to find the coefficients, β, that minimize: 

 

RSS (𝛽) = Σ(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖1 − ⋯ − 𝛽𝑝𝑥𝑖𝑝)2                     (1) 

 

where: 𝑦𝑖  represents the observed GDP for the i-th observation. 𝑥𝑖1, ..., 𝑥𝑖𝑝 are the corresponding values of the predictor 

variables.  𝛽0, 𝛽1, ..., 𝛽𝑝 denote the coefficients to be estimated. Multicollinearity, a phenomenon where predictor variables 

are highly correlated, inflates the variance of OLS estimates, leading to unreliable coefficients and difficulty in isolating 

the individual effects of predictors. The Variance Inflation Factor (VIF) quantifies the severity of multicollinearity: 

 

𝑉𝐼𝐹𝑖 =
1

1−𝑅𝑖
2                                    (2) 

 
Here, 𝑅𝑖

2 represents the R-squared value obtained from regressing the i predictor on all remaining predictors. High VIF 

values (generally exceeding 5 or 10) signal strong multicollinearity, necessitating the use of regularization techniques to 

mitigate its impact. Regularization techniques introduce a penalty term to the OLS cost function, effectively shrinking the 

magnitude of coefficients and reducing model complexity. This approach combats overfitting, allowing the model to 

generalize better to new data. This study focuses on three prominent regularization techniques: Ridge Regression, Lasso 

Regression, and Elastic Net Regression. Using an elastic net, lasso, ridge regression model, regularization can be used to 

lessen this variance by creating bias and lowering the total error. Penalized regression techniques such as ridge regression, 

Lasso, and elastic net all function by reducing the model's regressors' magnitudes. Adding a penalty component to the 

standard cost function for linear regression is the normal procedure: 

 

𝐽 =
1

2𝑚
∑  𝑚

𝑖=1 (𝑦𝑖 − 𝛽0 − ∑  
𝑝
𝑗=1 𝑥𝑖𝑗𝛽𝑗)

2
+ 𝜆 [

(1−𝛼)

2
∑  

𝑝
𝑗=1 𝛽𝑗

2 + 𝛼 ∑  
𝑝
𝑗=1 |𝛽𝑗|]           (3) 

 

Equation (1) transforms into a ridge regression model, a Lasso model, or an elastic net model based on the value of in the 

penalty term. The penalty's impact is determined by the size of the punishment parameter, 𝜆 ≥ 0. In the event that a "large" 

value for 𝜆 is selected, the minimizing of this cost function: 

 

𝑚𝑖𝑛𝛽
 

 𝐽                                    (4) 

will cause the 𝛽 levels to decrease or possibly go to zero. Less complicated and less prone to overfitting is a model with 

fewer (or zero) coefficients. 

Ridge: 

The conventional least squares estimator with an L2 penalty term added is known as the ridge estimator: 

 

𝐽 =
1

2𝑚
∑  𝑚

𝑖=1 (𝑦𝑖 − 𝛽0 − ∑  
𝑝
𝑗=1 𝑥𝑖𝑗𝛽𝑗)

2
+ 𝜆 ∑  

𝑝
𝑗=1 𝛽𝑗

2                    (5) 

 

The coefficients' sizes are decreased by the penalty, but they are not made zero. More shrinkage occurs when the cost 

function 𝐽 is minimized with a larger 𝜆. We employ cross-validation in the process of selecting the penalty parameter. 

approach entails dividing the data into test and training sets, iterating over the parameter list, and using the training data to 
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estimate a set of coefficients. The dependant is then predicted using these coefficients on the test data set, and an error 

measure is computed. 𝜆𝑚𝑖𝑛 is the penalty parameter with the least amount of mistake [24]. We additionally compute the 

standard error of the error measures across the training and test sets for cross-validation processes involving multiple test 

sets (providing the maximum penalty parameters between one and two standard errors of 𝜆𝑚𝑖𝑛 as 𝜆1 𝑆𝐸 and 𝜆2 𝑆𝐸). 

Equation (2)'s right-hand side can be solved for the coefficients using the conventional method, which results in: 

 

𝛽 = (𝑋′𝑋 + 𝜆𝐼)−1(𝑋′𝑌)                                         (6) 

 

It should be noted that when the OLS coefficients are represented by Equation (3), the coefficients are more severely 

penalized (𝛽 → 0) as the penalization parameter increases (𝜆 → ∞). Conveniently, the matrix 𝑋′𝑋 + 𝜆𝐼 becomes 

nonsingular and invertible when the positive constant 𝜆 is added to the diagonal [25]. 

Variance is the degree of uncertainty in those estimations, whereas bias is the discrepancy between the estimated and actual 

values. Reducing model complexity to the point where the model both fits training data and generalizes well to test data is 

the aim of regularization. More complicated, low-bias models typically fit training data better, whereas less complex, low-

variance models generally generalize better to test data. For instance, in OLS, the number of regressors and model 

complexity are correlated. The estimator's variance is decreased by reducing the number of regressors, but bias is introduced 

in the process. We refer to this as the bias-variance tradeoff. For models such as elastic net, ridge, and Lasso, the comparable 

decrease in complexity is accomplished not just via the deletion of individual coefficients but also through a reduction in 

the magnitudes of the coefficients. By using Equation (3) to determine the expectation of the ridge coefficient, we can 

examine this in greater detail: 

𝐸(�̂�ridge ) = 𝐸((𝑋′𝑋 + 𝜆𝐼)−1(𝑋′𝑌))

= (𝑋′𝑋 + 𝜆𝐼)−1(𝑋′𝑋)𝛽
                                               (7) 

If 𝐸(�̂�ridge ) ≠ 𝛽 the ridge estimator is biased. And see also 𝜆 → ∞, 𝐸(�̂�ridge ) → 0 as predictably. The bias and variance 

of the ridge estimator are provided by, albeit we won't derive them here: 

bias(�̂�ridge ) = −𝜆(𝑋′𝑋 + 𝜆𝐼)−1𝛽                               (8) 

var(�̂�ridge ) = 𝜎2(𝑋′𝑋 + 𝜆𝐼)−1𝑋′𝑋{(𝑋′𝑋 + 𝜆𝐼)−1}′                                            (9) 

Equation (5)'s bias rises as lambda rises, whereas Equation (6)'s variance (𝜎2 is the error variance from the residuals) falls. 

Lasso: 

An L1 penalty term added to the OLS estimator is called the Lasso (Least Absolute Shrinkage and Selection Operator) 

estimator [26]: 

𝐽 =
1

2𝑚
∑  𝑚

𝑖=1 (𝑦𝑖 − 𝛽0 − ∑  
𝑝
𝑗=1 𝑥𝑖𝑗𝛽𝑗)

2
+ 𝜆 ∑  

𝑝
𝑗=1 |𝛽𝑗|                                      (10) 

There is no analytical solution since the penalty term is a sum of absolute values, making the answer nonlinear. It is 

necessary to solve the Lasso equation quantitatively. The coefficients may approach 0, in contrast to ridge regression. It is 

important to note that Lasso will typically decrease the other regressors in the group and favor the associated one [27]. 

Ridge regression will cause the group's total coefficients to decrease proportionately. 

Elastic Net: 

The ridge and Lasso models are combined to create the elastic net model. Iterating Equation (1): 

𝐽 =
1

2𝑚
∑  𝑚

𝑖=1 (𝑦𝑖 − 𝛽0 − ∑  
𝑝
𝑗=1 𝑥𝑖𝑗𝛽𝑗)

2
+ 𝜆 [

(1−𝛼)

2
∑  

𝑝
𝑗=1 𝛽𝑗

2 + 𝛼 ∑  
𝑝
𝑗=1 |𝛽𝑗|]                                 (11) 

The regularization term is comprised of the L1 and L2 penalties, with the parameter 𝛼 regulating the degree of mixing. 

This transforms into a ridge regression model when 𝛼 = 0. It becomes a Lasso model at 𝛼 = 1. Since the Lasso term drives 

the correlated regressors towards zero while the ridge term shrinks them proportionally, the compromise between these two 

[28]. 
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Time Series Cross Validation: 

One or more tuning parameters must be specified for the practical application of ML algorithms. It is customary to use K-

fold cross validation for data, which may or may not be suitable for time series data. According to [29], the conventional 

K-fold cross-validation technique is still appropriate for autoregressive models with errors. However, traditional cross-

validation fails with correlated errors because of the correlation between the training and test samples, such as when the 

regression has only projection interpretation due to misspecification. 

In order to prevent this, we first look at the autocorrelation of errors and select a range of cross-validation techniques, such 

as: 

- K-fold: The Random generator and Seed fields dictate the specifics of the shuffling. The dataset is split into K 

equally spaced "folds," and the ordering is shuffled. The remaining K-1 folds are merged to create the training set, 

and one fold is kept out as the test set. Next, repeat this process with a test set consisting of each fold being held 

out sequentially. The data are averaged over all K folds where: 

𝑐𝑣(𝑘) =
1

𝑘
∑  𝑘

𝑖=1 𝑀𝑆𝐸𝑖                           (12) 

         where MSEi is loss function. And: 

MSE =
1

𝑁
∑  𝑁

𝑖=1 (𝑦𝑖 − �̂�𝑖)
2                                (13) 

- Leave One Out: With the exception of holding out a test set of size P and using the remaining data as the training 

set, this is comparable to K-Fold. Repeat this procedure for each of the remaining combinations [30]. Utilize the 

omitted observations to evaluate the model: 

𝐶𝑉(𝜆) =
1

𝑇
∑  𝑇

𝑡=1 ℓ (𝑦𝑡 − 𝑓𝜆,−𝑡,𝑙(𝑥𝑡))                              (14) 

Where ℓ is loss function (MSE) and 𝑓𝜆,−𝑡,𝑙(𝑥𝑡) serve as a machine learning model's prediction rule. 

- Rolling Windows: Following the selection of a window size for the dataset, the window is partitioned into training 

and test sets, with the test set in each window always following the training set (the default test set size is 1, but 

we can alternatively define the test set size as a fraction). Until it reaches the end of the dataset, the window "rolls" 

through it. We can also select a starting period in the dataset to exclude from cross-validation (the initial period) 

and how far ahead of the training set you want the test set to be (the horizon). 

Following cross-validation, we assess the models' correctness and contrast them using the performance metrics (Root Mean 

Square Error – Mean Absolute Percentage error – Normalized Root Mean Square Error) listed below: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖

′)2𝑛
𝑡=1

𝑛
                                            (15) 

MAPE =
1

𝑛
∑  𝑛

𝑖=1 |
𝑦𝑖−𝑦𝑖

′

𝑦𝑖
| × 100%                        (16) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑀𝑒𝑎𝑛
                                                       (17) 

where 𝒚𝒊
′ is the predicted value; 𝒚𝒕 is the actual value; and 𝒏 is number of fitted observed. 

Data and Results: 

Table 1, "Information about Variables," systematically catalogs the datasets utilized from multiple sources spanning the 

period from 2010 to 2023, with the exception of the Gross Domestic Product (GDP) data which is recorded until 2022. The 

table enumerates various economic and financial indicators that have been gathered for the purpose of employing machine 

learning techniques to nowcast Syria's GDP. These indicators include market indices, trading volumes, consumer price 

indices, and macroeconomic data derived from high-frequency internet searches, detailed as follows: 

 Market Data: Collected from the Damascus Stock Exchange, data includes market stock price indices, the number 

of traded companies, market and trading values, the average daily trading value, the number of shares traded, the 

number of trades executed, and the number of trading days. 
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 Macroeconomic Indicators: Compiled from the Central Bureau of Statistics and the Central Bank of Syria, these 

include consumer prices, the exchange rate, and the interest rate. 

 Commodity Prices: Gold price data obtained from the Craftsmanship Association. 

 Google Trends Data: Internet search frequencies for terms related to gold, stocks, education, gas, oil, 

employment, consumption, agriculture, industry, prices, investment, exchange rates, decrees, and law. 

Each entry in the table specifies the source, measurement unit, time span, and the specific economic variable tracked. This 

extensive collection of data provides a robust framework for analyzing the intricate dynamics of Syria's economy through 

advanced computational models, enhancing the predictive accuracy of GDP nowcasting in a context marked by significant 

data limitations due to ongoing regional instability. This methodological approach aligns with contemporary research 

practices in economic forecasting, leveraging non-traditional data sources to compensate for gaps in official statistical 

reporting According to the following table:  

TABLE I. INFORMATION ABOUT VARIABLES 

Source Code Measuring unit Time Variable 

Invalid source specified. DWX Point 2010-2023 Market stock price index 

Invalid source specified. NTC Company 2010-2023 Number of traded companies 

Invalid source specified. MV Billion Syrian 

pounds 

2010-2023 Market value 

Invalid source specified. TV Billion Syrian 
pounds 

2010-2023 Trading value 

Invalid source specified. ADTV Billion Syrian 

pounds 

2010-2023 Average daily trading value 

Invalid source specified. NST Billion Syrian 
pounds 

2010-2023 Number of shares traded 

Invalid source specified. NET Thousand deals 2010-2023 Number of trades executed 

Invalid source specified. NTD Day 2010-2023 Number of trading days 

Invalid source specified. CPI Point 2010-2023 Consumer prices 

Invalid source specified. EXR Bound 2010-2023 Exchange rate 

Invalid source specified. INTM Point 2010-2023 Interest rate 

Invalid source specified. Gold Bound 2010-2023 Gold Price 

Google Trend GTG Point 2010-2023 Google Trend - Gold 

Google Trend GTS Point 2010-2023 Google Trend - Stock 

Google Trend GTE Point 2010-2023 Google Trend - Education 

Google Trend GTGg Point 2010-2023 Google Trend - Gaz 

Google Trend GTO Point 2010-2023 Google Trend - Oil 

Google Trend GTEM Point 2010-2023 Google Trend - Employment 

Google Trend GTC Point 2010-2023 Google Trend - Consumption 

Google Trend GTA Point 2010-2023 Google Trend - Agriculture 

Google Trend GTI Point 2010-2023 Google Trend - Industry 

Google Trend GTP Point 2010-2023 Google Trend - Prices 

Google Trend GTINV Point 2010-2023 Google Trend - Investment 

Google Trend GTEX Point 2010-2023 Google Trend - Exchange Rate 

Google Trend GTD Point 2010-2023 Google Trend - Decree 

Google Trend GTL Point 2010-2023 Google Trend - Law 

Invalid source specified. GDP Million Syrian 
pounds 

2010-2022 Gross Domestic Product 

 

Table 2, "Elastic Net Regularization Model for GDP Nowcasting," delineates the modeling framework and resultant 

coefficients obtained from applying Elastic Net regularization to nowcast Syria's GDP using an array of macroeconomic 

and digital indicators spanning the period from 2010 to 2022. This table is central to demonstrating the methodological 

rigor and analytical precision of the nowcasting model employed in this study. 

TABLE II. MODEL FOR GDP SYRIA USING ELASTIC NET REGULARIZATION ALGORITHM 

Dependent Variable: GDP 

Method: Elastic Net Regularization 

Sample (adjusted): 2010 2022 
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Included observations: 13 after adjustments 

Penalty type: Elastic Net (alpha = 1) 

Lambda at minimum error: 0.04974 

Regressor transformation: L1 

Cross-validation method: Leave P Out (number left out = 2) 

Selection measure: Mean Squared Error 

 (minimum) (+ 1 SE) (+ 2 SE) 

Lambda 0.04974 0.1047 0.1519 

Variable  Coefficients  

CPI -0.034685 -0.018533 -0.007315 

ADTV 0.000342 0.000270 0.000109 

DWX -0.003563 -1.11E-08 0.000000 

EXR -0.002458 -0.000640 -0.002608 

GOLD 1.15E-10 0.000000 -5.80E-06 

GTA 0.947115 0.763708 0.708154 

GTC 0.863529 0.481011 0.237641 

GTD 0.451748 0.455984 0.438940 

GTE -0.225158 -0.169157 -0.125911 

GTEM 0.000283 0.000000 0.000000 

GTEX 1.08E-10 0.007929 2.66E-06 

GTG 0.088256 0.077746 0.064897 

GTGG 0.156817 0.143617 0.093736 

GTI -1.25E-09 0.000000 0.000000 

GTINV 0.000477 0.000000 0.000000 

GTL 0.088745 0.085268 0.049383 

GTO 0.076771 0.106583 0.000000 

GTP -0.000803 -3.27E-08 0.000000 

GTS -2.76E-05 4.51E-10 0.000000 

INTM -1.10E-08 -6.88E-08 -2.35E-05 

MV 1.90E-09 7.06E-08 1.22E-05 

NET 2.13E-10 0.001641 0.000551 

NC 0.125438 0.097283 0.095302 

NST 0.000724 0.000173 5.20E-05 

NTC 0.362562 0.247276 0.222495 

NTD 0.000452 0.000728 7.88E-07 

TV -0.001902 0.000000 0.000000 

C -32.86687 -30.73022 -25.53476 

d.f. 27 22 19 

L1 Norm 36.29873 33.38776 27.58189 

R-squared 0.935875 0.857619 0.771405 

 

The table provides a detailed overview of an Elastic Net regularization model designed to nowcast Syria's GDP. The 

model employs a Lasso approach (alpha = 1), prioritizing variable selection and sparsity. It analyzes data from 2010 to 

2022, using 13 observations. The optimal lambda value for minimizing error is determined to be 0.04974, with 

additional analyses conducted at one and two standard errors of lambda to assess model sensitivity. Notably, coefficients 

for variables like Google Trends Agriculture (GTA) and Google Trends Consumption (GTC) are high, signifying their 

strong predictive power for GDP. Conversely, coefficients for CPI and EXR decrease significantly as lambda increases, 

highlighting their susceptibility to regularization. The Leave P Out cross-validation method, with 2 observations left 

out, ensures robust model validation. The model aims to minimize forecast errors, as indicated by the Mean Squared 

Error selection measure. The decreasing L1 norm across higher lambda values suggests a reduction in variable influence 

as regularization intensifies. This decreasing influence is consistent with the economic intuition that as regularization 

increases, the model becomes less complex and relies less heavily on individual predictors, potentially sacrificing some 

explanatory power for greater generalizability and robustness. The high initial R-squared value of 0.935875, which 
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declines as lambda increases, illustrates the inherent trade-off between model complexity and fit, underscoring the 

importance of finding an optimal balance between capturing specific economic relationships and avoiding overfitting. 

 

 
 

Fig .1. Error and Coefficient Evolution for (Lambda-L1 Norm-R Squared) For Elastic Net Regularization 

 

The "Coefficient Evolution" graph, depicting the trajectory of predictor coefficients under increasing L1 Norm (a 

measure of regularization strength), provides valuable insights into the model's behavior and variable selection process. 

The graph illustrates how the Elastic Net regularization method selectively shrinks coefficients, balancing bias and 

variance to optimize model performance and mitigate overfitting. The distinctive trajectories of coefficients, notably 

the persistent influence of Google Trends Agriculture (GTA) and Consumer Price Index (CPI) even at high 

regularization levels, highlight the robustness and significance of these predictors in the GDP nowcasting model. The 

visualization allows for a nuanced understanding of the model's sensitivity to different variables under varying 

regularization pressures, ultimately aiding in validating the model's configuration and ensuring its effectiveness in real-

world economic forecasting applications. 
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TABLE III. MODEL FOR GDP SYRIA USING RIDGE ALGORITHM  

 

Dependent Variable: GDP 

Method: Elastic Net Regularization 

Sample (adjusted): 2010 2022 

Included observations: 13 after adjustments 

Penalty type: Ridge (alpha = 0) *analytic 

Lambda at minimum error: 0.1299 

Regressor transformation: L1 

Cross-validation method: Leave P Out (number left out = 2) 

Selection measure: Mean Squared Error 

 (minimum) (+ 1 SE) (+ 2 SE) 

Lambda 0.1299 0.5757 1.212 

Variable  Coefficients  

ADTV 0.001268 0.000860 0.000616 

CPI -0.022832 -0.008645 -0.004707 

DWX -0.002397 0.000485 0.000803 

EXR -0.010395 -0.004599 -0.002695 

GOLD 0.008478 0.004820 0.002844 

GTA 0.494727 0.212716 0.123901 

GTC 0.603615 0.238982 0.126546 

GTD 0.368382 0.188546 0.112902 

GTE -0.136522 -0.062843 -0.036122 

GTEM -0.017275 -0.006740 -0.001250 

GTEX 0.008665 0.010397 0.007656 

GTG 0.062302 0.030204 0.017909 

GTGG 0.128114 0.058053 0.032806 

GTI -0.015098 -0.007129 -0.003335 

GTINV 0.127896 0.027037 0.011412 

GTL 0.097359 0.059817 0.037831 

GTO 0.112133 0.040578 0.021938 

GTP 0.009988 0.015301 0.010953 

GTS 0.004238 0.021508 0.015850 

INTM -0.261341 -0.213655 -0.148273 

MV 0.027737 0.032237 0.022945 

NC 0.069920 0.033739 0.020612 

NET 0.001042 0.001689 0.001290 

NTC 0.209351 0.109011 0.067209 

NST 0.001477 0.000981 0.000709 

NTD 0.004934 0.003621 0.002475 

TV -0.002253 0.001584 0.001644 

C -503.4156 -238.6134 -141.1699 

d.f. 28 28 28 

L1 Norm 506.4626 240.1203 142.0719 

R-squared 0.841347 0.551935 0.376930 

 

The table (3) presents a Ridge regression model for nowcasting Syria's GDP. The shrinking of coefficient magnitudes 

with increasing lambda highlights the bias-variance tradeoff inherent in Ridge regression, where model complexity is 

reduced to improve generalizability and prevent overfitting. The optimal lambda value of 0.1299 minimizes forecast 

error, as indicated by the Mean Squared Error selection measure. The L1 Norm, reflecting the sum of coefficient 

magnitudes, decreases as lambda increases, suggesting diminishing individual variable influence with greater 

regularization. Notably, while coefficients for variables like GTA (Google Trends Agriculture) and GTC (Google 

Trends Consumption) remain relatively strong predictors, coefficients for CPI and EXR are more susceptible to 

shrinkage, indicating their potentially less robust relationship with GDP. The R-squared value, representing the model's 

goodness of fit, declines as lambda increases, demonstrating the tradeoff between model complexity and explanatory 
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power. From an economic perspective, the strong predictive power of GTA and GTC suggests the importance of 

consumer behavior and agricultural activity in driving GDP growth in Syria. The susceptibility of CPI and EXR to 

regularization could point to market distortions or policy interventions that impact their direct influence on GDP. This 

nuanced analysis, derived from the Ridge regression model, provides valuable insights for understanding the drivers of 

economic growth in Syria and highlights the potential of leveraging non-traditional data sources in economic 

forecasting. 

 

 
Fig .2.  Error and Coefficient Evolution for (Lambda – L1 Norm-R Squared) for Ridge Algorithm 

The figure (3) depicting coefficient evolution as a function of R-squared in the Ridge model of Syria's GDP provides a 

nuanced understanding of variable importance under varying model fit scenarios. The trajectories of coefficients, 

notably the sharp positive trends for GOLD, GTA, and GTC, indicate their increasing influence as the model explains 

more variance in GDP. Conversely, the relative stability of other coefficients suggests their consistent yet minor role in 

predicting GDP. This differential sensitivity to R-squared underscores the model's ability to discern key economic 

drivers, highlighting variables like GOLD and GTA as potentially significant contributors to economic growth in Syria. 

This visualization aids not only in interpreting model dynamics but also in optimizing model specifications for enhanced 

predictive accuracy by focusing on the most impactful variables. 
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TABLE IV. MODEL FOR GDP SYRIA USING LASSO ALGORITHM 

Dependent Variable: GDP 

Method: Elastic Net Regularization 

Sample (adjusted): 2010 2022 

Included observations: 13 after adjustments 

Penalty type: Lasso (alpha = 1) 

Lambda at minimum error: 0.04974 

Regressor transformation: L1 

Cross-validation method: Leave P Out (number left out = 2) 

Selection measure: Mean Squared Error 

 (minimum) (+ 1 SE) (+ 2 SE) 

Lambda 0.04974 0.1047 0.1519 

Variable  Coefficients  

ADTV 0.000342 0.000270 0.000109 

CPI -0.034685 -0.018533 -0.007315 

DWX -0.003563 -1.11E-08 0.000000 

EXR -0.002458 -0.000640 -0.002608 

GOLD 1.15E-10 0.000000 -5.80E-06 

GTA 0.947115 0.763708 0.708154 

GTC 0.863529 0.481011 0.237641 

GTD 0.451748 0.455984 0.438940 

GTE -0.225158 -0.169157 -0.125911 

GTEM 0.000283 0.000000 0.000000 

GTEX 1.08E-10 0.007929 2.66E-06 

GTG 0.088256 0.077746 0.064897 

GTGG 0.156817 0.143617 0.093736 

GTI -1.25E-09 0.000000 0.000000 

GTINV 0.000477 0.000000 0.000000 

GTL 0.088745 0.085268 0.049383 

GTO 0.076771 0.106583 0.000000 

GTP -0.000803 -3.27E-08 0.000000 

GTS -2.76E-05 4.51E-10 0.000000 

INTM -1.10E-08 -6.88E-08 -2.35E-05 

MV 1.90E-09 7.06E-08 1.22E-05 

NET 2.13E-10 0.001641 0.000551 

NC 0.125438 0.097283 0.095302 

NST 0.000724 0.000173 5.20E-05 

NTC 0.362562 0.247276 0.222495 

NTD 0.000452 0.000728 7.88E-07 

TV -0.001902 0.000000 0.000000 

C -32.86687 -30.73022 -25.53476 

d.f. 27 22 19 

L1 Norm 36.29873 33.38776 27.58189 

R-squared 0.935875 0.857619 0.771405 

 

 

This table (4) presents a Lasso regression model for nowcasting Syria's GDP, highlighting the impact of increasing 

regularization (lambda) on coefficient magnitudes and model fit. The optimal lambda value of 0.04974, determined 

through Leave-One-Out cross-validation, minimizes the Mean Squared Error, indicating the best balance between model 

complexity and predictive accuracy. As lambda increases, the L1 Norm decreases, reflecting the Lasso model's tendency 

to shrink coefficients towards zero, promoting sparsity. Variables like GTA (Google Trends Agriculture) and GTC 

(Google Trends Consumption) maintain high coefficient magnitudes even at higher lambda values, suggesting their 

strong and consistent influence on GDP. Conversely, coefficients for CPI and EXR shrink significantly with increasing 

lambda, indicating their potentially less robust relationship with GDP. The declining R-squared values reflect the 
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tradeoff between model complexity and explanatory power, where higher regularization prioritizes generalizability over 

fitting the training data perfectly. From an economic standpoint, the persistent influence of GTA and GTC suggests the 

importance of agricultural activity and consumer behavior in driving GDP growth. The sensitivity of CPI and EXR to 

regularization might point to market distortions or policy interventions that affect their direct influence on GDP.  

 

 

 
Fig .3. Error and Coefficient Evolution for (Lambda – L1 Norm-R Squared) for Lasso Algorithm 

 

The figure (3) depicting the evolution of training and testing errors, alongside coefficient paths, across varying lambda 

values in the Lasso model provides a comprehensive view of the regularization process and its impact on model 

performance. The convergence of low training and testing errors around a lambda of 0.15 highlights the optimal balance 

between model complexity and generalizability. As lambda increases, the steady decline in training error and initial 

decrease in testing error, followed by a slight increase with growing variability, illustrate the bias-variance tradeoff 

inherent in regularization. Coefficient paths reveal that variables like GTA (Google Trends Agriculture) and CPI retain 

high magnitudes even at higher lambda values, signifying their robust influence on GDP, while other coefficients shrink, 

indicating their lesser importance. This visualization effectively communicates the dynamics of regularization in the 

Lasso model, guiding the selection of an appropriate lambda value that minimizes overfitting while maintaining 

predictive power for robust economic forecasting. 
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Fig .4.  GDP Forecast vs. Actuals" graph 

 

 
TABLE V. MODELS ACCURACY INDICATORS  

 
Indicators Model1 (Elastic 

Net) 

Model2 (Ridge) Model3 (Lasso) 

Root Mean Squared Error 0.008887 4.083316 0.004487 

Normalized Root Mean Squared Error 1.519924 1.626829 1.018924 

Mean Absolute Percentage Error 3.993454 10.44233 2.113421 

 

The accuracy indicators for the three machine learning models used for GDP nowcasting in Syria, namely Elastic Net, 

Ridge, and Lasso, reveal crucial insights into their performance. While all three models demonstrate reasonable 

accuracy, the Lasso model emerges as the most effective based on the presented metrics and figures. The Lasso model 

exhibits the lowest Root Mean Squared Error (RMSE) at 0.004487, signifying the smallest average deviation of its 

predictions from actual GDP values. It also boasts the lowest Mean Absolute Percentage Error (MAPE) at 2.113421%, 

suggesting its forecasts are, on average, within 2% of the actual GDP, a commendable level of accuracy in economic 

forecasting. Although its Normalized Root Mean Squared Error (NRMSE) of 1.018924 is marginally higher than ideal, 

it's still the lowest among the three models, indicating better consistency in handling data fluctuations. The figures 

depicting the predicted GDP against the actual values further confirm the Lasso model's superior performance. The line 

representing Lasso's predictions closely aligns with the actual GDP line, reinforcing its accuracy. Conversely, while the 

Elastic Net model also demonstrates good accuracy, its slightly higher RMSE and MAPE suggest marginally less precise 

predictions compared to Lasso. The Ridge model exhibits the lowest accuracy among the three, reflected in its 

significantly higher RMSE and MAPE values. This disparity in performance stems from the models' inherent 

characteristics. Lasso's ability to completely eliminate insignificant variables through coefficient shrinkage allows it to 

create a more parsimonious and efficient model, especially in a setting with limited data and potential multicollinearity, 

such as the Syrian economic context. From a statistical standpoint, the Lasso model's lower error metrics indicate its 

superior ability to capture the underlying relationships within the data and generate reliable predictions. Economically, 
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the Lasso model's accuracy holds significant implications for policymakers and analysts, providing a more trustworthy 

tool for understanding and forecasting Syria's economic trajectory amidst challenging conditions. These insights are 

invaluable for guiding economic policy decisions, resource allocation, and strategic planning in a context where reliable 

economic data is scarce. 

4. CONCLUSION AND RECOMMENDATIONS  

This research aimed to nowcast Syria's Gross Domestic Product (GDP) using a set of macroeconomic and digital 

indicators, addressing the scarcity of reliable economic data in a context marked by conflict and instability. Utilizing a 

sample spanning from 2010 to 2022, the study employed three machine learning algorithms – Elastic Net, Ridge, and 

Lasso – to model GDP dynamics based on a range of variables including market indices, commodity prices, consumer 

price indices, and internet search trends. While all three models exhibited reasonable accuracy, the Lasso regression 

model emerged as the most effective in capturing the intricacies of Syria's economic landscape. The Lasso model, 

characterized by its variable selection and sparsity promotion, achieved the lowest Root Mean Squared Error (RMSE) 

and Mean Absolute Percentage Error (MAPE), demonstrating its superior ability to generate accurate and reliable GDP 

predictions. Statistically, the Lasso model's lower error metrics highlight its capacity to effectively discern the 

underlying relationships within the data, mitigating overfitting and enhancing the generalizability of its forecasts. From 

an economic perspective, the Lasso model's accuracy underscores the significant influence of variables like Google 

Trends Agriculture (GTA) and Google Trends Consumption (GTC) on GDP growth, providing valuable insights for 

policymakers and analysts seeking to understand and anticipate economic trends in Syria. The findings suggest that 

consumer behavior and agricultural activity play crucial roles in driving economic growth, particularly in a context 

where traditional economic indicators may be less reliable due to data limitations. This study advocates for the adoption 

of machine learning techniques, particularly Lasso regression, as robust and adaptable tools for economic forecasting 

in data-scarce environments, providing crucial information for evidence-based policymaking, resource allocation, and 

strategic planning. 
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