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A B S T R A C T  
 

Kidney cancer, particularly renal cell carcinoma (RCC), poses significant challenges in early and 
accurate diagnosis due to the complexity of tumor characteristics in computerized tomography (CT) 
images. Traditional diagnostic approaches often struggle with variability in data and lack the precision 
required for effective clinical decision-making. This study aims to develop and evaluate machine learning 
(ML) models for the accurate classification of kidney cancer using CT images, focusing on improving 
diagnostic precision and addressing potential challenges of overfitting and dataset heterogeneity. Two 
ML models, Support Vector Machines (SVM) and Multi-Layer Perceptrons (MLP), were employed for 
classification. Key attribute extraction techniques, including grayscale-level co-occurrence matrix 
(GLCM) and Gabor filters, were utilized to capture texture and structural features of CT images. Data 
normalization and preprocessing ensured consistency and enhanced model reliability. The SVM model 
achieved an accuracy of 93%, while the MLP model demonstrated superior performance with a 99.64% 
accuracy rate. These results highlight the MLP model's ability to capture complex patterns in the data. 
However, the exceptional accuracy of the MLP model raises concerns about potential overfitting, 
warranting further evaluation on more diverse datasets. This study underscores the potential of ML 
techniques, particularly MLP, in enhancing the accuracy of kidney cancer diagnosis. Integrating such 
advanced ML models into clinical workflows could significantly improve patient outcomes.  

 

1. INTRODUCTION 

Kidney cancer is a pressing problem on the global level as it is among ten most frequent cancers across the globe. It affects 
a growing number of people, especially over the last few decades, thanks to improvements in imaging and diagnostic tools 
[1]. K Styx renal cell carcinoma is the most frequent form of kidney cancer in adults and is estimated to affect around 90% 
of all patients. There are also other less common types of the RCC that make hard to distinguish: transitional cell carcinoma 
and renal sarcoma [2]. Kidney cancer staging is essential in the pre-operative management of the procedure because it 
determines the choice of operation and survival of the patient. However, the conventional methods of diagnosis involving 
imaging and histopathological comparisons have their own problems, which include subjectivity in examinations, differences 
in readings by different observers and most importantly, there exists no clear means of differentiating between one pathology 
and another, especially where they are almost similar [3][24].  

 The development of ML has introduced a significant change in medical diagnostic planning as it provides capable methods 
for handling large datasets [4, 5]. A particular strength of the ML approaches is based on using computational algorithms to 
derive subtle features in large data sets, serving as strong indicators to improve diagnostic accuracy, as well as reduce the 
erroneous input from humans. In the context of Kidney cancer classification where medical image data are common, other 
advanced Machine learning models such as Support Vector Machines (SVM) and Multi Layer Perceptron (MLP) have found 
usefulness because of their efficiency in image data analysis. These models can examine massive datasets of computed 
tomography (CT) images, and differentiate the numeric variations in texture and structural patterns that may be 
undistinguishable under visual inspection [6,7].   

Feature extraction remains as one of the critical success factors of the ML models in medical imaging [8]. The methods, for 
instance, the grey-level co-occurrence matrix (GLCM) and Gabor filters produce remarkable results in acquiring essential 
textural and structural features from CT images. GLCM can supply the statistical features of image texture and contrast, 
correlation and homogeneity which are mandatory for separation of normal and diseased tissues. Gabor filters, instead, can 
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improve the capability of the usual ML algorithms of detecting variations in spatial structure of intensity of images, thereby 
providing a more accurate representation of structural features. Altogether, these feature extraction strategies when 
incorporated with resistant ML algorithms offers a scope for the enhancement of the performance of kidney cancer 
classification [9]. 

Despite the promising results achieved in using ML-based diagnostic models, some issues are still worthy of attention in 
broadening and applied to clinical practice [10]. There is concern with inconsistency of the image quality and the quality of 
the dataset used to train the model Since the datasets introduced here are large and diverse there is a real danger of overfitting 
[11]. Moreover, incorporating these models into working clinical scenarios has to solve pragmatic issues associated with 
computational effectiveness, interface friendliness, and the ability of the results to be understood by clinicians. However, the 
possibilities of ML in changing approaches to diagnosis and treatment of kidney cancer are evident, and therefore it is crucial 
to further develop this area. It is possible to conclude that by overcoming these challenges, and utilizing the identified 
elements of high-quality advanced ML to the maximum, the medical community will get closer to the accurate, efficient, 
and patient-centered diagnosis [12][28]. 

This study makes significant contributions to the field of medical imaging and cancer diagnosis by presenting an innovative 
approach for classifying kidney tumors using SVM and MLP models. The research underscores the comparative 
effectiveness of these techniques in differentiating between normal and cancerous tissues. Advanced feature extraction 
methods, including GLCM and Gabor filters, are employed to create a robust feature set, enhancing diagnostic accuracy. 
The findings demonstrate the superior performance of the MLP model, achieving near-perfect accuracy metrics, thereby 
setting a new benchmark for future studies. This study focuses on developing a machine learning-based framework for the 
classification of kidney cancer, prioritizing both accuracy and efficiency. By leveraging CT scan images from a publicly 
available dataset, the research aims to establish a dependable diagnostic model to assist clinicians in accurately identifying 
and classifying kidney cancer. The main contributions of this study are: 

• This work presents an efficient framework of Machine Learning based on SVM and MLP to improve the 
diagnostic performance for kidney tumors based on CT images, with the objective of correctly identifying 
normal, hyperplastic, and cancerous tissue. 

• The use of enhanced feature extraction methods Like the methods of GLCM and Gabor filters, the research 
builds a rich feature set to help improve the proposed model and its diagnostic capability. 

• The study conducts a strong and objective analysis of SVM and MLP models, and proves the high precision of 
the MLP model, which is 99.64%, this findings can be of use as a reference when using machine learning in the 
analysis of medical images in the future. 

• Using an open-source CT image dataset within this study, the research’s results are less likely to be skewed, 
making possible reproduction while providing doctors with a practical tool for diagnosing renal carcinoma and 
ensuring incorporation of other ML models, into the practice. 

The paper is organized into several sections. The introduction sets the stage by discussing the prevalence and challenges of 
diagnosing kidney cancer. The Methodology section explains data collection, preprocessing steps, and feature extraction 
techniques used, such as GLCM  and  Gabor filters. Subsequent sections describe the implementation of  SVM and MLP 
models, including training and assessment. The results and discussion provide comparative analyses of models, illustrating 
their performance metrics. The paper concludes by summarizing key findings and proposing directions for future research. 

 

2. RELATED WORKS  

In 2022, Tao Dai et. al [13] The study evaluated the performance of various machine learning algorithms, including Support 
Vector Machines (SVM) and Multi-Level Perceptron (MLP), for classifying renal cell carcinoma (RCC) from renal 
angiomyolipoma (AML). The SVM model (linear kernel) demonstrated the highest accuracy and stability, with an area under 
the ROC curve (AUC) of 0.79 in the testing group. In contrast, the MLP classifier showed poor performance, with AUCs 
below 0.6, indicating limited discriminative power for RCC diagnosis. In 2021 Ginni Garg et al. [14] The paper does not 
address kidney cancer classification specifically; it focuses on a hybrid MLP-SVM model for classifying hyperspectral 
images using datasets like Indian Pines, U. Pavia, and Salinas. The proposed method enhances classification accuracy, 
precision, recall, and f-score by combining outputs from a multilayer perceptron (MLP) with a support vector machine 
(SVM). The results show significant improvements in accuracy compared to individual classifiers, but kidney cancer 
classification is not covered in this research. In 2023, Jie Xu, et. al [15] The study primarily focused on traditional machine 
learning methods like XGBoost and random forest (RF), as well as deep learning methods such as multilayer perceptron 
(MLP) and 3D convolutional neural network (3DCNN) for classifying renal tumors. While SVM (Support Vector Machine) 
was not specifically mentioned or tested in this research, the MLP model was utilized, demonstrating the potential of 
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integrating clinical and radiomics features for improved classification accuracy in distinguishing between benign and 
malignant renal tumors. In 2023, Yunfei Li, et al. [16] The paper does not specifically address kidney cancer classification 
using Support Vector Machines (SVM) or Multi-Layer Perceptrons (MLP). Instead, it focuses on a radiomics-based approach 
utilizing binary logistic regression to classify kidney tumors and normal kidney tissues based on features extracted from CT 
images. The study highlights the effectiveness of this method, achieving high accuracy, sensitivity, and specificity, but does 
not explore SVM or MLP techniques for classification. 

In 2022, Duygu Yasar Sirin and A. Güveniş [17] The paper primarily focuses on classifying kidney tumors using Coarse 
Gaussian SVM and Subspace Discriminant classifiers, achieving validation accuracies of 67.6% and 68.8%, respectively. It 
does not specifically address Multi-Layer Perceptron (MLP) classifiers. The study emphasizes the effectiveness of SVM in 
distinguishing clear-cell RCC from non-clear-cell RCC, highlighting its speed and performance compared to other methods. 
For MLP classification, additional research would be needed as it is not covered in this study. In 2023, Prathipati S. [18] The 
paper focuses on predicting chronic kidney disease using five supervised machine learning algorithms, including Support 
Vector Machine (SVM). However, it does not mention Multi-Layer Perceptron (MLP) as one of the algorithms used. The 
study compares the predictive performance of SVM alongside Xgboost, gradient boosting, logistic regression, and random 
forest classifier, with random forest being identified as the most accurate method for predicting kidney cancer. MLP is not 
discussed in the context of this research. In 2023, Zefang Lin et. al [19] The paper focuses on deep learning-based 
classification models, specifically convolutional neural networks (CNN) like EfficientNet-B4, ResNet-18, and VGG-16, for 
recognizing renal tumor pathology from macroscopic cross-section images. It does not discuss support vector machines 
(SVM) or multilayer perceptrons (MLP) for kidney cancer classification. The study emphasizes the effectiveness of CNNs 
in distinguishing between malignant and benign tumors and identifying their subtypes, highlighting the potential for clinical 
application. 

In 2023, Yuan-Gu Wei, et al. [20] The paper discusses the classification of cancer types, including kidney cancer, using 
machine learning methods such as Support Vector Machines (SVM) and Multi-Layer Perceptrons (MLP). SVM is utilized 
to maximize the distance from the closest support vectors, achieving a classification accuracy of 1.0. Although the paper 
does not explicitly mention MLP results, it emphasizes the use of deep neural networks for robust classification, indicating 
that MLP could also be part of the classification model for kidney cancer. In 2022, Yuxiang Zhang, et. al [21], The research 
paper does not provide specific results for the Support Vector Machine (SVM) and Multilayer Perceptron (MLP) models in 
terms of their performance metrics for kidney cancer classification. It primarily highlights the Logistic Regression model, 
which achieved the highest AUROC for both 3-year survival and tumor metastasis predictions. The study emphasizes the 
development and comparison of eight machine learning models, but detailed performance data for SVM and MLP are not 
included in the results.  In 2022, Seyed Mahdi Hosseiniyan Khatibi, et. al [22], The paper does not specifically mention the 
use of Support Vector Machine (SVM) or Multi-Layer Perceptron (MLP) for kidney cancer classification. Instead, it focuses 
on employing a self-organizing deep auto-encoder model for classifying Renal Cell Carcinoma (RCC) subtypes based on 
mRNA and miRNA panels. The study emphasizes feature selection and classification using deep learning approaches, 
achieving high accuracy in distinguishing between clear cell RCC, papillary RCC, and chromophobe RCC subtypes. The 
summary of the related works is presented in Table I. 

TABLE I.  COMPARISON TABLE FOR PREVIOUS STADIES 

Ref. Results Methods Used Limitations strengths 

[13] 

- The study evaluated the 
performance of 16 supervised 
machine learning algorithms in 
differentiating renal cell 
carcinoma (RCC) from 
angiomyolipoma (AML) using a 
dataset of 5,360 CT images from 
69 patients, with the training 
dataset consisting of 28 RCC and 
20 AML cases, and the testing 
dataset comprising 12 RCC and 9 
AML cases. The top 10 
statistically significant features 
were selected for model training. 
 
- Among the classifiers tested, 
logistic regression, linear 
discriminant analysis, k-nearest 
neighbor, support vector 
machines, ridge classifier, 
AdaBoost classifier, gradient 
boosting classifier, and CatBoost 
classifier demonstrated good 

- The study utilized computed 
tomography (CT) examinations to 
collect images from known cases 
of renal cell carcinoma (RCC) and 
renal angiomyolipoma (AML). A 
total of 5,360 CT images were 
obtained from 69 patients, which 
were then divided into training 
(3,653 images) and testing datasets 
(1,707 images) for model training 
and validation. 
 
- Texture features from the CT 
images were extracted and 
quantified using MaZda software, 
resulting in a total of 352 features. 
The top 10 statistically significant 
features for differentiating RCC 
from AML were selected using the 
mRMR algorithm, and diagnostic 
models were established based on 
16 supervised machine learning 
algorithms, which were then 

- The study acknowledges the 
need for further optimization 
of the current models, 
suggesting that increasing the 
number of patients, 
diversifying the source of 
images, and running models 
under optimized settings and 
cutoff points could enhance 
performance. This indicates 
that the current sample size 
and methodology may limit 
the generalizability and 
accuracy of the findings. 
 
- The authors note that the data 
used in the study are not 
publicly available due to 
patient data regulations, which 
limits the ability of other 
researchers to validate or 
replicate the study's findings. 
This lack of accessibility can 

- The study evaluated the 
performance of 16 different 
supervised machine learning 
algorithms for the accurate 
differentiation of renal cell 
carcinoma (RCC) from renal 
angiomyolipoma (AML) based 
on computed tomography (CT) 
examinations, establishing 
diagnostic models that showed 
good performance in both 
training and testing datasets. 
 
- The research provided a 
baseline benchmarking of these 
algorithms, indicating potential 
candidates for the development 
of RCC diagnostic classifiers, 
which could serve as valuable 
tools for accurate diagnosis and 
reduce reliance on invasive 
procedures like biopsies. 
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Ref. Results Methods Used Limitations strengths 

performance, achieving an 
accuracy of ≥ 0.7 and an area 
under the ROC curve (AUC) of ≥ 
0.75 in both training and testing 
datasets, indicating their potential 
as valuable tools for accurate RCC 
diagnosis. 

evaluated for accuracy and 
specificity using receiver 
operating characteristic (ROC) 
curves and area under the ROC 
curve (AUC) metrics. 

hinder the advancement of 
research in this area and the 
development of more robust 
diagnostic classifiers. 

[14] 

- The proposed hybrid MLP-SVM 
model significantly improved 
classification accuracy on the 
testing datasets, achieving results 
of 93.22% for Indian Pines, 
96.87% for U. Pavia, and 93.81% 
for Salinas, compared to the 
individual classifiers SVM and 
MLP which had accuracies of 
86.97%, 88.58%, and 88.85% for 
Indian Pines, 91.61% for U. Pavia, 
and 90.68% for Salinas 
respectively. 
 
- The hybrid model also aimed to 
enhance various classification 
parameters including precision, 
recall, and f-score, while 
effectively predicting regions 
without ground truth data. 

- The proposed method utilizes a 
hybrid classifier that combines a 
multilayer perceptron (MLP) and a 
support vector machine (SVM) to 
enhance classification 
performance on hyper-spectral 
images. The outputs from the last 
hidden layer of the MLP serve as 
inputs to the SVM for final 
classification into various desired 
classes. 
 
- The study employs spatial-
spectral features from hyper-
spectral images and evaluates the 
hybrid MLP-SVM model on three 
datasets: Indian Pines, U. Pavia, 
and Salinas, achieving significant 
improvements in classification 
accuracy compared to using 
individual classifiers, with testing 
accuracies of 93.22%, 96.87%, 
and 93.81% respectively. 

- The paper highlights 
challenges in the classification 
of hyper spectral images, 
including large 
dimensionality, which 
complicates the processing 
and analysis of the data, and 
the scarcity of labeled data, 
which limits the training of 
classifiers and can lead to 
overfitting or poor 
generalization. 
 
- Another limitation 
mentioned is the spatial 
variability of spectral 
signatures, which can affect 
the consistency and reliability 
of classification results, 
making it difficult to 
accurately classify regions 
with diverse spectral 
characteristics. 

- The proposed hybrid classifier 
(MLP-SVM) effectively 
combines the strengths of 
multilayer perceptron (MLP) and 
support vector machine (SVM) 
to enhance classification 
performance metrics such as 
accuracy, precision, recall, and f-
score, particularly in the context 
of hyper-spectral image 
classification. 
- The method demonstrates a 
significant improvement in 
classification accuracy on testing 
datasets, achieving 93.22%, 
96.87%, and 93.81% for the 
Indian Pines, U. Pavia, and 
Salinas datasets respectively, 
compared to the lower accuracies 
of individual classifiers SVM 
and MLP, which were 86.97%, 
88.58%, and 88.85% for the 
same datasets. 

[15] 

- The study analyzed a cohort of 
300 patients, of which 275 
(91.7%) were diagnosed with 
malignant tumors and 25 (8.3%) 
with benign tumors. The median 
radiographic tumor size was 4.1 
cm, and it was noted that patients 
with benign tumors were 
relatively older, with a mean age 
of 60.8 years compared to 58.7 
years for those with malignant 
tumors. 
 
- The machine learning 
framework developed in the study 
achieved an area under the curve 
(AUC) of 0.719, a precision of 
0.976, a recall of 0.683, and a 
specificity of 0.827 when 
combining clinical and radiomics 
features. This indicates that 
integrating clinical data with CT 
imaging significantly improved 
the classification accuracy for 
predicting the risk of renal 
malignancy. 

- The paper utilized traditional 
machine learning methods such as 
XGBoost and random forest (RF) 
for classification tasks. XGBoost, 
known for its high performance in 
classification, was configured with 
a maximum tree depth of 6 and 
logistic regression as the objective. 
RF, an ensemble learning method, 
combined multiple decision trees 
for improved accuracy and 
stability. 
   
- In addition to traditional ML 
methods, the study also employed 
deep learning techniques, 
specifically a multilayer 
perceptron (MLP) and a 3D 
convolutional neural network 
(3DCNN). These DL models were 
utilized to process the CT imaging 
data and clinical attributes, aiming 
to enhance the accuracy and 
efficiency of renal tumor 
classification. 

- The study acknowledges the 
limitation of relying on a 
public dataset of only 300 
cases, with a high prevalence 
of malignant tumors (91.67%), 
leading to an imbalanced 
dataset. This imbalance could 
affect the model's 
performance, and future 
studies should consider 
incorporating more cases, 
particularly those with benign 
tumor types, to improve the 
model's reliability and 
generalizability. 
   
- Another limitation 
highlighted in the paper is the 
absence of tumor types 
recently added to the WHO 
classification of renal tumors, 
such as low-grade oncocytic 
tumors. Including a broader 
range of tumor types in future 
radiomics work could enhance 
the predictive models' 
performance and ultimately 
improve patient care by 
providing more 
comprehensive insights into 
renal tumor classification. 

- The study proposes a machine 
learning framework that 
integrates clinical attributes and 
CT imaging data to improve the 
pre-operative classification of 
renal tumors, addressing the 
challenge of accurately 
predicting malignancy risk prior 
to surgery. This comprehensive 
approach enhances diagnostic 
accuracy and supports better 
clinical decision-making in renal 
cancer diagnosis. 
 
- By comparing traditional 
machine learning methods, such 
as XGBoost and random forest, 
with deep learning techniques 
like multilayer perceptron and 
3D convolutional neural 
network, the research 
demonstrates that combining 
structured clinical data with 
radiomics features extracted 
from CT scans yields the best 
classification performance, 
highlighting the potential of 
multi-modal data integration in 
renal tumor management. 

[16] 

- A total of 837 radiomics features 
were extracted from the CT 
images, and after screening, 217 
features were identified. 
Ultimately, three key radiomics 
features were selected to establish 
a binary logistic regression model, 
which demonstrated a strong 

- The study utilized a radiomics-
based approach to extract multiple 
radiomics features from regions of 
interest in computed tomography 
(CT) images. CT data were 
retrieved from the 2019 Kidney 
and Kidney Tumor Segmentation 
Challenge (KiTS19), and arterial 

- The study acknowledges that 
while the automatic 
classification model of kidney 
tumors and normal kidney 
tissues based on CT radiomics 
exhibited good classification 
ability, it warrants further 
research to validate and 

- The study introduces a 
radiomics-based approach for the 
automatic classification of 
kidney tumors and normal 
kidney tissues using computed 
tomography (CT) images, which 
provides a noninvasive and 
repeatable method for patient 
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Ref. Results Methods Used Limitations strengths 

classification ability with 
accuracy, sensitivity, specificity, 
area under the curve (AUC), and 
Youden index all exceeding 0.85 
in both training and test sets. 
 
- The final binary logistic 
regression model was defined 
with a cutoff value of 0.4851, 
which served as a radiomics 
marker to differentiate between 
gross tumor volume (GTV) and 
normal kidney tissue. The model 
effectively distinguished 
tumorous kidney tissues from 
normal ones, indicating its 
potential for automated tumor 
delineation and warranting further 
research. 

phase-enhanced CT images from 
210 cases were used to establish an 
automatic classification model. 
The images were randomly 
divided into training (168 cases) 
and test (42 cases) sets. 
 
- A binary logistic regression 
model was established using the 
extracted radiomics features from 
the training set. The model's 
performance was evaluated based 
on various diagnostic parameters, 
including accuracy, sensitivity, 
specificity, area under the curve, 
and Youden index, all of which 
were higher than 0.85, indicating 
good classification ability in 
distinguishing kidney tumors from 
normal kidney tissues. 

enhance its effectiveness. This 
suggests that the current model 
may not be fully optimized or 
tested across diverse datasets 
and clinical scenarios. 
 
- The paper does not explicitly 
mention limitations regarding 
the sample size or diversity of 
the dataset used for training 
and testing the model, which 
could impact the 
generalizability of the 
findings. The reliance on data 
from a specific challenge 
(KiTS19) may limit the 
applicability of the model to 
broader populations or 
different imaging conditions. 

follow-ups and prognosis 
prediction, thereby enhancing 
safety compared to traditional 
biopsy methods. 
 
- This research is the first to 
report a method that combines 
radiomics with automatic 
classification technology, 
potentially supplementing 
existing deep learning techniques 
for tumor delineation, and 
establishes a preliminary 
classification model that 
demonstrates good classification 
ability for distinguishing 
between tumorous and normal 
kidney tissues. 

[17] 

- The study evaluated the 
performance of two machine 
learning models, Coarse Gaussian 
SVM and Subspace Discriminant, 
in classifying malignant kidney 
tumors as clear-cell RCC (ccRCC) 
or non-clear-cell RCC. The 
Coarse Gaussian SVM achieved a 
validation accuracy of 67.6% and 
a test accuracy of 80%, with an 
AUC of 0.86, while the Subspace 
Discriminant model had a 
validation accuracy of 68.8% and 
a test accuracy of 80%, with an 
AUC of 0.85. 
 
- Feature selection resulted in the 
retention of 8 significant radiomic 
features from an initial dataset of 
1157 features, with none of the 
clinical features being deemed 
important for the model. The 
training set was balanced using the 
synthetic minority oversampling 
technique (SMOTE), leading to a 
total of 256 cases used for training 
the models. 

- The study utilized the Kruskal 
Wallis – ANOVA test to evaluate 
the ability of each feature to 
differentiate between clear-cell 
and non-clear-cell kidney tumors, 
resulting in the selection of 111 
relevant features from the initial 
dataset of 1157 features. 
Subsequently, Lasso Regression 
was applied to further refine the 
feature set, leading to the selection 
of 8 radiomic features deemed 
most relevant for the predictive 
model. 
 
- Machine learning classifiers, 
specifically Coarse Gaussian 
SVM and Subspace Discriminant, 
were employed to train the model 
using the selected features. The 
training set was balanced using 
SMOTE to address class 
imbalance, and the performance of 
the classifiers was evaluated based 
on validation and test accuracy, as 
well as AUC metrics. 

- The study found that none of 
the clinical features included 
in the analysis were deemed 
important for the model, 
indicating a limitation in the 
potential integration of clinical 
data with radiomic features for 
improving classification 
accuracy. This suggests that 
the model may not fully 
leverage all available patient 
information, which could 
enhance predictive 
capabilities. 
 
- The research highlights that 
while the machine learning 
models produced promising 
results, they were primarily 
focused on classifying tumors 
as clear-cell RCC or non-clear-
cell RCC. This limitation 
indicates that the models may 
not be effective for 
differentiating among the 
various subtypes of non-clear-
cell RCC, which could be 
critical for personalized 
treatment approaches. 

- The study demonstrates the 
effectiveness of machine 
learning algorithms, specifically 
Coarse Gaussian SVM and 
Subspace Discriminant 
classifiers, in accurately 
classifying malignant kidney 
tumors as clear-cell RCC 
(ccRCC) or non-clear-cell RCC, 
achieving a test accuracy of 80% 
and AUC values of 0.86 and 
0.85, respectively. This indicates 
the potential of radiomics in 
enhancing diagnostic processes 
for renal tumors. 
 
- The research highlights the 
importance of using 
comprehensive radiomic features 
extracted from all slices of CT 
images, resulting in the selection 
of 8 relevant features after 
rigorous feature selection 
processes, while also revealing 
that the included clinical data did 
not significantly impact the 
classification, thus emphasizing 
the superiority of radiomic data 
in this context. 



 

 

6 Kadhim et al, Mesopotamian Journal of Big Data Vol. (2025), 2025, 1–25 

Ref. Results Methods Used Limitations strengths 

[18] 

- The study found that among the 
five supervised machine learning 
algorithms used for predicting 
chronic kidney disease, the 
random forest algorithm 
demonstrated the highest accuracy 
in its predictive performance. 
- The predictive performance of 
the algorithms was evaluated 
using various metrics, including 
accuracy, precision, recall, and F1 
score, allowing for a 
comprehensive comparison of 
their effectiveness in predicting 
kidney cancer. 

- The paper utilizes five supervised 
machine learning algorithms for 
predicting chronic kidney disease: 
Xgboost, gradient boosting, 
support vector machine, logistic 
regression, and random forest 
classifier. These algorithms were 
selected to analyze the influencing 
factors of chronic kidney cancer 
and to create a predictive model. 
 
- The predictive performance of 
the five algorithms is compared 
using various classification 
metrics, including accuracy, 
precision, recall, and F1 score, 
with the results indicating that the 
random forest algorithm is the 
most accurate method for 
predicting kidney cancer. 
 

 

- The paper presents a kidney 
cancer prediction model utilizing 
five supervised machine learning 
algorithms: Xgboost, gradient 
boosting, support vector 
machine, logistic regression, and 
random forest classifier, thereby 
contributing to the field of early 
detection of chronic kidney 
disease through advanced 
computational techniques. 
 
- It conducts a comparative 
analysis of the predictive 
performance of these algorithms 
using various metrics such as 
accuracy, precision, recall, and 
F1 score, with findings indicating 
that the random forest algorithm 
is the most accurate method for 
predicting kidney cancer, thus 
providing valuable insights for 
future research and clinical 
applications. 

[19] 

- The study developed and 
evaluated deep learning-based 
classification models using three 
convolutional neural network 
(CNN) architectures 
(EfficientNet-B4, ResNet-18, and 
VGG-16) to distinguish between 
malignant and benign renal 
tumors. The ResNet-18 model 
achieved the highest performance 
with an area under the receiver 
operating characteristic curve 
(AUC) of 0.9226, while the VGG-
16 model had a micro-averaged 
AUC of 0.9398 for distinguishing 
malignant tumor subtypes. 
 
- For recognizing benign tumor 
subtypes, the EfficientNet-B4 
model demonstrated the best 
performance, although there was 
no statistically significant 
difference in its performance 
compared to the other two models. 
The overall classification results 
indicated a satisfactory potential 
for clinical application in 
analyzing renal tumor 
macroscopic cross-section 
images, enhancing the efficiency 
of patient management processes. 

- The study utilized convolutional 
neural networks (CNN) as the 
backbone for classification 
models, specifically employing 
EfficientNet-B4, ResNet-18, and 
VGG-16 architectures. These 
models were modified to adapt to 
the classification tasks by 
changing the last layer to 
accommodate binary classification 
for malignant versus benign 
tumors and multi-class 
classification for subtypes of both 
malignant and benign tumors. 
 
- The models were pretrained with 
the ImageNet dataset and then 
fine-tuned using the study's 
training dataset through a transfer 
learning method. This approach 
aimed to enhance the models' 
performance in recognizing the 
pathology of renal tumors from 
macroscopic cross-section images. 

- The study acknowledges the 
need for more data to improve 
the prediction performance 
and generalization of the 
classification model. This 
includes increasing the sample 
size and collecting a multi-
center patient cohort to 
enhance the robustness of the 
findings. 
 
- Due to the limitation of the 
consecutive sample in the 
study, resulting in a low 
proportion of some subtypes, 
certain subtypes were 
combined into one class. The 
authors indicate that more 
detailed subtypes of renal 
tumors will be distinguished 
after increasing the training 
samples for each subtype. 

- The authors developed and 
evaluated deep learning-based 
convolutional neural network 
(CNN) models to automatically 
differentiate between malignant 
and benign renal tumors using 
macroscopic cross-section 
images, aiming to enhance the 
efficiency of patient 
management in clinical settings. 
 
- The study utilized three 
prevalent CNN architectures—
EfficientNet-B4, ResNet-18, and 
VGG-16—to classify renal 
tumors into multiple subtypes, 
demonstrating satisfactory 
diagnostic performance and 
highlighting the potential for 
clinical application in 
distinguishing tumor 
pathologies. 

[20] 

- The research successfully 
classified common types of cancer 
genomes using machine learning 
methods, achieving a high 
accuracy of 0.987 with a Decision 
Tree classifier at a maximum 
depth of 5. This demonstrates the 
effectiveness of the proposed 
classification model in identifying 
different types of cancer genes. 
 
- The study emphasizes the 
importance of identifying groups 
of genes that exhibit similar 

- The paper employs various 
machine learning methods for 
cancer gene data classification, 
including Decision Tree 
Classifier, Support Vector 
Machine (SVM), Random Forest, 
Naive Bayes Classifier, and Deep 
Neural Networks. These methods 
are utilized to analyze and classify 
different types of cancer genes 
effectively. 
 
- The methodology also includes 
exploratory analysis of cancer 

- The Naive Bayesian 
classifier, while theoretically 
having the smallest error rate 
compared to other 
classification methods, may 
not perform well in practice 
due to its assumption that 
attributes are independent of 
each other. This assumption 
often does not hold true, 
especially when the number of 
attributes is large or when 
there is significant correlation 
between attributes, leading to 

- The paper proposes a neural 
network-based cancer 
classification model that 
analyzes data from 802 patients 
with different types of cancer, 
utilizing over 20,000 gene 
expression values per sample to 
build a robust classification 
model aimed at early cancer 
identification and reducing 
mortality rates. 
 
- It employs various machine 
learning and neural network 
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Ref. Results Methods Used Limitations strengths 

expression patterns across 
samples, which aids in 
understanding the distribution of 
samples corresponding to each 
cancer type. This approach 
contributes to early cancer 
detection and has the potential to 
reduce mortality rates associated 
with cancer. 

gene data, dimensionality 
reduction, and clustering 
techniques, which are essential 
steps in building a robust 
classification model aimed at early 
identification of cancer types. 

suboptimal classification 
results. 
 
- The paper does not explicitly 
mention limitations regarding 
the SVM model, but it is 
implied that the binary 
classification nature of SVM 
may restrict its application in 
multi-class cancer 
classification scenarios, as the 
study involves identifying five 
different types of cancer, 
which may require more 
complex multi-class 
classification techniques. 

techniques, including clustering 
methods (k-means, hierarchical, 
and mean shift clustering) and 
classification algorithms 
(Decision tree classifier, SVM, 
Random Forest, Naive Bayes 
Classifier, and Deep Neural 
Networks), to explore cancer 
gene data, perform 
dimensionality reduction, and 
ultimately identify groups of 
genes that behave similarly 
across samples for effective 
cancer type classification. 

[21] 

- The Logistic Regression model 
demonstrated the highest area 
under the receiver operating 
characteristic (AUROC) for both 
3-year survival prediction and 
tumor metastasis prediction, 
achieving an AUROC of 0.741 for 
survival and 0.804 for metastasis. 
The model's accuracy for 3-year 
survival was 0.684, while for 
tumor metastasis, it was 0.800. 
 
- In terms of specific performance 
metrics, the Logistic Regression 
model for 3-year survival had a 
sensitivity of 0.702, specificity of 
0.670, precision of 0.686, and an 
F1 score of 0.683. For tumor 
metastasis prediction, it had a 
sensitivity of 0.540, specificity of 
0.830, precision of 0.769, and an 
F1 score of 0.772. 

- The study utilized data from 
12,394 kidney cancer patients 
sourced from the surveillance, 
epidemiology, and end results 
database to create a research 
cohort focused on kidney cancer 
survival and metastasis. 
- Eight machine learning models 
were developed, including support 
vector machines, logistic 
regression, decision tree, random 
forest, XGBoost, AdaBoost, K-
nearest neighbors, and multilayer 
perceptron, to predict survival and 
metastasis, with six evaluation 
indicators (accuracy, precision, 
sensitivity, specificity, F1 score, 
and area under the receiver 
operating characteristic 
[AUROC]) used for model 
verification and optimization. 

 

- The study utilized data from 
12,394 kidney cancer patients to 
construct a research cohort aimed 
at accurately predicting patient 
survival and identifying high-
risk metastatic patients, which 
can effectively guide 
interventions and improve 
prognosis for kidney cancer 
patients. 
 
- Eight machine learning models 
were developed and compared, 
with Logistic Regression 
demonstrating the highest 
performance in predicting both 
3-year survival and tumor 
metastasis, providing decision 
support for early intervention in 
kidney cancer management. 

[22] 

- The study identified panels of 77 
mRNAs and 73 miRNAs that can 
effectively discriminate between 
the three subtypes of Renal Cell 
Carcinoma (RCC): clear cell RCC 
(KIRC), papillary RCC (KIRP), 
and chromophobe RCC (KICH), 
achieving an accuracy of 92% for 
mRNAs and 95% for miRNAs 
based on classification metrics 
such as F1-score and AUC. 
 
- Association Rule Mining 
analysis revealed significant 
features, including miR-28 and 
CSN7A for KIRC, and miR-125a 
and NMD3 for KIRP, with high 
repeat counts indicating their 
potential roles in the molecular 
mechanisms underlying the 
initiation and progression of these 
RCC subtypes. 

  

- The study utilized data from The 
Cancer Genome Atlas (TCGA) 
portal, specifically focusing on 
mRNA, miRNA, and clinical data 
related to Renal Cell Carcinoma 
(RCC) subtypes (ccRCC, pRCC, 
chRCC). 
- Feature selection methods based 
on filter and graph algorithms 
were applied to identify significant 
mRNAs and miRNAs involved in 
the pathogenesis of RCC subtypes, 
followed by the use of a deep 
model for subtype classification 
and an association rule mining 
algorithm to reveal features with 
significant roles in triggering 
molecular mechanisms causing 
RCC subtypes. 

 

 

  

- The study acknowledges that 
feature selection and 
classification of all RCC 
subtypes may lead to missing 
information related to pediatric 
kidney cancer subtypes, 
specifically Wilms Tumor 
(WT) and Renal Tumor (RT), 
which are common in children. 
This indicates a potential gap 
in the applicability of the 
findings to a broader range of 
kidney cancer types. 
- The authors note the 
difficulty in comparing the 
classification accuracy of their 
methods with similar studies 
due to the differences in cancer 
nature and patient types among 
the RCC subtypes (ccRCC, 
pRCC, and chRCC) and the 
lack of similar studies related 
to these subtypes based on 
mRNA data. This limitation 
may hinder the validation and 
generalization of their results. 

- The study identified new panels 
of 77 mRNAs and 73 miRNAs 
that can effectively discriminate 
between the three subtypes of 
Renal Cell Carcinoma (KIRC, 
KIRP, and KICH) with high 
accuracy rates of 92% for 
mRNAs and 95% for miRNAs, 
providing potential biomarkers 
for these RCC subtypes. 
 
- The research utilized advanced 
artificial intelligence approaches, 
including feature selection based 
on filter and graph algorithms, 
and association rule mining, to 
uncover significant molecular 
mechanisms and candidate 
features that may play critical 
roles in the pathogenesis and 
progression of RCC subtypes. 
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3. METHODOLOGY  

The methodology of this study  starts with acquisition of CT scan pictures in form of normal and tumor data. These above 
images are used as basic dataset for creating and evaluating the machine learning models. Likely for the dataset to be ready 
for analysis, the images are preprocessed through resizing, normalization and feature extraction. Resizing brings all the 
images back to a uniform size, and normalization corrects the amount of time it takes to adjust the pixel intensity values of 
the pictures. Feature extraction is accomplished at the feature level, which features the Gray Level Co-occurrence Matrix 
(GLCM) to capture the contrast and homogeneity of textures in the mammogram images, Gabor filters to capture spatial 
frequency and orientation details and entropy to capture the image complexity of the images. The proposed system 
methodology is presented in Figure 1. When preprocessing is done the data split into two sets, training and testing. This 
division allows them to learn from one part of data and be tested on another part, giving a true evaluation of this sort of global 
application. The classification stage employs two ML models are SVM and MLP can be implemented. SVM separates the 
data into classes using a hyperplane, while an MLP is actually a kind of neural network that can model more intricate, perhaps 
nonlinear, relationships between the interval data in the dataset. The performance of classification models under study is 
assessed by using a number of performance indices. Accuracy tests the generality of the models while precision gauges the 
proportion of true positives in all the positive prediction. Recall checks if the model can capture all the instances it is supposed 
to, and F1-Score is the average of precision and recall and gives a fair measure of the models’ accuracy. Through the 
utilization of these strong approaches the methodology provides high reliability and accurate classification of kidney cancer 
hence assisting clinical decision-making processes. 

 

Fig. 1. The Proposed System for Accurate Kidney Cancer Classification Using CT Images. 

3.1 Data Collection 

A dataset downloaded from the Kaggle website called CT Kidney Dataset: Normal, Cyst, Tumor, and Stone (CT Kidney: 
NCTS) was used. The dataset contains images collected from different Dhaka, Bangladesh hospitals using a Picture 
Archiving and Communication System (PACS). Patients were diagnosed or classified based on four categories: the normal 
category and the number of its samples (5077), the category containing a cyst and the number of its samples (3709), and the 
category in which the patient suffers from the presence of a tumor The number of samples is (2283), and finally, the fourth 
category, in which the patient suffers from the presence of a cyst and the number of samples (1377), so the total number of 
glands of samples of all categories is (12446) samples. It should be noted that the images used are DICOM type and converted 
to JPEG format after excluding the metadata of each patient. Fig. 2 illustrates the Classes of the dataset. The dataset can be 
downloaded from the link (https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone ) 
[23]. 

https://www.kaggle.com/datasets/nazmul0087/ct-kidney-dataset-normal-cyst-tumor-and-stone
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Fig. 2. CT Kidney Dataset Classes. 

In the current study, only two categories were used to train and test the proposed system, namely the classification of images 
on a normal basis and a patient with a disease, as shown in Fig. 3. 

 

Fig. 3. Frequency of Each Class in the Dataset. 

3.2 Image Preprocessing  

1. Grayscale Images: CT scan images are usually in grayscale. Each pixel in a grayscale image has a density value ranging 
from 0 (black) to 255 (white) on an 8-bit scale, or higher bands such as 12-bit or 16-bit depending on the scanner resolution. 
CT scans are designed to show differences in tissue density, with each density represented by different shades of gray. This 
helps distinguish between different anatomical structures, fluids, tumors, cysts and bones. Hounsfield Units (HU), which 
represent tissue density, are naturally suitable for grayscale representation. Fig. 4 shows the examples of the utilized dataset 
for two classes (Normal class and Tumor class). 
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Fig. 4. examples of the utilized dataset for two classes (Normal class and Tumor class). 

2. Image Resizing: It should be noted that the size of the uploaded dataset images is 512 × 512 pixels, and all images are 
resized to a uniform size of 180 × 180 pixels to ensure consistency in the input dimensions of machine learning models. This 
standardization is necessary because classifiers such as supporting vector machines (SVMs) and multilayer perceptron 
(MLPs) require input data to be of the same dimensions. Resizing strikes a balance between retaining enough detail to 
accurately extract features and reducing computational load during training and reasoning. The size 180 × 180 provides 
enough precision to capture important features, such as tumor boundaries or histological patterns, while still being effective 
for treatment. Uniform resizing also helps prevent biases or errors that may arise from diverse image dimensions, ensuring 
that all data contributes equally to the learning process. 

3.3 Feature Extraction 

Feature extraction is a vital part in the applying methodology to improve the differentiation between kidney cancer using 

CT images. More sophisticated methods including GLCM, Gabor and entropy values are incorporated in an effort to obtain 

appropriate features. GLCM analyses second order statistical textural features such as contrast , correlation , entropy and 

energy to measures the spatial dependence of pixel intensity in the images. While Gabor filters are used for identifying the 

texture and edge details at the spatial frequencies and orientations that are useful for discriminating tumor characteristics. 

The entropy type calculates the degree of high or low randomness as applied to the image; this gives detailed information 

about the structural pertinence that differentiates normal from cancer tissues. In particular, such extracted features act as a 

rather strong input for the classification models and help providing accurate classification between the areas of normal and 

tumor tissues. 
1.Gry Level Co-occurrence Matrix:  The feature extractor function starts by initializing a blank data frame, image dataset, 
to store extracted features for all input images. The input dataset is assumed to be a collection of two-dimensional images in 
grayscale. This section mainly focuses on calculating GLCM features, which analyze the texture of an image by examining 
how pixel density values occur together at specific distances and angles. The code defines a set of distances [1, 3, 5] and 
angles [0, π/4, π/2, 3π/4] to calculate the coexistence matrix in different spatial relationships, ensuring a robust extraction 
that takes into account directional and spatial differences in the fabric. Table II illustrates the GLCM Feature outcomes.  

2.Gabor Filter: The Gabor () function from the skimage. filters library has been applied to every image in the dataset. For 
each image, the function is repeated across different frequencies and directions ([0.25, 0.5, 0.75]) ([0, π/4, 3π/4]), applying 
a Gabor filter. Each application results in a processing image (gabor img) and its corresponding texture attributes. The mean 
and standard deviation of the resulting image are calculated and stored in the feature set (gabor features). These statistics 
capture how an image responds to specific frequencies and directions, providing valuable information about the texture and 
edges of the rating. It should be noted that the Gabor Filter was designed to extract texture attributes from images by applying 
the Gabor filter, a linear filter used for edge detection, frequency analysis, and texture recognition. This filter emphasizes 
topical texture information by responding to specific frequencies and directions in the image. For medical imaging, such as 
CT scans, Gabor filters help capture critical patterns and textures, such as tissue structures or abnormalities such as tumors, 
that may not be visible through direct pixel density. The filter works by wrapping the image using the GOR kernel defined 
by parameters such as frequency and direction (theta). Table III illustrates the Gabor Filter Results.  

Normal Class 

 

Tumor Class 
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3.Entropy Calculation: The Shannon entropy function from skimage. measure calculates entropy based on Shannon's 
entropy formula. Measures the distribution of pixel intensity values in an image and calculates how unpredictable pixel 
intensities are. This function is applied to grayscale images, where entropy calculations are based on the frequency histogram 
of intensity. For example, an image with uniform intensity values will have a low entropy. In contrast, an image with a wide 
range of intensity will have a high entropy, making it a useful feature for distinguishing between different tissue types or 
deformities. Entropy serves as a key feature of machine learning models in medical imaging. By calculating the entropy of 
each region or the entire image, models can leverage this information to classify normal and abnormal tissues. In CT scans, 
areas with tumors, cysts or other abnormalities often exhibit unique entropy characteristics compared to healthy tissue. When 
combined with different features such as GLCM and Gabor filters, entropy contributes to a powerful feature set that enhances 
the model's ability to detect and classify anomalies with higher accuracy. 

3.4 Data Normalization  

The data normalization utilized in the current work is (Z-Score normalization) defined in the following formula 1:  

                                                                     𝑥′ =  
𝑥− 𝜇

𝜎
                                                                        (1)

          

Where, x denoted by the original value, σ denoted by the standard deviation of the feature, μ denoted by mean.  

This operation is applied separately to two feature sets: the "Contrast" and "Gabor feature" columns. By implementing 
distinct scaling metrics for each set (Contrast scaler and Gabor scaler), the code ensures that normalization is independently 
performed for each group, accommodating their unique statistical features. The primary purpose of using Z-score 
normalization is to standardize all features onto a similar scale and distribution. This is particularly important when dealing 
with features that have different units or ranges, such as "Contrast" (potentially related to pixel density or image brightness) 
and "Gabor feature" (likely derived from Gabor filter analysis). Normalization prevents any single feature from 
disproportionately influencing the model due to its larger scale or range. Moreover, the aggregation method utilized is 
distance-dependent, and it performs better and converges faster when input features are standardized. By normalizing the 
"Contrast" and "Gabor feature" groups independently, the distinct statistical properties of each set are preserved, which can 
enhance both the model's accuracy and its interpretability. Tables IV and V illustrate the normalization results for the GLCM 
features and Gabor filter outputs, respectively. 

3.5 The Classification stage based on SVM 

SVM is a kind of supervised learning classification algorithms whose performance does not significantly deteriorate when 
new data is introduced [25].  It work by determining that a perfect plane or a best boundary that can act as a hyperplane to 
divide the data into separate classes. In the training phase, SVM receives feature vectors belonging to classes on which the 
algorithm will operate as well as their corresponding label [26]. If the data cannot be separated linearly in the original space, 
into the higher-dimensional space that they can be easily separated, the SVM employs the kernel function. Kernel functions 
are linear, radial basis function (RBF) or polynomial in nature, this represents a commonly used type of kernel function. 
Non-linear data is also handled in SVM by use of kernel functions like the RBF kernel to introduce transformations into the 
process by which decision boundaries non-linear are created. SVM also used methods such as, One-pass-One where we turn 
multi class problem into multiple binary problems where each binary problem has one as its class and other as its second 
class, and so One-pass-All develops multiple binary problems where each class is against all other classes. 

In general, diagnosis of kidney cancer based on CT images of kidney cancer primarily incorporates machine learning 
algorithms for the differentiation between benign and malignant anatomical kernels, and as the name suggests, SVM takes 
radiomic features such as texture, intensity, and shape as its inputs. SVM takes each CT scan and passes the feature vector 
through the learned hyperplane until an interval is found in which the scan is classified as malignant or benign based on the 
patterns gained from the training for labeled data. This capability provides accurate detection of cancer with high reliability 
as SVM techniques are proven to work effectively with high dimensionality and complex distribution of data. 

After training, the model predicts labels in the test dataset (test_for_RF) using the predict() method, producing the test 
predictions. To assess the model's performance, metrics such as Receiver Operating Characteristic (ROC) curves and Area 
Under the Curve (AUC) scores are computed. For binary classification, the ROC curve is generated using the roc_curve() 
function, based on the resolution scores obtained from the SVM model. The AUC score, calculated with the auc() function, 
quantifies the model's ability to distinguish between the two categories, with higher scores indicating better performance. 
For multiclass classification, a one-vs-all approach is employed by binarizing the labels using the label_binarize() method. 
Separate ROC curves and corresponding AUC scores are then computed for each class to evaluate the model’s performance 
across multiple categories. The training and testing process of the SVM model is outlined in Algorithm 1, providing a 
structured overview of the implemented methodology. 

Algorithm 1: SVM Training and Testing 
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Input: 

- Training dataset: X_train, y_train 

- Testing dataset: X_test, y_test 

- Cost parameter (C): Range of values to explore 

- Gamma parameter: Range of values to explore 

Output: 

- Optimal values of C and gamma 

- Calculated accuracy of the SVM model 

Steps: 

1. Initialize: 

  - Set stopping condition (e.g., maximum iterations or convergence threshold) 

 - Initialize best_accuracy = 0 

 - Initialize optimal_C = None 

 - Initialize optimal_gamma = None 

2. For each value of C in the range: 

   For each value of gamma in the range: 

      a. Train SVM model: 

         - Initialize SVM with current C and gamma 

         - While stopping condition is not met: 

            i. For each data point in X_train: 

               - Update SVM model weights using the training step 

            ii. Check if stopping condition is met (e.g., convergence or max iterations) 

      b. Test SVM model: 

         - Predict labels for X_test using the trained SVM 

         - Calculate accuracy on X_test and y_test 

      c. Update optimal parameters: 

         - If current accuracy > best_accuracy: 

            - Set best_accuracy = current accuracy 

            - Set optimal_C = current C 

            - Set optimal_gamma = current gamma 

3. Return: 

   - Optimal values: optimal_C, optimal_gamma 

   - Best accuracy: best_accuracy 

3.6 The Classification stage based on MLP  

The MLP Classifier is initialized from the `sklearn.neural_network` module with two hidden layers containing 64 and 32 
neurons, respectively (`hidden_layer_sizes=(64, 32)`) and a maximum iteration limit of 500 (`max_iter=500`) to provide 
sufficient time for model convergence. The parameter `random_state=42` ensures reproducibility of results. This model 
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employs backpropagation for training and supports various activation functions and solvers for optimization, although the 
default settings are typically used unless otherwise specified. The model is trained using the `fit()` method, which takes the 
preprocessed feature set (`X_for_ML`) and the corresponding labels (`y_train`) as inputs. During training, the network 
adjusts its weights and biases to minimize the error between predictions and actual labels, leveraging the backpropagation 
algorithm to refine its parameters iteratively [27]. The detailed steps of this process are outlined in Algorithm 2. 

Algorithm 2: MLP Pseudocode 

Input: 

- Dataset: Features (x) and labels (y) 

- Hyperparameters: hidden_layer_sizes, max_iter, random_state 

Output: 

- Accuracy of the MLP model on the test set 

Steps: 

1. Import Libraries: 

   - Import MLPClassifier from sklearn.neural_network 

   - Import accuracy_score from sklearn.metrics 

2. Preprocess Data: 

   - Scale the features (e.g., using StandardScaler or MinMaxScaler) 

   - Split the dataset into training and test sets: 

      - X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) 

3. Initialize the MLPClassifier: 

   - Set mlp = MLPClassifier  

  ( 

         hidden_layer_sizes=(64, 32),  # Two hidden layers with 64 and 32 neurons 

         max_iter=500,                 # Maximum number of iterations 

         random_state=42               # Seed for reproducibility 

     ) 

4. Train the Model: 

   - Call mlp.fit(X_train, y_train) to train the MLP model on the training data 

5. Make Predictions: 

   - Set test_prediction = mlp.predict(X_test) to predict labels for the test set 

6. Calculate Accuracy: 

   - Set accuracy = accuracy_score(y_test, test_prediction) to compute the accuracy 

7. Output the Accuracy: 

   - Print "Accuracy =", accuracy to display the model's performance 
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4. RESULTS AND DISCUSSION  

This study relates to the usability of state-of-art machine learning approaches for the effective classification of kidney 

cancer using CT scans. Using machine learning methods and more specifically SVM and MLP are demonstrate a model 

that can quickly diagnose kidney tumours as benign or malignant based on the input CT images. The outcome shows the 

efficiency of the current model has higher accuracy, sensitivity, and specificity than typical machine learning methods. In 

marked differences of the other state of the art methods the model performs exceedingly well on a large dataset with labeled 

CT images and is thus a potential candidate for clinical application to the early diagnosis of diseases. Specifically, the 

discussion points to the need of improving working ML and inclusion of feature extraction techniques, which contributed 

to a high model performance. Furthermore, the study defines the issues of class imbalance and points to the possible 

solutions: data augmentation and sophisticated methods of regularization. It is there for evident from this research that 

machine learning intricately dovetailed with medical imaging will go a long way in improving the diagnostic abilities in 

kidney cancer and hence provide a holistic tool for the radiologists to use in clinical practice. 

4.1 Feature Extraction Results 

Feature extraction is particularly important in increasing efficiency to support classification of kidney cancer using 

computed tomography images. For feature extraction in the present study, we employed sophisticated methods to obtain 

information concerning texture, shape and intensity of the CT scans, which is necessary in the detection of malignant and 

benign tumors. Subsequently, these features were utilized for training and improving machine learning to enable 

quantitative classification capability. The findings herein reveal that features extracted enhance model efficiency and 

resilience in diagnosing kidney cancer. 

A. GLCM Features Results  

Table II below shows several texture-based features derived from GLCM, and these features will be discussed in the 

following points:  

1. Energy: Measures the consistency of pixel intensity values. Higher energy values indicate a more consistent 

texture. Values range from 0.45 to 0.75 approximately. Lower values may correspond to more complex 

textures, while higher values (for example, about 0.75) represent a more consistent texture. 

2. Correlation: Refers to the linear relationship between the pixel's intensity. Higher correlation values indicate 

more predictable relationships between adjacent pixels. The values remain relatively high (close to 0.9), 

suggesting that most images have predictable pixel relationships, which are typical for structured medical 

images such as CT scans.  

3. Dissimilarity (Diss_sim): Measures the variance between pixel values. Higher values mean greater differences 

between adjacent pixels.  

4. Contrast: Measures the difference between the highest and lowest pixel intensity values. High contrast values 

indicate sharp changes in intensity. 

Variation and variation vary widely, suggesting that the dataset includes soft areas (low variation and contrast) 

and areas with sharp transitions or irregularities.  

5. Homogeneity: Reflects the proximity of the distribution of elements in GLCM to the diameter of the GLCM. 

Higher values indicate smoother textures.  Higher values (close to 1.0) at the bottom of the table indicate a 

softer texture of images. 

From the above, we find diversity in the values of this feature that the dataset contains a mix of textures and patterns, which 

are likely to represent different categories (for example, normal versus abnormal tissues). These GLCM features are critical 

to differentiating between these categories, as they capture texture-based properties unique to each image. For example, 

tumors may show higher variation and variation, while normal tissues may show higher homogeneity and energy. These 

features will be critical to training the machine learning model to effectively classify images, as they provide rich 

information about the basic textures of the data. 

TABLE II.  GLCM FEATURE RESULTS. 

Sample ID Energy_d1_a0 Corr_d1_a0 Diss_sim_d1_a0 Homogen_d1_a0 Contrast_d1_a0 

0 0.508142 0.911112 10.362632 0.550152 616.795779 

1 0.459036 0.92581 13.409435 0.520337 883.82005 

2 0.459229 0.925412 13.473557 0.518786 895.262259 

3 0.458996 0.926313 13.385971 0.52094 890.908132 
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4 0.459761 0.926598 13.408132 0.52306 894.279268 

... ... ... ... ... ... 

5146 0.750402 0.875601 6.466356 0.771028 391.117815 

5147 0.752513 0.874009 6.440968 0.773339 394.455431 

5148 0.755032 0.872509 6.374395 0.776326 394.17874 

5149 0.757693 0.872173 6.315084 0.778185 387.355556 

5150 0.759271 0.874544 6.248914 0.779595 377.565922 

 

 

B. Gabor Filter Results  

Table III below includes multiple Gabor features (e.g., Gabor_feature_14, Gabor_feature_15, etc.), which are derived from 

applying Gabor filters at specific parameters such as frequency and direction. These features represent texture information 

such as edge strength, frequency patterns, and spatial structure in images. Each feature column has numerical values that 

correspond to the mean or standard deviation of the image filtered by Gabor, capturing the prevailing patterns and 

differences in texture. This makes Gabor filters particularly effective for analyzing medical images such as CT scans, where 

subtle differences in texture can indicate abnormalities such as tumors or lesions. Gabor's feature values vary widely across 

images, reflecting the diversity of texture and styles within the dataset. For example: 

• Higher feature values (for example, around 88 in Gabor_feature_15) may correspond to strong edges or high-

frequency texture in the image. 

• Lower feature values (e.g., about 10 per Gabor_feature_18) may represent smoother or homogeneous areas with 

fewer differences in density. This difference in feature values indicates that the dataset includes a mix of images 

with distinct textures, which can represent different categories (for example, normal, tumor, cyst). In addition, 

trends in values (for example, a gradual decline toward the bottom rows) may reflect patterns in the dataset, such 

as moving from more complex textures to simpler textures. 

These Gabor features are critical to training machine learning models for image classification. The combination of average 

standard deviation values at different frequencies and directions provides a rich set of features that capture global and local 

strength information. For example, images with tumors may display higher feature values in certain directions due to 

irregular textures, while normal tissue may show lower and more consistent values. By integrating these features into a 

workbook such as SVM or MLP, the model can leverage texture-based distinctions to achieve an accurate classification. 

This highlights the usefulness of Gabor filters as a powerful feature extraction tool in medical imaging. 

TABLE III.  GABOR FILTER RESULTS. 
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0 39.064938 90.788302 22.864012 33.734283 38.504938 
88.56984

1 

27.14061

7 
45.11682 

38.58246

9 

88.64897

3 

1 37.055494 88.947037 36.021111 44.4669 33.859815 
83.68705

9 
33.76104

9 
38.85980

5 
33.87660

5 
83.70359

7 

2 37.249167 89.122567 36.074784 44.55301 34.43679 
84.27553

8 

33.86351

9 

39.06937

8 

34.49043

2 

84.33751

5 

3 37.164537 89.046657 36.055278 44.452159 34.024475 
83.85205

1 
33.91401

2 
39.11594

7 
33.99450

6 
83.81623

4 

4 37.543056 89.427936 36.166728 44.574986 35.058611 
84.95972

3 
34.05784 

39.33340

9 

35.01015

4 

84.90907

8 

... ... ... ... ... ... ... ... ... ... ... 

5146 27.922593 78.744977 10.288889 30.539892 28.579568 
78.48057

4 

11.96478

4 

36.41760

6 

28.69740

7 

78.62958

3 
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5147 27.929599 78.74566 10.282068 30.752284 28.521049 
78.41252

9 
11.85577

2 
36.27362

2 
28.44969

1 
78.32067

6 

5148 27.164506 77.804573 10.246296 30.910016 28.044352 
77.86136

2 

11.70138

9 

36.01309

9 

27.94984

6 

77.74042

3 

5149 26.712531 77.25253 10.170957 30.972664 27.479259 
77.18385

2 
11.45271

6 
35.48762

8 
27.47950

6 
77.18224

2 

5150 26.453765 76.922124 10.120247 30.92372 28.109321 
78.00973

2 

11.50253

1 

35.77345

5 

28.10243

8 
78.00247 

 

C. Normalization Results  

Normalization contributes significantly into the pre-processing step of the feature extraction process for highly complex 

models applied in accurate classification of Kidney cancer from CT origin. It makes sure that features whose units are 

different, ranges of values, or distributions are differ, for example, texture features which were extracted from GLCM and 

the spatial features which were extracted using Gabor filters are normalized to a similar scale. It is even more relevant to 

models that employ distance-based methods, because standardized data result in higher convergence rates and less 

fluctuations during training sessions. Nonetheless, one normalizes these features individually; thereby statistical differences 

between various feature sets are resolved, making the classification model more exploitable or interpretable. The proposed 

normalization has shown how this set normalized the features of this dataset as presented in Tables IV and V enabling the 

model to improve both in accuracy and robustness in detecting the kidney cancer type. 

1. Normalization For GLCM  

Table IV shows the normalization results for GLCM, including attributes such as energy, correlation, variation, 

homogeneity, and variance. These normal values indicate that standard score normalization is likely to be applied, with 

attributes centered around 0 with a standard deviation of 1. Energy results (Energy_d1_a0) the values in this trait are within 

a narrow range around the average, usually between 0.4 and 0.7, as shown in the normal results. This suggests that the 

original distribution of attributes was consistent across samples. After normalization, the scope was scaled to make the 

attribute comparable to others. Natural correlation (Corr_d1_a0) values are also relatively high, with values such as 0.9111 

and 0.9258 appearing frequently. This suggests that the original feature values were close to their average, with less 

variation. Normalization ensures that these values are appropriately measured without being dominated by outliers. 

Variation values (Diss_sim_d1_a0) show a wider range of standard values, such as 10.36 and 6.44. These large values likely 

indicate that the original data for this feature was of higher variance. Normalization helps mitigate the effect of this 

variability during comparisons or model training. While homogeneity (Homogen_d1_a0) has standard values ranging from 

about 0.5 to 0.77. These results highlight the moderate variability in the original data, and normalization ensures that these 

Values are equal when used in conjunction with other GLCM features. Finally, the variance results (Contrast_d1_a0) show 

marked variation, with values ranging from -1.15 to 0.67. This indicates that the original feature had negative and positive 

values, with a significant deviation from the mean. Normalization ensures that the feature corresponds to the standardized 

scale of other attributes. 

TABLE IV.  NORMALIZATION RESULTS FOR GLCM FEATURES 

Sample ID. Energy_d1_a0 Corr_d1_a0 Diss_sim_d1_a0 Homogen_d1_a0 Contrast_d1_a0 

0 0.508142 0.911112 10.362632 0.550152 -0.337902 

1 0.459036 0.92581 13.409435 0.520337 0.63209 

2 0.459229 0.925412 13.473557 0.518786 0.673654 

3 0.458996 0.926313 13.385971 0.52094 0.657838 

4 0.459761 0.926598 13.408132 0.52306 0.670084 

... ... ... ... ... ... 

5146 0.750402 0.875601 6.466356 0.771028 -1.157698 

5147 0.752513 0.874009 6.440968 0.773339 -1.145574 

5148 0.755032 0.872509 6.374395 0.776326 -1.146579 

5149 0.757693 0.872173 6.315084 0.778185 -1.171365 

5150 0.759271 0.874544 6.248914 0.779595 -1.206927 

 

2. Normalization For Gabor Filter  

Table V provides uniform values for different Gabor filter properties, such as Gabor_feature_14 to Gabor_feature_23. 

These properties have been normalized, likely using standard degree normalization, to extend each property to mean 0 and 

standard deviation 1. The results reflect how the outputs of the original Gabor candidate, which may have varied 

significantly in size and scope, were standardized for consistency. The results of normalization indicate that most of the 
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characteristics now fall within a range close to -2 to +2. For example, Gabor_feature_14 and Gabor_feature_15 contain 

uniform values such as 1.14 and 0.81, while Gabor_feature_16 and Gabor_feature_17 display greater variance, with values 

ranging from -1.5 to 1.5. This shows that normalization effectively concentrates properties and adjusts differences in scale. 

Some features, such as Gabor_feature_20, show wider uniform ranges, including negative values such as -1.977 and 

positive values such as 1.360. This suggests that the original Gabor output for this feature had greater contrast compared to 

features such as Gabor_feature_18, which have a narrower spread around 0. Normalization ensures that these differences 

are mitigated, allowing all features to contribute equally to subsequent tasks. When uniform values are observed across 

samples (for example, sample IDs from 0 to 5150), there is a smooth transition without sudden jumps. This suggests that 

the original data was persistent and likely distributed without anomalous values, making normalization effective in 

maintaining underlying patterns. 

TABLE V.  NORMALIZATION RESULTS FOR GABOR FILTER 
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0 1.142173 1.11449 -0.041585 -0.386741 1.176105 1.137465 0.346343 0.544287 1.186448 1.145866 

1 0.805845 0.84186 1.495048 0.925269 0.450054 0.484743 1.360035 -0.555435 0.452193 0.486411 

2 0.838261 0.86785 1.501316 0.935796 0.540238 0.56341 1.375725 -0.518601 0.547968 0.570942 

3 0.824096 0.85661 1.499038 0.923467 0.475791 0.506799 1.383456 -0.510416 0.470589 0.50143 

4 0.88745 0.913065 1.512054 0.938482 0.637431 0.654871 1.405478 -0.472195 0.62906 0.647159 

... ... ... ... ... ... ... ... ... ... ... 

5146 -0.72276 -0.668724 -1.510247 -0.77724 -0.375269 -0.211252 -1.977315 -0.984671 -0.355916 -0.190199 

5147 -0.721588 -0.668623 -1.511044 -0.751276 -0.384416 -0.220348 -1.994007 -1.009978 -0.394567 -0.231391 

5148 -0.849644 -0.807967 -1.515222 -0.731994 -0.458926 -0.294027 -2.017645 -1.055767 -0.472558 -0.308766 

5149 -0.925293 -0.889706 -1.524021 -0.724336 -0.547252 -0.384595 -2.055721 -1.148123 -0.545945 -0.383199 

5150 -0.968603 -0.938628 -1.529943 -0.730319 -0.448771 -0.274193 -2.048093 -1.097886 -0.448749 -0.273823 

 

4.2  The SVM classification Results  

The results of the confusion matrix of the SVM model in the following Fig. 5 show strong performance with high accuracy 

and balanced error rates across the binary classification task. A true negative (TN) count of 1416 and a true positive (TP) 

count of 629 indicates that the model correctly classifies the majority of negative and positive samples respectively. With 

only 56 false negatives (FN) and 108 false positives (FP), the model shows reliable detection for both categories. This is 

also supported by derived metrics, such as an accuracy of about 92.7%, demonstrating that the model is highly effective in 

classifying cases correctly overall. Accuracy and recall values provide more insights into model performance.  The accuracy 

of 85.3% reflects that the majority of the expected positives are indeed true, although some false positives persist.  A 91.8% 

recall indicates the model's strong ability to identify true positive states, reducing false negatives. The F-1 score of 88.4% 

balances accuracy and recall, making it a powerful measure of performance in scenarios where false positive and negative 

results cause concern. Overall, the results suggest that the SVM model is well calibrated for this classification task, with 

slightly better performance in identifying negative samples than positive samples. 

 

Fig. 5. Confusion Matrix Results for SVM Model. 
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The ROC (Future Operating Characteristics) curve of the SVM model in Fig. 6 shows the balance between true positivity 

(TPR) and false positivity (FPR) across different classification thresholds. The curve shows strong performance, 

approaching closely from the upper-left corner of the chart, demonstrating a pattern that achieves a high real positive rate 

(TPR) while maintaining a low false positive rate (FPR). The area under the curve (AUC) is 0.97, reflecting an excellent 

level of separability. An AUC value close to 1 indicates that the model can effectively distinguish between positive and 

negative categories. The sharp rise of the ROC curve at the beginning suggests that the pattern achieves high recall with 

minimal false positives at lower thresholds. As the threshold is loosened, the curve flattens, showing decreasing returns in 

increasing the true positivity rate while the false positivity rate grows. This behaviour corresponds to a well-calibrated 

model that balances sensitivity and privacy. The high AUC value confirms the model's reliability in handling binary 

classification tasks, making it suitable for scenarios where class differentiation is critical. 

 

 

Fig. 6. ROC for SVM Model. 

Fig. 7 below, the learning curve of the SVM model illustrates the relationship between training accuracy and verification 

accuracy with increasing the proportion of training set used. Initially, when only a small portion of training data is used, 

the accuracy of the training is very high, approaching 94%, suggesting that the model fits overly with the limited data. 

However, verification accuracy starts low, around 89%, due to insufficient data for generalization. As the proportion of 

training data increases, the accuracy of verification steadily improves, suggesting better generalization as the model learns 

from more examples. In later stages, both training accuracy and verification converge with the use of the full dataset.  The 

final verification accuracy stabilizes slightly below the training accuracy, indicating that the model is well-optimized and 

avoids too much over-proportionality. The gap between the two curves is minimal, indicating a good balance between bias 

and contrast. However, slight fluctuations in training accuracy in the mid-range can be attributed to the sensitivity of the 

model to specific subsets of training data. Overall, the learning curve shows that the SVM model benefits from increased 

training data and achieves strong performance with proper generalization. 

 

 

Fig. 7. Learning Curve for SVM Model. 
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The learning curve of the SVM model in fig.8 with cross-validation provides insights into model performance as the training 
group size increases. The blue curve represents the degree of training, which starts with near-perfect accuracy when the 
training set is small in size. This behavior indicates that the model over relates to smaller datasets and captures specific 
patterns in finite data. However, as the volume of training grows, the accuracy of the training gradually decreases, converging 
towards a more realistic value that reflects the complexity of the overall problem. The green curve, which represents the 
degree of cross-verification, starts low, suggesting that the model is struggling to generalize with smaller datasets. However, 
the degree of cross-verification steadily increases as more data becomes available, demonstrating improved generalization 
and reduced over relevance. Narrowing the gap between training scores and cross-verification as the dataset size approaches 
4000 indicates better model stability and a balance between bias and variability. Shaded areas around the curves illustrate 
the variation in the results, where the cross-check curve is initially more variable, which stabilizes with more data. These 
results underscore the importance of a larger training suite to achieve consistent and reliable performance in the SVM model. 

 

 

Fig. 8. Learning Curve for SVM Model with Cross-Validation. 

4.3 The MLP classification Results  

The confusion matrix for the multilayer sensory perception model (MLP) in Fig. 9 below shows exceptional classification 
performance in a binary task, as shown by the distribution of values. The model achieved 1524 true negative (TN) and 677 
true positive results (TP), meaning that it correctly classified a large majority of samples in both negative (category 0) and 
positive (category 1) categories. There must be no false positive (FP) results, which indicates the ideal accuracy of the 
negative category. This suggests that all samples predicted as negative were indeed negative, a desirable trait in applications 
where the erroneous classification of negative cases as positive leads to serious consequences. The presence of 8 false-
negative (FN) results, although small in number, indicates that some positive samples were misclassified as negative. This 
slight deficiency affects the recall of the positive category, suggesting that despite the accuracy of the model, it sometimes 
fails to detect some positive cases. Despite this, recall remains high, and the low number of false negative results reflects a 
strong generalization. Overall, the results suggest that the MLP model is well-tuned, effectively avoiding over relevance or 
inappropriateness, as evidenced by the absence of false positives and a low error rate in detecting positives. The balance 
between real pros and real negatives underscores the model's ability to generalize across both categories, making it highly 
reliable for tasks that require accurate and accurate classification.  

 

Fig. 9. Confusion Matrix Results 
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The ROC curve (future operating characteristics) shown in Fig. 10 shows the performance of the classification model, where 
the orange line represents the ROC curve and the area under the curve (AUC) is 1.00. This result indicates optimal rating 
performance, as the model achieves a true positive rate (TPR) 1 while maintaining a false positive rate (FPR) 0. The curve 
that hugs the upper-left corner of the graph indicates that the pattern distinguishes between positive and negative categories 
without error. Such a finding is rare and suggests that the model is either exceptionally calibrated or may have been 
overloaded on the dataset. The diagonal dotted line represents the basic performance of a random classifier, which achieves 
an area under the curve 0.5. The large gap between the model curve and this baseline highlights the model's superior 
discriminatory capability. However, while AUC 1.00 is perfect in theory, it raises concerns about potential overprocessing, 
especially if the dataset is small or lacks sufficient variability. This finding is particularly relevant for real-world applications, 
where perfect class segregation is difficult due to noise and overlapping features. Thus, while the figure reflects excellent 
performance, further investigation of the dataset and cross-verification results will be useful to ensure model strength in 
broader or invisible datasets. 

 

Fig. 10. Receive Operating Characteristic  

The learning curve in Fig. 11 shows the relationship between the training score and the degree of mutual verification as a 
function of the training group size. The training score, represented by the red line, remains roughly constant at a very high 
value, close to 1.0, across all training group sizes. This suggests that the model fits the training data perfectly, which is often 
a sign of low bias. However, the lack of a decrease in training accuracy as the training group grows may indicate potential 
over-processing, as the model is more likely to memorize training data rather than generalize it to invisible examples. By 
contrast, the cross-verification score, represented by the green line, starts remarkably low, around 0.70, when the training 
group size is small. As the training group size increases, the degree of cross-verification is steadily improving, suggesting 
that the model begins to generalize better with more data. However, there is still a significant gap between the training score 
and the degree of mutual verification, even in larger dataset sizes, suggesting that the model is struggling to fully generalize. 
This discrepancy highlights the problem of variance where the model works very well on training data but is less effective 
on validation data. To address this issue, techniques such as organization, increasing the diversity of the training dataset, or 
reducing the complexity of the model may be necessary to enhance generalization. 

 

Fig. 11. Learning Curve 



 

 

21 Kadhim et al, Mesopotamian Journal of Big Data Vol. (2025), 2025, 1–25 

The ROC curve in Fig. 12 shows the classification performance of the MLP (Multilayer Calculator) model, achieving an 
area under the curve (AUC) of 1.00. This suggests that the MLP model separates the two categories altogether, achieving a 
true positive rate (TPR) of 1.0 without experiencing any false positive rate (FPR). The curve that hugs the upper-left corner 
of the chart reflects the ideal rating performance, with the model accurately identifying all positive states while avoiding 
false positive predictions altogether. This result is highly desirable in applications where sensitivity and privacy are 
paramount. However, while an ideal AUC score is theoretical idealism, it is important to critically evaluate this outcome.  
Achieving AUC 1.00 may indicate the possibility of over-processing, especially if the model is trained on a dataset that does 
not represent real-world variation or contains limited noise. Over-processing means that the model works exceptionally on 
the training or test suite but may have difficulties dealing with invisible or more complex data. To ensure robustness, 
additional evaluation through independent datasets, cross-verification, or external calibration is essential. While the ROC 
curve shows exceptional performance, the broader context of the data set and the possibility of real-world generalization 
must be considered to validate this result. 

 

Fig. 12. Receiver Operating Characteristic for MLP  

The learning curve of the MLP model in Fig. 13 shows the model's training accuracy (red line) and cross-checking accuracy 
(green line) as a function of the training group size. The training score remains consistently high, close to 1.0, regardless of 
the size of the training group. This suggests that the MLP model is able to fit the training data perfectly, reflecting a model 
with low bias. However, this high training accuracy indicates the possibility of over-processing, as the model seems to save 
training data rather than generalizing well to invisible data. On the other hand, the cross-check score starts remarkably low, 
around 0.70, when the training group is small, and steadily improves as the training group size increases. This trend suggests 
that as the model is exposed to more training data, it generalizes better, resulting in higher validation accuracy. However, 
there is still a noticeable gap between training scores and cross-verification, even with larger data sets, suggesting that the 
model did not fully overcome over-processing. To mitigate this problem, strategies such as organizing, exclusion, or reducing 
model complexity can help improve generalization. Overall, while MLP shows strong performance on the training suite, the 
increased degree of mutual verification highlights the importance of larger datasets for better real-world applicability. 

 

Fig. 13. Learning Curve & Cross-Validation for MLP 



 

 

22 Kadhim et al, Mesopotamian Journal of Big Data Vol. (2025), 2025, 1–25 

The learning curve in Fig. 14 shows the relationship between training accuracy (red line) and test accuracy (green line) with 
increasing the training group portion of the MLP model. Training accuracy remains constant at approximately 1.0 across all 
parts of the training suite. This suggests that the MLP model fits the training data perfectly, suggesting that the model has 
low bias. However, consistently high training accuracy may indicate potential overprocessing, as the model saves training 
data rather than generalizing to invisible data. On the other hand, the accuracy of the test starts much lower, around 0.70, 
when only a small part of the training kit is used. As the training data portion increases, the accuracy of the test gradually 
improves, with a significant increase observed as the training group size approaches its maximum. Ultimately, the accuracy 
of the test converges with the accuracy of the training, suggesting that the additional data helps the model to generalize better. 
However, the initial gap between training and test accuracy in most of the curve highlights over-processing problems, with 
the model working perfectly on training data but less effectively on invisible data. This gap narrows as training data increases, 
suggesting that collecting more data or applying regulation techniques can help improve test accuracy and further reduce 
overprocessing. The convergence of the two lines near the training set break limit shows that the model is approaching a 
better generalization with sufficient data. 

 

Fig. 14. Learning Curve for MLP. 

Finally, in the  present a table VI showing the performance metrics to show the difference between the SVM and MLP 
models in terms of accuracy, Precision, recall and F1 coefficient. 

TABLE VI.  COMPARISON BETWEEN SVM AND MLP MODELS RESULTS. 

            Metrics  

Model 
Accuracy Precision Recall F1 Score 

SVM 93% 90.5% 92.5% 91.5% 

MLP 99.64% 99.5% 99.5% 99.5% 

 

Table VI compares the performance metrics of two classification models, Support Vector Machine (SVM) and Multi-Layer 
Perceptron (MLP), in terms of accuracy, precision, recall, and F1 score. These metrics provide a comprehensive evaluation 
of the models' effectiveness in correctly classifying data and handling both positive and negative cases. The SVM model 
achieves 93% accuracy, 90.5% precision, 92.5% recall, and an F1 score of 91.5%, indicating a well-balanced performance 
with a strong trade-off between precision and recall. However, its overall performance is lower than the MLP model, 
particularly in accuracy and recall, suggesting that SVM may misclassify some positive cases or produce false positives. In 
contrast, the MLP model demonstrates significantly superior performance across all metrics, achieving 99.64% accuracy, 
99.5% precision, 99.5% recall, and an F1 score of 99.5%. These results reflect near-perfect classification accuracy, with 
minimal false positives and false negatives. The close alignment of precision, recall, and F1 score further highlights the MLP 
model's balanced sensitivity and specificity. The superior performance of the MLP model can be attributed to its neural 
network architecture, which effectively captures complex and nonlinear patterns in the data, making it particularly 
advantageous for intricate classification tasks. 

However, the MLP model's near-ideal metrics raise concerns about potential overfitting, especially if the training and testing 
datasets lack diversity or fail to represent real-world scenarios adequately. On the other hand, while the SVM model shows 
lower performance, it may generalize better to unseen data and exhibit greater robustness against overfitting, depending on 
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the application. Ultimately, the choice between these models should consider the task's specific requirements, the dataset's 
complexity, and the importance of balancing performance with the risk of overfitting. The limitations of this study include:  

• The SVMs and the MLPs may not perform well when it comes to generalization of the unseen data in particular 
when the feature space of the dataset is limited in sample size, or restricted to demography and imaging 
characteristics of patients. This can lead to additional imprecision since the employed model is not as accurate when 
applied to other CT imagery samples. 

• Though both the SVM and MLP models are equally effective in such classification tasks done on large CT image 
datasets with many numbers of features, both models are computationally very intensive and time consuming. The 
major drawback is the necessity of hyperparameter tuning and large memory storage that is a problem when using 
high resolution medical image data. 

• The assessments reveal that both SVM and MLP are vulnerable to noise and outliers in the data. However, when 
using CT images, noises within the images or some small shifts in the image position can significantly degrade the 
feature extraction step and even decrease the classification accuracy of the models. 

5. CONCLUSION  

This study also determines the capacity in which machine learning models, namely SVM and MLP could revolutionise the 
accurate classification of kidney cancer using relevant CT images. The study complemented the extraction of feature 
variables by using higher order texture and structural features such as GLCM and Gabor filters. Here the MLP Model 
outperformed the general model with 99.64% thus showing a high level of efficiency as compared to the SVM model at 
93%. These results confirm the effectiveness of the MLP to capture the complex relationships between the input and output, 
as well as the enhanced efficiency of the MLP in solving classification problems in the medical image field. Nonetheless, 
the high performance of the MLP increases questions of overfitting, suggesting more external verifications on various and 
larger databases. This work also presents one way of how the clinical process can be extended using machine learning in an 
optimization and accuracy manner to seize a better diagnosis for patients. In further research, collecting a larger sample size 
of data, tweaking the hyperparameters of the model greater with more rigorous testing of feature selection methods such as 
Recursive Feature Elimination (RFE) and Principal Component Analysis (PCA) should be the future direction of the 
research. Moreover, using superior deep learning networks for feature extraction, may prove to have even better performance. 
In conclusion, this dissertation aids in the creation of new machine learning techniques that may greatly enhance the 
prognosis for the early detection and prognosis of kidney cancer and individualized course of therapy. 
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