
 

 

 

*Corresponding author. Email: alkattan.hussein92@gmail.com 

                      

 
 
 

Review Article 

Hybrid Model for Forecasting Temperature in Khartoum Based on CRU data 
 

Hussein Alkattan 1,2,*, , Alhumaima Ali Subhi 1,3, , Laith Farhan 3,4, , Ghazwan Al-mashhadani 5,  
 

1 Department of System Programming, South Ural State University, Chelyabinsk 454080, Russia . 

2 Directorate of Environment in Najaf, Ministry of Environment, Najaf, Iraq. 

3 Electronic and Computer Center, University of Diyala, Baqubah MJJ2+R9G, Iraq.  

4 School of Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK. 

5 Department of management, South Ural State University, Chelyabinsk 454080, Russia.  

 
 

A R T I C L E  I N F O 
 

Article History 

Received  22  Jun 2024 

Accepted  25  Jul 2024 

Published 20 Aug 2024 

 
Keywords 

Temperature forecasting  

Machine learning techniques 

CRU data  

Climate Resilience  

Hybrid SVM-RF Method  

 

 

A B S T R A C T  

This consider leverages verifiable climatic data from the Climatic Research Unit (CRU), traversing from 
1901 to 2022, to create progressed temperature forecasting models for Khartoum, Sudan. By applying 
state-of-the-art machine learning techniques, including Hybrid model, we aim to progress the precision 
of temperature forecasts in a semi-arid climate. The integration of long-term CRU data permits for the 
recognizable proof of climate patterns and patterns, upgrading the unwavering quality of short- and long-
term forecasts. Moved forward temperature forecasting can altogether advantage basic segments  
empowering way better adjustment to climatic changes and extraordinary climate occasions. Our 
approach illustrates the potential of combining authentic climate data with machine learning to supply 
noteworthy experiences for climate flexibility. 

1. INTRODUCTION 

Khartoum, the capital of Sudan, encounters a semi-arid climate that brings approximately critical temperature changes and 
meager precipitation all through the year. This climatic instability postures basic challenges for divisions such as horticulture, 
wellbeing, and vitality administration, subsequently requiring the improvement of exact temperature estimating models to 
moderate potential antagonistic impacts. 

The semi-arid climate of Khartoum is characterized by hot summers and mellow winters, with temperature extremes 
regularly driving to inconvenient impacts on agribusiness and human wellbeing. Agrarian exercises, which frame a 
significant portion of the neighborhood economy, are especially defenseless to these temperature varieties. Viable 
temperature determining can hence help in optimizing rural hones, making strides trim yields, and guaranteeing nourishment 
security [1,2,3,4,5]. 

In later years, progressions in meteorological innovation, coupled with the expansion of machine learning (ML) and artificial 
intelligence (AI) methods have revolutionized climate expectation models. These advanced models use broad datasets, 
counting authentic climate records, adj. symbolism, and real-time sensor data, to predict temperature varieties with 
exceptional precision. Thinks about have appeared that AI and ML models outflank conventional statistical strategies in 
temperature forecasting, giving more dependable and significant bits of knowledge [6,7,8,9,10]. 

AI and ML models have been effectively connected in different climatic districts, illustrating their viability in improving the 
accuracy of temperature forecasts. For occasion, deep learning models, such as convolutional neural systems (CNNs) and 
repetitive neural systems (RNNs), have been utilized to predict climate designs and temperature inconsistencies with tall 
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exactness [11,12,13,14,15]. These models can distinguish complex patterns and relationships in expansive datasets that are 
frequently ignored by customary strategies. 

The integration of satellite imagery into temperature forecasting models has advance improved prediction precision. Satellite 
data gives comprehensive and high-resolution scope of atmospheric conditions, empowering point by point examination of 
temperature patterns and irregularities [16,17,18,19,20]. When combined with ground-based perceptions, this data offers a 
vigorous establishment for creating exact temperature forecasting models custom-made to particular districts, including 
Khartoum. 

Additionally, the application of AI in temperature forecasting can altogether help in planning for extraordinary climate 
occasions, such as heat waves. The recurrence and escalated of warm waves have been on the rise due to worldwide climate 
alter, posturing serious dangers to open wellbeing and framework. Precise temperature forecasts can encourage convenient 
intercessions, such as issuing warm notices, mobilizing crisis administrations, and executing cooling techniques in urban 
ranges [21,22,23]. 

Agriculture in Sudan, intensely dependent on climatic conditions, can advantage gigantically from exact temperature figures. 
These estimates can optimize planting and gathering plans, decrease the chance of edit disappointment, and improve water 
asset administration. By anticipating temperature patterns, agriculturists can make educated choices on water system, bug 
control, and other basic rural exercises [18]-[19]. 

In expansion to farming, precise temperature forecasts are imperative for vitality administration in Khartoum. The request 
for vitality, especially power for cooling amid hot periods, is closely connected to temperature varieties. Dependable figures 
can offer assistance in overseeing vitality supply and request, lessening the chance of control blackouts, and upgrading the 
proficiency of vitality dissemination frameworks [16]-[23]. 

This consider points to create a vigorous temperature forecasting demonstrate for Khartoum by leveraging progressed data 
analytics methods, counting machine learning and adherent symbolism. The objective is to supply exact and convenient 
temperature figures that can support different divisions within the city, subsequently improving nearby capacity for climate 
forecast and climate versatility. The results of this inquire about are anticipated to contribute essentially to moderating the 
impacts of climate changeability and progressing the quality of life in Khartoum. 

The mean objective from our work is to upgrade temperature forecasting for Khartoum utilizing progressed machine learning 
strategies. By applying models such as Hybrid SVM-RF Method to verifiable climate data, we point to move forward 
expectation accuracy for temperature fluctuations. 

2. RELATED WORK 

Exact temperature forecasting is pivotal for overseeing different segments influenced by climatic conditions. A significant 
body of inquire about has investigated distinctive strategies and innovations for moving forward temperature forecast 
accuracy. 

Early temperature forecasting models essentially depended on factual methods and linear regression approaches. For 
occasion, statistical models such as autoregressive coordinates moving normal (ARIMA) have been broadly utilized for time-
series forecasting of temperature [24]. These models are foundational but frequently need the accuracy required for 
exceedingly energetic and complex climate patterns. 

Advancements in machine learning (ML) and artificial intelligence (AI) have essentially upgraded temperature forecasting 
capabilities. For case, support vector machines (SVMs) and choice trees have been connected to climate forecast errands, 
illustrating progressed accuracy over conventional statistical strategies [25], [26]. Moreover, outfit strategies like Random 
Forests combine different models to improve expectation execution [27]. 

Deep learning methods, especially convolutional neural networks (CNNs) and repetitive neural networks (RNNs), have 
appeared guarantee in climate determining. CNNs are proficient at taking care of spatial data from satellite images, whereas 
RNNs, counting Long Short-Term Memory (LSTM) networks, are compelling in capturing transient conditions in climate 
information [28], [29]. These methods have been utilized to demonstrate and predict temperature varieties with higher 
accuracy [30]. 

Integration of satellite data with machine learning models has been investigated to make strides forecasting accuracy. 
Satellite perceptions give comprehensive spatial scope and high-resolution data, which can be utilized in conjunction with 
ML algorithms to refine temperature forecasts [31], [32]. Studies have highlighted the viability of combining satellite data 
with ground-based measurements for improved forecasting [33]. 

In later a long time, hybrid models that coordinated AI with physical climate models have picked up consideration. These 
models combine the qualities of numerical climate forecast (NWP) models with machine learning procedures to improve 
forecast accuracy [34], [35]. Such approaches use the strength of physical models and the adaptability of ML calculations. 
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Investigate particular to semi-arid and bone-dry locales, such as Sudan, has moreover been conducted. Thinks about in 
comparative climatic conditions have illustrated the appropriateness of progressed determining methods in overseeing 
agrarian and water assets [36], [37]. For occasion, temperature forecasting models custom fitted for parched regions offer 
assistance optimize water system plans and oversee heat stress in crops [38]. 

Additionally, the effect of climate change on temperature extremes has been a critical region of research. Climate models 
and forecasts are progressively centering on anticipating extraordinary climate events, including warm waves, which are 
getting to be more visit and serious due to worldwide warming [39], [40]. These thinks about emphasize the require for 
precise forecasting to relieve the impacts of extraordinary temperatures on wellbeing and foundation. 

Later improvements in AI and big data analytics have presented modern strategies for climate forecasting. Strategies such 
as deep support learning and generative adversarial networks (GANs) are being investigated for their potential to show 
complex climate frameworks and make strides figure unwavering quality [41], [42]. These developing innovations offer 
promising roads for future research in temperature forecasting. 

Lastly, the application of temperature forecasting models in urban situations has been considered to address challenges such 
as warm island impacts and vitality utilization [43][44]. These models help in urban arranging and management by giving 
precise temperature forecasts that offer assistance relieve the impacts of extraordinary warm in densely populated ranges. 

3. DATA AND METHODOLOGY  

3.1 CRU Data 

In this work, CRU (Climatic Research Unit) data available from 1901 to 2022 were utilized to move forward temperature 

forecasting models in Khartoum. CRU data may be a wealthy and comprehensive source of historical climate data, 

permitting us to analyze long-term patterns and identify climate patterns. Utilizing machine learning methods, we are ready 

to prepare this big data and create exact temperature forecasting models. This approach helps progress the exactness of 

short- and long-term forecasts in Khartoum. With these more precise estimates, way better choices can be made to adjust 

to climate inconstancy and reduce its negative impacts. 

 

3.2 Hybrid SVM-RF Method 
The Hybrid SVM-RF strategy is a gathering learning method that combines the qualities of Support Vector Machines 

(SVM) and Random Forest (RF) to progress prescient precision and show vigor. The taking after steps diagrams the 

method included in developing and utilizing the Crossover SVM- RF show: 

1. Data Preparation 

Before training the Hybrid SVM-RF demonstrate, the data is preprocessed and part into preparing and testing sets. The 

information is at that point normalized to guarantee that all highlights contribute similarly to the models expectations. 

2. Training the SVM Model 

The SVM show is trained on the preparing data utilizing the Radial Basis Function (RBF) part. The optimization of the 

SVM model includes selecting the leading regularization parameter 𝐶 and the part coefficient 𝛾 through framework look 

and cross-validation. The choice work for the SVM is given by: 

 

𝑓SVM(𝑥) = ∑  

𝑁

𝑖=1

𝛼𝑖𝑦𝑖𝐾(𝑥𝑖 , 𝑥) + 𝑏                                                             (1) 

 

Where αi the support vectors, yi are the target values are, K(xi,x) is the RBF kernel function and 𝑏 is the bias term. 

 

3.3 Training the Random Forest Model 
At the same time, a Random Forest model is trained on the same preparing information. The Random Forest model 

comprises of an outfit of choice trees. The optimization includes selecting the most excellent number of trees 

(𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠) and the most extreme profundity of the trees (𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ) through framework look and cross- approval. 

The forecast work for the Random Forest is given by: 

𝑓RF(𝑥) =
1

𝑇
∑  

𝑇

𝑡=1

ℎ𝑡(𝑥)                                                                         (2) 

 

Where T is the number of trees and ht(x) is the prediction of the t-th tree. 
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3.4 Combining Predictions 
The forecasts from the SVM and RF models are combined employing a stacking approach. The forecasts of both models 

are utilized as input highlights for a meta-learner show, ordinarily 

A straight relapse show. The meta-learner is trained to memorize the ideal combination of the base model forecasts. The 

combined forecast is given by: 

 

𝑓Hybrid (𝑥) = 𝑤SVM𝑓SVM(𝑥) + 𝑤RF𝑓RF(𝑥) + 𝑏meta                              (3) 

Where wSVM and wRF are the weights learned by the meta-learner, and bmeta is the bias term. 

 

3.5 Meta-Learner Training 
The meta-learner show is prepared on the combined forecasts from the preparing set. This model learns the ideal weights 

for the SVM and RF forecasts, viably leveraging the qualities of both models to create a last forecast. 

 

3.6 Making Predictions 
After preparing the meta-learner, the Hybrid SVM-RF models can be utilized to create Forecasting on unused data. The 

method includes creating predictions from both the SVM and RF models and after that combining these forecasts utilizing 

the prepared meta-learner show. 

 

3.7 Evaluation 
The execution of the Hybrid SVM-RF show is assessed utilizing different measurements such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 

R-Squared. These measurements offer assistance in evaluating the accuracy and strength of the show. 

The figure A outlines the engineering of the Hybrid SVM-RF model. It starts with the input data, which is bolstered into 

both the SVM model and the Arbitrary RF. The SVM show creates SVM forecasts, whereas the model RF produces 

forecasts. These forecasts are at that point combined and utilized as input highlights for a meta-learner model. The meta-

learner model forms these combined forecasts to create the ultimate forecast. This design leverages the qualities of both 

the SVM and RF models to improve generally prescient accuracy. 

 
 

Fig .1. Hybrid SVM-RF Model Architecture. 

This point by point parameter setup gives understanding into how each model is fine-tuned to realize ideal execution for 
temperature modeling in Khartoum. Understanding these parameters makes a difference in comprehending the trade-offs 
made amid the show preparing prepare to adjust complexity, execution, and computational proficiency. 
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TABLE I. BEST PARAMETERS FOR MACHINE LEARNING MODELS FOR DEMONSTRATING TEMPERATURE IN KHARTOUM. 

 

 

 

 

 

 

 

 

 

4. RESULTS AND DISCUSSION  
The table 1 presents the ideal hyper parameters for three diverse models: SVM, RF, and a Hybrid SVM-RF models. 

For the SVM model, the taking after parameters are utilized: 

 The 𝐶 parameter is set to 1. This regularization parameter controls the trade-off between accomplishing a low 

error on the training data and minimizing the standard of the weights, which makes a difference avoid over fitting. 

 The gamma parameter is set to ’scale’. This part coefficient determines the impact of a single preparing case, with 

’scale’ utilizing 
1

(𝑛_features ×𝑋.𝑣𝑎𝑟(𝑂)
. 

 The kernel parameter is set to ’RBF’ (Radial Basis Function), a popular kernel sort that maps input space into 

higher-dimensional space to handle non-linear connections. 

For the RF, the taking after parameters are utilized: 

 max_depth is set to None, which implies hubs are extended until all takes off contain less than the minimum 

number of tests required to split. This parameter controls the maximum depth of the tree, influencing model 

complexity. 

 min_samples_split is set to 5, indicating the minimum number of tests required to split an internal node, 

subsequently controlling the measure of the tree and making a difference to maintain a strategic distance from 

overfitting. 

 n_estimators is set to 100, indicating the number of trees within the forest. Expanding the number of trees can 

make strides show execution but too increases computational taken a toll. 

For the Hybrid SVM-RF model, which combines both SVM and RF approaches, the taking after parameters are utilized: 

 SVM Parameters: 

 C is set to 1. 

 gamma is set to ’scale’. 

 kernel is set to ’rbf’. 

 Random Forest Parameters: 

 max_depth is set to 10. 

 min_samples_split is set to 5. 

 n_estimators is set to 100. 

The table 2 presents the execution measurements for three diverse models: SVM, RF, and Hybrid SVM-RF. The 

measurements include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE %), and R-Squared. 

For the SVM models, the MSE is 1.6604, RMSE is 1.2886, MAE is 1.0185, MAPE is 3.4230%, and R-Squared is 0.87982. 

The RF model shows an MSE of 1.5639, RMSE of 1.2506, MAE of 0.9547, MAPE of 3.2656%, and an R-Squared esteem 

of 0.8868. The Hybrid SVM-RF model illustrates the excellent execution with an MSE of 1.4322, RMSE of 1.1968, MAE 

of 0.9306, MAPE of 3.1674%, and an R-Squared value of 0.8963. 

These results show that the Hybrid SVM-RF model outflanks both the SVM and RF models, as prove by its lower values 

in MSE, RMSE, MAE, and MAPE %, and higher R- Squared value. Lower MSE, RMSE, MAE, and MAPE % values 

demonstrate way better forecast accuracy, while a better R-Squared value recommends a better better; a much better;a 

higher;a stronger;an improved">a higher fit of the model to the data. This detailed mistake matrix gives important 

experiences into the comparative adequacy of these machine learning models in foreseeing temperature in Khartoum. 

 
 

Model Best Parameters 

SVM C= 1 

Gamma = scale 
Kernel= rbf 

Random Forest Max depth = None 

Min samples split =: 5 

N estimators = 100 

Hybrid SVM-RF C = 1 
Gamma = scale 

Kernel = rbf 

max depth = None min 
samples split = 5 

n estimators = 100 
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TABLE II. ERROR MATRIX FOR TESTING DATA FOR TEMPERATURE IN KHARTOUM UTILIZING MACHINE LEARNING MODELS. 

 

Model MSE RMSE MAE MAPE % R-Squared 

SVM 1.6604 1.2886 1.0185 3.4230 0.87982 

Random Forest 1.5639 1.2506 0.9547 3.2656 0.8868 

Hybrid SVM-RF 1.4322 1.1968 0.9306 3.1674 0.8963 

 

Figure 2 outlines the comparison between the initial temperature data and the forecasts made by the  SVM model, along side 
future forecasts. The black line represents the first data, showing the actual temperature values over time. The blue line 
delineates the model forecasts made by the SVM show, and the ruddy dashed line represents the longer term forecasts made 
by the model. 

The graph shows that the SVM model closely follows the pattern of the initial information, showing its viability in capturing 
the basic drift and seasonality within the temperature data. The future forecasts give a continuation of the models trend, 
offering understanding into expected future temperatures. This visualization makes a difference in understanding the models 
execution and its capacity to generalize past the training data. 

 

Fig .2. Modelling Temperature in Khartoum using SVM Model. 

Figure 3 outlines the comparison between the initial temperature data and the forecasts made by the RF model, along with 
future forecasts. The black line represents the first data, showing the actual temperature values over time. The blue line 
depicts the model forecasts made by the RF, and the red dashed line represents long-term forecasts made by the model. 

The chart shows that the RF model closely takes after the pattern of the first data, showing its adequacy in capturing the 
basic trend and seasonality within the temperature data. The longer-term forecasts give a continuation of the models trend, 
advertising knowledge into expected future temperatures. This visualization makes a difference in understanding the models 
execution and its capacity to generalize past the preparing data. 
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Fig .3. Modelling Temperature in Khartoum using Random Forest Model. 

Figure 4 outlines the comparison between the original temperature data and the forecasts made by the Hybrid SVM-RF show, 
together with future estimates. The black line represents the first data, appearing the real temperature values over time. The 
blue line delineates the model forecasts made by the Hybrid SVM-RF model, and the red dashed line represents the future 
forecasts made by the model. 

The graph appears that the Hybrid SVM-RF show closely takes after the pattern of the first data, demonstrating its viability 
in capturing the basic trend and seasonality within the temperature data. Long haul forecasts give a continuation of the models 
trend, advertising understanding into expected future temperatures. This visualization makes a difference in understanding 
the models execution and its capacity to generalize past the training data. 

 

Fig .4. Modelling Temperature in Khartoum using Hybrid SVM-RF Model. 

 

Table 3 gives the predicted temperatures for Khartoum from January 2023 to October 2023. The forecasts are produced 

utilizing three distinctive models: SVM, RF and Hybrid SVM-RF. Each column represents the forecasts from one of these 

models for each month within the indicated period. 
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The SVM models predictions are recorded within the second column. SVM is known for its viability in handling non-linear 

connections in data through the utilize of kernel functions. For occurrence, in January 2023, the SVM model predicts a 

temperature of 26.9771 degrees Celsius. 

The RF models forecasts are appeared within the third column. This model is an outfit learning method that works by 

constructing different choice trees amid training and outputting the mean forecast of the individual trees. For January 2023, 

the RF model predicts a temperature of 27.2190 degrees Celsius. 

The fourth column shows the forecasts from the Hybrid SVM-RF show, which combines the qualities of both the SVM 

and RF models to progress forecast accuracy. This hybrid approach points to use the SVM capacity to model complex, 

non-linear connections and the RF strength and high accuracy. For January 2023, the Hybrid SVM-RF model predicts a 

temperature of 27.0919 degrees Celsius. 

This comparative table allows for a simple evaluation of the diverse models forecasting capacities over the desired period. 

It is clear from the forecasts that whereas each model has its possess strengths, the Hybrid SVM-RF show points to supply 

a more adjusted and exact figure by combining the preferences of both the SVM and RF models. 
TABLE III. FORECASTING TEMPERATURE IN KHARTOUM USING MACHINE LEARNING MODELS. 

 

Date SVM Random Forest Hybrid SVM-RF 

January, 2023 26.97712294 27.21898571 27.09192169 

February, 2023 30.47869405 31.05171746 30.82627613 

March, 2023 33.09462296 33.62738175 33.4810644 

April, 2023 34.33883764 34.49297937 34.50756667 

May, 2023 31.86836784 32.17304802 32.12192856 

June, 2023 30.99798836 31.63399035 31.33558787 

July, 2023 32.31862603 31.49981429 32.0043438 

August, 2023 33.07802412 31.65391825 32.40028795 

September, 2023 27.57714196 27.47861587 27.65014152 

October, 2023 24.16539696 23.91689084 24.0113851 

 

Figure 5 presents a comparative analysis of temperature forecasts for Khartoum utilizing three diverse machine-learning 

models: SVM, RF and Hybrid SVM-RF. The x-axis show the months from January 2023 to October 2023 and the y-axis 

represent the predicted temperature values. 

SVM: The blue line represent the temperature forecasts made by the SVM model. The forecasts appear a moderately steady 

trend with minor vacillations over the foretasted months. 

RF: The orange line portrays the temperature forecasts made by the RF model. These models forecasts appear more 

articulated fluctuations, reflecting the models affectability to changes within the data. 

Hybrid SVM-RF: The gray line shows the temperature expectations made by the Hybrid SVM-RF model, which combines 

the strengths of both the SVM and RF models. These models forecasts illustrate an adjusted trend, capturing both stability 

and changeability within the temperature data. 

The chart shows that whereas each show gives different forecasts, the Hybrid SVM-RF model aims to offer a more accurate 

and stable forecast by leveraging the advantages of both the SVM and RF models. This visualization makes a difference in 

understanding the comparative execution of the models and their capacity to generalize the temperature trends in Khartoum. 

 
 

Figure 5. Forecasting Temperature in Khartoum. 
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5. CANCELATION  
In this study, we have effectively created and executed a machine learning-based temperature-forecasting show for 

Khartoum utilizing CRU data from 1901 to 2022. The broad historical dataset given by CRU was instrumental in training 

our models to recognize and forecasting temperature patterns with tall accuracy. The application of machine learning and 

other progressed machine learning strategies allowed us to capture complex transient conditions and move forward forecast 

unwavering quality. 
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